SUPPLEMENTARY MATERIAL

Fractal analysis by box counting method

Fractal dimension (FD) represents irregularity or complexity of binary mask surface [18] and is calculated using the box counting algorithm [16]. In a box counting scan, a series of grids of increasing boxes are placed over an image, and the number of boxes required to cover the binary mask are counted. Mathematically, FD is obtained by the following equation:

$$
\begin{equation*}
F D=\lim _{\epsilon \rightarrow 0} \frac{\log (N(\epsilon))}{\log (1 / \epsilon)}, \tag{1}
\end{equation*}
$$

where ϵ is a box size and $\mathrm{N}(\epsilon)$ is the number of counted boxes. For empirical estimation of equation (1), FD is computed by dividing the gradient of logarithmic value of the inverse of box size ϵ to the gradient of logarithmic value of count $\mathrm{N}(\epsilon)$ as:

$$
\begin{equation*}
F D_{t}=\frac{\log \left(N\left(\epsilon_{t+1}\right)\right)-\log \left(N\left(\epsilon_{t-1}\right)\right)}{\log \left(\frac{1}{\epsilon_{t+1}}\right)-\log \left(\frac{1}{\epsilon_{t-1}}\right)}, \tag{2}
\end{equation*}
$$

where ϵ_{1} is the smallest box size $1, \epsilon_{2}$ is the following larger box size $2, \epsilon_{3}$ is the following larger box size $4, \epsilon_{4}$ is the following larger box size 8 , and so on. Since there is no previous box size ϵ_{t-1} for the smallest box size, ϵ_{t-1} is set as ϵ_{1}. For the largest box size, ϵ_{t+1} is set as ϵ_{t}. The rougher the surface of the 3D binary mask is, the higher the value of FD (slope in $\log -\log$ plot) is obtained.
Lacunarity represents the amount of voids inside the 3D binary mask [17]. To measure the lacunarity, coefficient of variation $\left(C V_{\epsilon}\right)$ values are first computed for the counted boxes which include a part of 3D binary mask. $C V_{\epsilon}$ is computed by a ratio of standard deviation σ_{ϵ} to mean μ_{ϵ} of the pixel intensities inside the box with a size ϵ as:

$$
\begin{equation*}
C V_{\epsilon}=\frac{\sigma_{\epsilon}}{\mu_{\epsilon}} . \tag{3}
\end{equation*}
$$

Then, the lacunarity λ_{ϵ} is computed by the mean of the squares of $C V_{\epsilon}$ values as:

$$
\begin{equation*}
\lambda_{\epsilon}=\frac{1}{N(\epsilon)} \sum_{k}\left(C V_{\epsilon}^{k}\right)^{2}, \tag{4}
\end{equation*}
$$

where $C V_{\epsilon}{ }^{1}, C V_{\epsilon}{ }^{2}, \ldots, C V_{\epsilon}^{k}$ are the $C V_{\epsilon}$ values computed from K counted boxes. If there are many hole or gaps in the 3D binary mask, collected $C V_{\epsilon}$ values are high and thus the high lacunarity is obtained with the equation (4) [19].

