SUPPLEMENTARY DATA

Supplementary methods

Measurement of intracellular Ca²⁺

In some experiments (for Supplementary Fig. 1), the initial kinetic rate of calcium influx was calculated as the $[Ca^{2+}]_i$ rise slope (ratio/sec) [1,2]. The $[Ca^{2+}]_i$ level was calculated as the difference in the peak Fura-2 AM ratio following 80 mM KCl treatment and the basal Fura-2 AM ratio ($R_{KCl peak} - R_{basal}$). Then, the initial rate of KCl-induced calcium influx was calculated as the slope representing Ca^{2+} influx during the initial 30 sec following 80 mM KCl perfusion using the following formulus:

 $[Ca^{2+}]_i$ rise slope (ratio/sec) = $(R_{KCl peak} - R_{basal}) / 30$ sec

Supplementary Fig. 1. The effects of LPS on Ca²⁺ influx through VGCCs in SCG neurons. (A, C) High K⁺ (80 mM)-induced increase in cytosolic Ca²⁺ in neurons and SGCs attached to the attendant neurons in culture. The relative concentration of cytosolic Ca²⁺ is expressed as a 340 nm/380 nm ratio. Twenty-four hours after LPS exposure (1 µg/ml), the high K⁺-induced increase in cytosolic Ca²⁺ was significantly augmented in neurons and SGCs attached to the attendant neurons in culture. (B, D) Summary of the effects of LPS on high K⁺-induced cytosolic Ca²⁺ increase in neurons and SGCs. Comparisons were made for the rising slope of cytosolic Ca²⁺ levels over time. The data are presented as means ± SEM. The number of the tested cells from three independent experiments is indicated in parentheses. Unpaired Student's t-test, **p < 0.01, ***p < 0.001. LPS, lipopolysaccharide; VGCCs: voltage-gated Ca2+ channels; SCG, superior cervical ganglia; SGC, satellite glial cell.

REFERENCES

- 1. Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. *Science*. 2010;330:101-105.
- 2. Ross DG, Smart CE, Azimi I, Roberts-Thomson SJ, Monteith GR. Assessment of ORAI1-mediated basal calcium influx in mammary epithelial cells. *BMC Cell Biol*. 2013;14:57.