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INTRODUCTION

Inflammation is an important component for the develop-
ment of all types of cancer. Breast cancers have been reported 
to be caused due to inflammation triggered by various factors 
including dietary changes, intake of alcohol, and tobacco. Etha-
nol (EtOH) has been widely reported to act as a tumor initia-
tor as well as a tumor promoter. Experimental and epidemi-
ological studies have shown that a moderate intake of alcohol 
had a causal relationship with tumor promotion, which may 
be associated with activation of the inflammatory response 
[1]. An increased risk of breast cancer due to alcohol con-
sumption in pre- and postmenopausal women has been hy-

pothesized to be due to a deregulation in the hormonal re-
sponse of estrogen and progesterone [2]. In addition to activa-
tion of the estrogen receptor (ER) signaling pathway, intake of 
EtOH has been reported to decrease the expression of BRCA1 
[3], facilitate angiogenesis through hypoxia-inducible factor 1 
pathway [4], and enhance metastasis by disrupting the vascu-
lar endothelial barrier [5] leading to an accumulation of reactive 
oxygen species (ROS) in breast cancer cells [6].

ROS is a major inflammatory and tumor promoting factor 
involved in the activation of cytokine and growth factor sig-
naling. Goldberg and Schwertfeger [7] suggested that ROS-
linked activation of interleukin 6/Janus kinase 2/signal trans-
ducer and activator of transcription 3 (IL-6/JAK2/STAT3), tu-
mor necrosis factor α (TNF-α), and phosphoinositide-3- 
kinase (PI3K) is the inflammatory pathway responsible for 
promoting tumor development. Similarly, Carballo et al. [8] sug-
gested that STAT3 is associated with inflammation-induced 
tumor progression and metastasis in colorectal, hepatocellular, 
and breast carcinomas. Constitutive activation of STAT3 is in-
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volved in tumor initiation, progression, and maintenance, 
marking it as a potential target for cancer therapy [9]. Various 
reports strongly suggest a causal relationship between inflam-
mation and alcohol-mediated breast cancer. However, the ex-
act molecular mechanisms underlying tumor promotion in 
breast cancer are not clearly understood. The present study 
investigates EtOH-mediated breast cancer cell proliferation 
and the role of STAT3 in this process.

METHODS

Reagents and antibodies
All chemicals were obtained from Sigma-Aldrich (St. Louis, 

USA). All cell culture solutions and supplements were pur-
chased from Life Technologies Inc. (Gaithersburg, USA). 
Dulbecco’s modified Eagle medium (DMEM) was obtained 
from Gibco, BRL (Carlsbad, USA). All other high perfor-
mance liquid chromatography and analytical grade solvents 
were obtained from SRL (Mumbai, India). 3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) re-
agent; reverse transcription polymerase chain reaction (RT-
PCR) and quantitative real-time polymerase chain reaction 
(qRT-PCR) reagents; and Lipofectamine 2000 were obtained 
from Invitrogen (Waltham, USA). Antibodies were purchased 
from BD biosciences (Gurgaon, India) and Cell Signaling 
Technologies (Danvers, USA). AG490 and wortmannin were 
purchased from Merck chemicals (Goa, India). siRNA was 
purchased from Sigma Aldrich.

Cell culture
MCF-7 and MDA MB-231 cells were maintained in DMEM 

supplemented with 2 mM glutamine, antibiotics (gentamycin 
160 µg/mL and amphotericin B 3 µg/mL), and 10% heat-inac-
tivated fetal bovine serum. All the cell cultures were main-
tained at 37°C in a humidified incubator with 5% CO2. 

Optimization of EtOH concentration using MTT assay
To determine the effect of EtOH on cancer cells and to opti-

mize the concentration for maximum enhancement of cell 
proliferation, dose-dependent and time-dependent assess-
ment on cell viability was performed as described by Posa et 
al. [10]. Cells were seeded onto 96-well plates. After treatment 
with incremental concentrations of EtOH (400, 800, 1,200, 
1,600, and 2,000 µg/dL) for 24, 48, 72, and 96 hours, the cells 
were washed twice with phosphate-buffered saline (PBS) and 
incubated with 5 mg/mL MTT reagent in DMEM for 4 hours 
at 37°C. Next, the medium was removed and the crystals were 
solubilized using dimethyl sulfoxide (DMSO), and absor-
bance was measured at a wavelength of 570 nm. 

Assessment of cell proliferation using radiolabelled thymidine 
[3H] incorporation assay

Cells were seeded in a 96-well plate and treated with the 
previously optimized concentration of EtOH. [3H]-thymidine 
(0.5 µCi/well) was added to the wells 24 hours prior to har-
vesting the cells. After incubation, the supernatant was re-
moved and cells were lysed with 10% sodium dodecyl sul-
phate (SDS)-0.025% sodium hydroxide (NaOH) solution. Ra-
dioactivity was then measured in a liquid scintillation counter 
(MicroBeta2 LumiJET; Perkin Elmer, Waltham, USA).

Fluorescence-activated cell sorting analysis
Cells were seeded in a 6-well plate. After treatment with 

EtOH, cell suspensions containing 1 to 5 million cells were 
washed in ice cold PBS. Cells were dispersed again in 200 µL 
PBS using a vortex, and 1 mL of ice cold 70% EtOH was add-
ed to the cells. Then, the cells were centrifuged and resus-
pended in 1 mL of 0.01% triton-x in PBS solution, and 1 µL of 
propidium iodide solution was added. After 1-hour incuba-
tion at 37°C, the cells were analyzed using a flow cytometer. 

Immunoblotting
Cells were treated with optimized concentrations of EtOH 

and total cell lysates were prepared using lysis buffer. Immu-
noblotting was performed as described by Sangeetha et al. 
[11]. 

Nitro blue tetrazolium reduction assay for ROS release
Cells were seeded in a 96-well plate and treated with EtOH. 

After 48 hours, the supernatant was removed and 0.01% nitro 
blue tetrazolium (NBT) (150 µL) was added to each well. The 
plate was incubated at 37°C for 1 hour, after which the super-
natant was removed and treated with 50 µL of 30% potassium 
hydroxide for 5 to 10 minutes, followed by addition of 100 μL 
DMSO. The absorbance was measured at 630 nm.

Reverse transcription polymerase chain reaction 
RT-PCR was carried out as described previously [12]. After 

incubation, cells were lysed using trizol and total RNA was 
extracted with chloroform followed by precipitation with iso-
propyl alcohol. The RNA pellet was washed with 70% EtOH 
and resuspended in 9 μL of diethylpyrocarbonate treated wa-
ter. Reverse transcription was carried out using 200 units of 
avian reverse transcriptase enzyme and 200 ng/mL oligo dT. 
The following primers were used: IL-6 Forward, 5́ -AT-
GACTTCCAAGCTGGCCGTGGCT-3́ , Reverse, 5́ -TCT-
CAGCCCTCTTCAAAAACTTCT-3́ ; TNF-α Forward, 5́ - 
CGGGACGTGGCCGAGGAG-3́ ; Reverse, 5́ -CAC-
CAGCTGGTTATCTCACAGCTC-3́ ; and glyceraldehyde 
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3-phosphate dehydrogenase (GAPDH) Forward, 5́ -CC 
ACCCATGGCAAATTCCATGGCA-3́ , Reverse, 5́ -TC-
TAGACGGCAGGTCAGGTCCACC-3́ . For the PCR reac-
tion, we followed the manufacturer’s protocol for Taq poly-
merase (Invitrogen) PCR products were resolved using 1.5% 
agarose gel and stained with ethidium bromide. The band in-
tensity was measured using Image J.

Gene silencing and quantitative real-time PCR
Gene silencing of STAT3 followed by real time PCR was 

performed following a previously described method with 
some modifications [13]. MCF-7 and MDA MB-231 cells 
were seeded in a 6-well plate and 50 nM siRNA was transfect-
ed into the cells using the Lipofectamine (Invitrogen, 

Waltham, USA) reagent. After a 48-hour incubation in which 
the maximum transfection efficiency was reached, MCF-7 
and MDA MB-231 cells were treated with EtOH (347 µM and 
173 µM, respectively). The total RNA was extracted using the 
trizol method described above. cDNA was prepared using re-
verse transcription. Amplification was performed using Ste-
pOne Real-Time PCR (Applied Biosystems, Waltham, USA). 
All of the targeted gene cycle threshold values were normal-
ized to that of GAPDH expression in the same sample. Results 
were expressed as fold change in gene expression.

Assessment of effect of inhibitors on EtOH-mediated 
proliferation using MTT assay

To determine the effect of inhibitors such as wortmannin 

Figure 1. Dose and time course effect of EtOH on proliferation in MCF-7 and MDA MB-231 cells. (A) MTT assay in MCF-7 cells. (B) MTT assay in 
MDA MB-231 cells. Cells were treated with 400–1,600 µg/dL of EtOH for 24, 48, 72, and 96 hours. (C) Thymidine incorporation assay in MCF-7 cells. 
(D) Thymidine incorporation assay in MDA MB-231 cells. Cells were treated with the optimized concentration of EtOH 1,600 and 800 µg/dL for 48 
hours. Results are expressed as percentage of proliferation. Data expressed as mean±SD from triplicates of three independent experiments. 
CON=control; EtOH=ethanol. 
*p≤0.005; †p≤0.05.
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(100 nM) and tyrphostin (AG490) (100 µM) in the presence/
absence of EtOH, an MTT assay was performed after 48 
hours of treatment as described above.

Immunoblotting after treatment with inhibitors 
To understand the effect of wortmannin and tyrphostin in-

hibitors on STAT3 phosphorylation and expression of cyclin 
D1, cells were incubated with the inhibitors in the presence 
and absence of EtOH for 48 hours. The protein lysate prepara-
tion and protein expression levels were analyzed by immu-
noblotting analysis. 

Statistical analysis
All data are expressed as mean±standard error. Differences 

among treatment groups were analyzed by one way ANOVA 
using GraphPad prism software. Differences in which p≤0.05 
(denoted as†) were considered to be statistically significant, and, 
differences in which p≤0.005 (denoted as*) were considered to 
be highly significant. Each experiment was performed in triplicate.

RESULTS

Effect of EtOH on proliferation of breast cancer cells 
Treating breast cancer cells with 400, 800, 1,200, 1,600, and 

2,000 µg/dL EtOH for 24, 48, 72, and 96 hours showed a max-
imum increase in cell proliferation of 65%± 0.03% in MCF-7 
cells at 1,600 µg/dL, (347 µM) (Figure 1A) and a maximum 
increase in cell proliferation of 45%± 0.17% in MDA MB-231 

Figure 2. EtOH induced G1-S phase transition at 48 hours. Results of flow cytometry analysis (A) MCF-7. (B) MDA MB-231. (C) Immunoblot analysis 
of cell cycle proteins. (D) Expression of cell cycle proteins Integrated density value (IDV) in MCF-7 and MDA MB-231 cells. Target protein expressions 
were measured as IDVs using Image J and was normalized with β-actin expression. Data expressed as mean±SD from triplicates of three indepen-
dent experiments. 
CON=control; EtOH=ethanol.
*p≤0.005; †p≤0.05.

EtOH

CON

EtOH

CON

3

2

1

0

3

2

1

0

	 0	 50	 100 	 0	 50	 100

	 E2F	 CDK2	 CDK4	 CDK6	 p53 	 E2F	 CDK2	 CDK4	 CDK6	 p53

% of cells % of cells

 G0-G1      S      G2-M

 CON
 EtOH

 CON
 EtOH

MCF-7 MDA MB-231

MCF-7 MDA MB-231

MCF-7

CON CONEtOH EtOH

MDA MB-231

ID
V 

ra
tio

ID
V 

ra
tio

A B

C

D

*
†

CDK2 33 kDa

E2F 57 kDa

CDK4 36 kDa

CDK6 34 kDa

p53 53 kDa

β-Actin 45 kDa

* *

* *

*

*

† *



126 � Poornima devi Narayanan, et al.

http://ejbc.kr� http://dx.doi.org/10.4048/jbc.2016.19.2.122

cells at 800 µg/dL, (173 µM) for 48 hours (Figure 1B). No sig-
nificant increase in proliferation was observed after 48 hours. 
The increase in proliferation was further confirmed using a 
radiolabelled thymidine incorporation assay, where a 68% 
± 0.17% increase in proliferation of MCF-7 cells (Figure 1C) 
and 55%± 0.03% increase in MDA MB-231 cells (Figure 1D) 
was observed at 48 hours.

Effect of EtOH on cell cycle 
Towards understanding the effect of EtOH on breast cancer 

cell proliferation, we treated MCF-7 (Figure 2A) and MDA 
MB-231 (Figure 2B) cells with optimized doses of EtOH 
(1,600 µg/dL and 800 µg/dL, respectively) and analyzed the 
cells after 48 hours using flow cytometry. The results clearly 
indicate a significant increase in the population of cells at S-
phase. The accumulation of cells in S-phase was further con-
firmed by measuring the expression of cell cycle proteins. An 
increase in the expression of eukaryotic transcription factor 2 
(E2F), cyclin-dependent kinase 2 (CDK2), cyclin-dependent 
kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) was 

Figure 3. (A) EtOH induced reactive oxygen species (ROS) accumulation at 48 hours in MCF-7 and MDA MB-231 cells. Results of nitro blue tetrazoli-
um assay. (B) Effect of EtOH on the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in MCF-7 and MDA MB-231 cells at 48 
hours using reverse transcription polymerase chain reaction. (C) Expression of target genes normalized with glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) expression in MCF-7 and MDA MB-231 cells. Data were observed from three independent experiments performed in triplicates. 
CON=control; EtOH=ethanol; IDV= Integrated density value.
*p≤0.005. 
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observed at 48 hours in MCF-7 (Figure 2C, D) and MDA 
MB-231 cells (Figure 2C, D), whereas a decrease in expression 
of the tumor suppressor protein p53 was observed, thereby 
validating the increase in cell proliferation after treatment 
with EtOH.

EtOH promotes the ROS-mediated inflammatory response 
To determine the effect of EtOH on ROS accumulation, 

NBT reduction assay was performed. The cells were induced 
with optimized concentrations of EtOH, and we measured the 
release of ROS after 48 hours. The results showed an increase 
of ROS accumulation by 65% for MCF-7 and 51% for MDA 
MB-231 cells (Figure 3A) in comparison to untreated cells. 
Also, we found an increase in the gene expression of pro-in-
flammatory cytokines IL-6 and TNF-α in MCF-7 and MDA 
MB-231cells (Figure 3B, C) at 48 hours following EtOH treat-
ment, suggesting a role for inflammatory cytokines in EtOH-

mediated breast cancer cell proliferation.

Role of transcription factor STAT3 in EtOH-mediated breast 
cancer progression

To determine the downstream effector of the IL-6-mediated 
pathway, the phosphorylation status of the transcription fac-
tor STAT3 was assessed. We found that in both MCF-7 and 
MDA MB-231 cells, EtOH treatment enhanced the phos-
phorylation of STAT3 (Figure 4A, B), highlighting the impor-
tant role played by STAT3 in EtOH-mediated proliferation of 
breast cancer cells. To further understand the role of STAT3 in 
this process, specific gene silencing by RNA was performed. 
Knockdown of the STAT3 gene was performed using siRNA. 
The transfection efficiency was achieved at 48 hours (Figure 
4C, D). 

We analyzed the expression of genes regulated by STAT3 
using quantitative real-time PCR. The results indicated an in-
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crease in the expression of cyclin D1, D2, and D3; matrix me-
talloproteinase (MMP)-2; and MMP-9 to about 1.8, 2.1, 1.8, 
1.35, and 1.6 fold, respectively, in MCF-7 cells (Figure 5A) and 
2.5, 1.79, 2.25, 2.56, and 2.43 fold, respectively, in MDA MB-
231 cells (Figure 5B) after incubation with EtOH in compari-
son to untreated cells. The expression of these genes was sig-
nificantly reduced with the silencing of STAT3. 

In order to determine the effect of EtOH on STAT3, the to-
tal protein expression level of STAT3 was assessed using im-
munoblot analysis in MCF-7 and MDA MB-231 cells. No sig-
nificant change was observed after treatment with EtOH (Fig-
ure 6). These results suggest that EtOH enhances the phos-
phorylation of STAT3 (posttranslation) without any change in 
the expression of total STAT3 (translation). 

These results confirm that the EtOH-mediated progression 
of breast cancer cells requires activation of STAT3, upregula-
tion of the transcription of cyclins, and the expression of ma-
trix metalloproteinases.

�Effect of inhibitors on STAT3 phosphorylation in EtOH-
mediated breast cancer 

The transactivation of STAT3 is regulated through both 
PI3K/Akt and IL-6/JAK2 pathways [14]. Upon treatment with 
wortmannin, a significant reduction in EtOH-mediated pro-
liferation and STAT3 phosphorylation was observed in MDA 
MB-231 cells, indicating the involvement of PI3K on STAT3 
activation during EtOH-induced proliferation in MDA MB-
231 cells. In contrast, no change was observed in MCF-7 cells, 
suggesting that these cells rely on PI3K-independent activa-
tion of STAT3 (Figure 7).

Treatment with the JAK2 inhibitor AG490 resulted in a de-
crease in EtOH-mediated proliferation in both MCF-7 and 
MDA MB-231cells (Figure 7A). The antagonistic effect of 
AG490 was confirmed by evaluating the expression of p-
STAT3, and, its association with proliferation was probed by 
studying the expression of cyclin D1 by immunoblotting 
(Figure 7). 

Figure 5. Quantitative real-time polymerase chain reaction analysis for STAT3 targeted proteins (cyclins and MMPs) at 48 hours. (A) MCF-7. (B) MDA 
MB-231 cells. Results are expressed as mean of gene expression values±SD from duplicates of two independent experiments. 
MMPs=matrix metalloproteinases; CON=control; siSTAT3=signal transducer and activator of transcription 3 silenced cells; EtOH=ethanol; 
siSTAT3+EtOH=STAT3 silenced cells in presence of ethanol.
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Figure 7. Effect of PI3K and JAK2 inhibitors on EtOH-mediated proliferation at 48 hours. (A) MTT assay in MCF-7 and MDA MB-231 cells. (B) Effect 
of PI3K and JAK2 inhibitors on STAT3 and cyclin D1 expression using immunoblot analysis. Results were based on three independent experiments 
performed in triplicates. (C) Expression of target protein normalized with β-actin expression in MCF-7 and MDA MB-231 cells. 
CON=control; EtOH=ethanol; Wort=wortmannin; Wort+E=wortmannin in presence of ethanol; IDV= Integrated density value.
*p≤0.005. 
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Figure 8. Schematic representation of the proposed mechanism of 
ethanol-mediated proliferation in MCF-7 (ER+) and MDA MB-231 (ER-) 
cells.    
ER=estrogen receptor; ROS=reactive oxygen species; IL-6= interleukin 
6; TNF-α=tumor necrosis factor α; PI3K=phosphatidylinositol-3-kinas-
es; JAK2=Janus kinase 2; STAT3=signal transducer and activator of 
transcription 3; MMP=matrix metalloproteinase.
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Taken together, the results clearly indicate that the EtOH-
induced proliferation in both MCF-7 and MDA MB-231 cells 
are mediated by IL-6/JAK2/STAT3 signaling (Figure 8). 

DISCUSSION

Alcohol consumption has long been associated with breast 
cancer risk through an increased rate of tumorigenic cell pro-
liferation. Hong et al. [15] showed that EtOH does not pro-
mote proliferation in peripheral blood mononuclear cells at 
lower concentrations; however, Seitz [16] reported that acetal-
dehyde, a metabolite of alcohol, exerts a carcinogenic effect 
even at low concentrations (approximately 60 µM). In the 
present study, a dose- and time-dependent analysis of EtOH 
on breast cancer cells revealed an increase in proliferation at 
the concentrations of 1,600 µg/dL (347 µM) and 800 µg/dL 
(173 µM) of EtOH in MCF-7 and MDA MB-231 cells, respec-

tively. Cell death observed at higher concentrations of EtOH 
could be due to elevated ROS generation by EtOH; although 
ROS acts as a signal transducer at lower concentrations, it in-
duces cell death at higher concentrations.

The G1/S-phase transition is a crucial checkpoint point in 
cell division and is often dysregulated in cancer cells. Previous 
studies have shown that CDKs play an essential role in the 
G1/S-phase transition by coupling the transition with mitosis 
and retinoblastoma protein/E2F signaling [17,18]. Mitogenic 
factors induce the expression of cyclin D, thereby activating 
CDK4 and CDK6. In tumor cells, the increased expression of 
CDKs leads to the G1/S-phase transition [19]. In addition, the 
loss of p53 in cancer cells leads to an uncontrolled cell prolif-
eration and increased translation of proteins [20].

Our results show that EtOH causes an accumulation of cells 
in S-phase, altered expression of cell cycle proteins CDKs 
(CDK2, 4, and 6) and E2F, and reduced expression of p53 in 
breast cancer cells. These results strongly suggest that EtOH 
promotes proliferation through G1/S-phase transition in both 
breast cancer cell lines.

Previous clinical studies have shown that increased prolifer-
ation of breast cancer cells could also be caused by the secre-
tion of pro-inflammatory cytokines, such as IL-6 and TNF-α 
[21,22]. In the present study, we found that EtOH causes an 
accumulation of ROS, as well as the expression of pro-inflam-
matory cytokines (IL-6 and TNF-α) in breast cancer cells. 

Elevated levels of phosphorylated STAT3, a downstream 
target of IL-6, has been related to different phases of cancer 
progression, including invasion, proliferation, and metastasis. 
We found that EtOH caused a significant increase in STAT3 
phosphorylation. In breast cancer, hyperactivation of STAT3 
is linked to the expression of cell cycle proteins such as cyclin 
D1, cyclin D2, cyclin D3 [23], MMP-2 [24,25], and MMP-9 
[26]. The observed elevation in expression of cyclins and 
MMPs in both breast cancer cell lines validates the hyperacti-
vation of STAT3 by EtOH. STAT3 knockdown inhibited the 
expression of cyclin D1, cyclin D2, cyclin D3, MMP-2, and 
MMP-9 in both cell lines, confirming that EtOH increases the 
proliferation in breast cancer cells through STAT3 activation 
with an increased expression of cyclins and MMPs.

Upon treatment with wortmannin, a significant reduction 
in EtOH mediated proliferation was observed in both cells. 
However, wortmannin did not affect the phosphorylation of 
STAT3 in MCF-7 cells and loss of cell viability in MDA-
MB-231 cells may rule out the direct involvement of PI3K 
pathway in the action of STAT3 by EtOH. Treatment with the 
JAK2 inhibitor (AG490) showed a decrease in the EtOH me-
diated proliferation in both MCF-7 and MDA MB-231cells. 
This antagonistic effect of AG490 was confirmed by evaluat-
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ing the expression of p-STAT3, and, its association with pro-
liferation was probed by studying the expression of cyclin D1 
by immunoblotting. Taken together, the present study con-
cluded that MCF-7 cells rely on a PI3K-independent and 
JAK2-dependent way for the activation of STAT3, whereas 
STAT3 was activated in a PI3K-dependent manner in MDA 
MB-231 cells. 

In summary, we showed that low concentrations of EtOH 
were able to increase proliferation in breast cancer cells. Expo-
sure to EtOH effectively modulated cell cycle progression, es-
pecially the G1/S-phase transition. Our results show that 
EtOH increases the accumulation of ROS in cells and the ex-
pression of pro-inflammatory cytokines. Therefore, the pres-
ent study suggests that EtOH induces breast cancer cell prolif-
eration through a ROS-mediated inflammatory response. 
EtOH caused hyperactivation of STAT3, which was responsi-
ble for the increased expression of cyclins and MMPs ob-
served with EtOH exposure. Furthermore, PI3K and JAK2 
proteins regulate the EtOH-mediated phosphorylation of 
STAT3 activation, leading to enhanced proliferation. In con-
clusion, EtOH-mediated breast cancer requires STAT3 activa-
tion, and STAT3 could serve as a therapeutic target to treat 
EtOH-mediated ER-positive and ER-negative breast cancer.
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