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Animal Models of Cancer in the Head and Neck Region
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Animal models that resemble the cancers of the head and neck region are of paramount importance in studying the car-
cinogenesis of these diseases. Although several methods for modeling cancer in the head and neck are available, none are
fully satisfactory. Subcutaneous xenograft models of cancer in nude mice are often used in preclinical studies. However,
these models are problematic in several aspects as they lack the specific interactions that exist between the tumor cells and
their native environment. Establishment of tumors at the orthotopic sites restore these distinct patterns of interactions between
the tumor and the host organs that are lost or altered when the tumors are established in ectopic sites. With regard to the
transgenic model of cancer in the head and neck region, it should be kept in mind that the transgene used to drive the malig-
nant transformation may not be representative of the carcinogenic process found in human tumors. Low penetrance of
tumor formation also translates into high cost and time commitment in performing studies with transgenic models. In this
review, we will discuss some of the commonly used methods for modeling cancer in the head and neck region including
squamous cell carcinoma of the head and neck as well as thyroid carcinoma.

Key Words. Head and neck cancer, Animal model, Thyroid carcinoma, Trangenic, Orthotopic xenograft

INTRODUCTION

The development and evaluation of novel anticancer agents
require the use of an appropriate animal model, which can accu-
rately recapitulate the disease process (1, 2). Although subcuta-
neous xenograft models of cancer in nude mice are often used
in preclinical studies, these models are problematic in several
aspects. The subcutaneous xenograft models lack the specific
interactions that exist between the tumor cells and their native
environment that influences the molecular, pathologic, and clin-
ical features of the tumor (3-7). Establishment of tumors at the
orthotopic sites restore these distinct patterns of interactions bet-
ween the tumor and the host organs that are lost or altered when
the tumors are established in ectopic sites. Furthermore, the use
of orthotopic xenograft models allow for study of metastasis and
the effects of agent that inhibit metastasis. However, a limitation
of orthotopic xenograft models is that it does not allow modeling
of the pre-neoplastic process that precedes full malignant trans-
formation. The cancer cell lines, when injected into the test ani-
mals, already carries a fully malignant potential. Therefore, it
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would be wrong to conclude that there is a progression of the
tumor from a premalignant to a malignant stage during the pro-
gressive growth of the xenografts. Modeling of such premalig-
nant process requires the use of transgenic murine models. In this
review, we will address the various xenograft models as well as
transgenic murine models of head and neck cancer that are cur-
rently in use.

SQUAMOUS CELL CARCINOMA (SCC) OF
HEAD AND NECK

Carcinogen induce model

There are several methods of inducing oral cancer in animals
using carcinogenic agents. The first model uses the administra-
tion of polycyclic hydrocarbon 9,10 dimethy-1,2 benzanthracene
(DMBA), dissolved in benzene or acetone to the cheek pouch
of hamsters. The DMBA model was first described by Salley (8)
in which DMBA was painted onto the buccal surface of the cheek
pouch in hamsters. The technique was later refined by Lin et al.
(9) who showed that the tumor incidence can be increased up to
100% by painting the pouch with DMBA three times a week,
followed by promotional painting with arecaidine six times a week
for four weeks. Others have utilized promotional painting with
4-nitroquinoline 1-oxide (4NQO) or 12-O-tetradecanoylphor-
bol-13-acetate after initial exposure to DMBA in order to pro-
duce oral cancer with high frequency (10). The tumors produced
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in this fashion have been shown to carry many molecular changes
seen in human oral cancer including increased expression of epi-
dermal growth factor receptor (EGF) and transforming growth
factor receptor-a (TGF-a), increased expression of oncogenic
proteins such as ras and p53, an increase in low-molecular weight
keratins, and increase in proliferative markers (11-15).

Another model of carcinogen induced oral cancer utilizes the
chronic administration of 4NQO to rodents (16). 4NQO is water
soluble and can be added to the drinking water of the rodents
and have been shown to induce SCC of the palate, tongue, esoph-
agus, and stomach. The SCC tumors produced in this fashion
also displays some of the molecular changes seen in human SCC
including increased expression of ras, p53, E-cadherin, Bcl-3 and
Bax (17-20). Furthermore, one advantage of the 4ANQO model
is that the development of fully malignant SCC is clearly pre-
ceded by increasing grades of dysplastic changes that mimic the
development of oral cancer in human. This feature of the 4NQO-
induced oral cancer model in rodent makes it an ideal model for
studying premalignant lesions and agents that can be used to
reverse these changes (21). A disadvantage of the rodent 4NQO
model is that the reliable development of tumors requires the
administration of 4NQO for extended periods lasting over two
to three months (16). Furthermore, the detection of premalig-
nant lesions or early SCC within the oral cavity of the test ani-
mals can be difficult. Detection methods that use autofluores-
cence or drug-induce fluorescence has been proposed to over-
come this problem and have been shown to be highly sensitive
(22, 23). Lastly, carcinogen induced model does not allow for
study of a specific gene in the process of oral carcinogenesis. For
this purpose, utilization of xenograft model or transgenic mouse
model would be necessary.

Orthotopic models
Orthotopic xenograft models of oral SCC was first described by
Fitch et al. (24) in which SCC cells aspirated from subcutaneous
ectopic xenografts in nude mice were injected into the tongues
of nude mice. Another method, described by Dineman et al.
(25), involved injection of oral SCC cell lines into the floor of
mouth of nude mice transcutaneously. In this technique, the cells
were injected transcutaeneously via a submandibular route into
the deep tissue around mylohyoid muscles within the floor of
mouth. One problematic feature of this model is that almost 40%
of the mice developed pulmonary metastasis while only 5% of
the mice developed cervical lymphatic metastasis. One expla-
nation for this observation is that there was spillage of the inject-
ed tumor cells into the murine vasculature, leading to pulmonary
emboli of the tumor cells. Pulmonary lesions produced in this
fashion have bypassed the normal process of metastasis and con-
tradicts the concept of orthotopic model.

Myers et al. (26) described an orthotopic model of oral cancer
that was produced by submucosal injection of oral SCC cell lines
into the dorsal tongue of nude mice. In this model, the resulting

orthotopic xenografts produced cervical lymphatic metastasis
and produced disease specific symptoms such as dysphagia and
weight loss. The authors also showed that oral SCC cells inject-
ed into the tongues of nude mice had significantly higher tumori-
genicity than when injected subcutaneously into the flank. This
is a significant observation as it suggests that production of xeno-
grafts in orthotopic locations restores the organ-specific tumor-
stromal cell interaction that is thought to be lost in subcutaneous
ectopic models.

One disadvantage of above xenograft models is that the use of
human cell lines necessitates the use of athymic or severe com-
bined immunodeficiency (SCID) mice. The use of immunodefi-
cient mice precludes the study of interactions between the tumor
and the host immune system. In order to circumvent this prob-
lem, O’Malley et al. (27) proposed injecting SCC VII, a murine
SCC cell line, into the floor of mouth of syngeneic C3H/HeJ mice.
The xenografts produced in the floor of mouth showed local inva-
sion into the mandible and mylohyoid muscle. Cervical lymphat-
ic and pulmonary metastatic lesions were also identified. How-
ever, it should be noted that the SCC VII cell lines used in this
model was later identified as having originated from the abdom-
inal wall of C3H mouse and not from the oral cavity (28).

Transgenic models

Two transgenic mouse model of oral cancer has been described
that utilizes the keratin 5 (K5) or keratin 14 (K14) promoter to
overexpress the oncogene K-ras%?P in oral epithelium of mice
(29, 30). K5 is expressed within the basal epithelium of the tongue
and the forestomach whereas K14 is mainly expressed in the basal
layer of the oral mucosa and tongue (29). As such, the K5 or K14
promoter is ideal for targeting the expression of transgenes to the
oral cavity. In the first model by Caulin et al. (29), the K-ras®1?P
oncogene driven by either K5 or K14 promoter was placed under
control of modified Cre recombinase fused to a deletion mutant
of the human progesterone receptor. In this fashion, administra-
tion of RU486 resulted in induction of the oncogene K-ras®1?P
in the oral epithelium of mice. The authors found that the admin-
istration of RU486 to the transgenic mice resulted in the forma-
tion of squamous papilloma within the oral cavity. In the second
model by Vitale-Cross et al. (30), the expression of K-ras®1?P
oncogene driven by K5 promoter was placed under the control
of tet-responsive elements, and the expression of K-ras®1?P was
induced by the administration of doxycycline to the test animals.
In contrast to the study by Caulin et al. (29), Vitale-Cross et al.
(30) found premalignant lesions of varying dysplasia as well as
malignant SCC in the skin, oral mucosa, tongue, esophagus, fore-
stomach, or uterine cervix of the mice.

A transgenic mouse model that produced SCC exclusively wi-
thin the oral cavity has also been described using the K-ras¢12P
oncogene (31) . In this model, the mice carrying K-ras%'?P onco-
gene construct under the control of K14 promoter and tamox-
ifen-inducible Cre recombinase were crossed with p53 condition-
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al knockout mice. The resulting progeny mice developed SCC
exclusively in the oral cavity as early as within two weeks of tamox-
ifen treatment.

Another recently described transgenic model of utilized con-
stitutive activation of Akt along with downregulation of Trp53
(32). In this model by Moral et al. (32), the K14 promoter was
used to target the expression of constitutively active Akt to the
oral cavity. The mice developed pre-neoplastic lesions which
progressed to SCC. The oral SCC also demonstrated cervical
lymphatic and pulmonary metastasis. More importantly, the
authors showed that the SCC tumors showed molecular changes
seen frequently in human tumors including the overexpression
of epidermal growth factor receptor (EGFR) and Stat3.

Although the models described above appears to reproduce
some of the major clinical characteristics of head and neck cancer,
several drawbacks needs to be considered. First, the transgenic
mice usually have a heterologous promoter driving transgenic
expression, leading to no physiologic levels of transgene product.
Second, the tumor microenvironment in the transgenic mice is
different from human tumors in that the stromal cells also carry
the transgene. Although the use of oral-mucosa specific promot-
ers such as keratin 5 or 14 promoter minimizes the leakage of
transgene expression, the intended tissue specificity is not abso-
lute. Lastly, no single gene predominates the process of oral can-
cer carcinogenesis. Therefore, the use of one or two specific genes,
such as K-ras or Akt, to drive the tumor formation in these trans-
genic mice may not necessarily reflect the carcinogenic process
in human. In fact, the frequency of K-ras mutation in human head
and neck cancer is relatively low although the presence of H-ras
mutations in HNSCC has been previously demonstrated (33, 34).

THYROID CARCINOMA

Orthotopic models
Although the orthotopic tumor cell implantation is the xenograft
model of choice in modeling human cancer, orthotopic injection

of the murine thyroid gland can be technically difficult. Kim et
al. (35) previously described an orthotopic model of anaplastic
thyroid carcinoma (ATC) in which orthotopic injection of tumor
cells into murine thyroid gland was found to be technically fea-
sible and well tolerated by the test animals. In this technique,
ATC cells were injected directly into the thyroid glands of nude
mice with the use of operating microscope. The authors showed
that orthotopic ATC xenografts were produced with 100% fre-
quency at injection concentration as low as 1,000 cells per injec-
tion. The xenografts also closely replicated the clinical behavior
of ATC in humans, including rapid tumor growth, tracheal and
esophageal compression, laryngeal and tracheal invasion, as well
as cervical and pulmonary metastasis (Figs. 1 and 2). Moreover,
the ATC cells showed significantly higher tumorigenicity when
injected orthotopically in the thyroid gland compared with when
the cells were injected subcutaneously. Immunohistochemical
analysis showed that the orthotopic xenografts had higher mic-
rovessel density as well higher expression of proangiogenic fac-
tors such as vascular endothelial growth factor (VEGF) and int-
erleukin-8 (IL-8).

The injection technique described by Kim et al. (35) was mod-
ified by Ahn et al. (36) who showed that papillary thyroid car-
cinoma cell lines (PTC) can also be injected orthotopically in nude
mice to produce orthotopic PTC xenografts. In the study by Ahn
et al. (36), PTC cell lines containing BRAFV6E or RET/PTC1
rearrangement were used to produce orthotopic PTC xenografts.
As with the ATC xenografts, the PTC xenografts reproduced
several features of human PTC including laryngeal and tracheal
invasion as well as lymphatic metastasis. One limitation of this
model is that the tumor is located within the deep tissues of the
neck and the detection of tumor difficult in the early stages of
tumor growth. Lastly, the use of athymic, nude mice precludes
the examination of the interaction between the tumor and host-
immune system.

Trangenic models
In contrast to SCC of the head and neck region, the speciﬁc mol-

Fig. 1. Invasion of the thyroid gland by tumor (asterisk). (A) H&E stain, original magnification X 40, (B) H&E stain, original magnification x 100.
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Fig. 2. (A) Axial section of the larynx showing tumor (asterisk) invasion of the paraglottic space via erosion through the inferior constrictor mus-
cles posterior to the thyroid cartilage. (B) Tracheal invasion evident by the nest of tumor cells (asterisk) interpositioned between the tracheal
mucosa and cartilage. (C) Pulmonary metastasis. (D) Cervical lymph node with subcapsular metastatic tumor. (A to D: H&E stain, original mag-

nification x 40).

ecular changes underlying the carcinogenesis of thyroid cancer
has been well-characterized. Therefore, transgenic models of
thyroid cancer using these genes have significant relevancy to
the human disease. The two mutations that are found with high
frequency in PTC are the V600E mutation within the BRAF gene
and the RET/PTC chromosomal rearrangement. BRAFV60E jg
the most common mutation found in PTC where more than 60%
of PTC tumors harbor this mutation. The BRAFV%E mutation
results in the constitutive activation of the Ras/Raf/MEK/ERK
signaling pathway (37, 38). BRAFV¢%E in PTC has also been asso-
ciated with poorer prognosis and higher locoregional recurrence
rates (39). Knauf et al. (40) produced a transgenic murine model
of PTC by targeting the expression of BRAFVSF to thyrocytes
with the use of bovine thyroglobulin promoter. Over 90% of the
mice developed goiter as well PTC, which eventually transitioned
into poorly differentiated carcinomas. The tumors showed evi-
dence of angioinvasion as well as extracapsular extension. How-
ever, none of the mice developed metastatic disease and this
observation suggests that the overexpression of BRAFVYE alone
is not adequate in full modeling of PTC.

RET/PTC rearrangement is found in up to 85% of the sporadic

and radiation induced PTC (41-43). RET is a receptor tyrosine
kinase that binds glial-derived neurotropic factor (GDNF). The
wild type RET is not normally expressed in thyroid follicular cells.
In the RET/PTC rearrangement, however, the RET protein loos-
es the ligand binding domain and the chimeric protein is expressed
in thyrocytes under the control of newly acquired promoters.
Ligand-independent tyrosine phosphorylation of RET/PTC pro-
tein is then is induced by constitutive dimerization of the fusion
protein (44). Jhiang et al. (45) produced a transgenic mouse model
of PTC by overexpressing the RET/PTC1 chimeric oncogene
under the control of bovine thyroglobulin promoter. The mice
developed marked hypothyroidism as well as thyroid tumors
with cytological features suggestive of papillary thyroid carci-
noma. However, these mice did not develop invasive features
until they were crossed with p53-/- mice (46). The resulting prog-
eny mice that overexpressed RET/PTC1 in addition to the loss
of p53 exhibited tumors that were more anaplastic and showed
higher rate of local invasion. Neverthless, none of the mice devel-
oped metastatic disease. Taken together, these observations sug-
gest that RET/PTC rearrangement is an early event in the patho-
genesis of papillary thyroid cancer and that other subsequent
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mutations are necessary for emergence of a fully malignant phe-
notype.

Although BRAFV6%E mutation and RET/PTC rearrangement
are a frequent finding in PTC, these mutations are rarely found
in follicular thyroid cancer (FTC). Rather, FTC tumors are char-
acterized often by mutation in Ras which can be found in over
50% of the cases (44, 47). Vitagliano et al. (48) has reported a
transgenic murine model of follicular thyroid cancer that was
produced by targeting the expression of N-ras oncogene to thy-
roid follicular cells using bovine thyroglobulin promoter. Over
40% of the mice developed invasive follicular FTC, in some
cases with mixed papillary/follicular morphology. More signifi-
cantly, about 25% of the mice also developed metastatic lesions
in a pattern similar to human FTC by developing metastatic dis-
ease within the lungs, bone, or liver. These finding suggest that
overexpression of N-ras oncogene is able to drive the formation
of thyroid tumors that can progress to metastatic disease.

CONCLUSION

The availability of a proper animal model is critical in studying
the carcinogenesis of head and neck cancer. However, none of
models discussed in this review are without shortcomings and
the investigator needs to choose the model that suites the stage
of disease they are interested in. The orthotopic model of head
and neck cancer is invaluable in reproducing the clinical features
of the human disease. It is particularly useful in studying the
metastasis of the primary disease or therapeutic agents that inhib-
it metastasis. Furthermore, orthotopic models can accurately
reproduce organ-specific morbidity of tumor growth. Therefore,
the effect of tumor growth or therapeutic agents on disease-spe-
cific survival can be studied. Lastly, orthotopic models allow for
proper reconstitution of tumor-stromal or tumor-endothelial
interaction that can be lost with ectopic, subcutaneous xenograft
models. Nonetheless, most orthotopic models utilized human
cell lines, and the subsequent need for immunodeficient mice
can hamper the study of tumor-host immune interaction.

With regard to the transgenic model of cancer in the head and
neck region, it should be kept in mind that the transgene used
to drive the malignant transformation may not be representa-
tive of the carcinogenic process found in human tumors. Low
penetrance of tumor formation also translates into high cost and
time commitment in performing studies with transgenic models.
There still remains a need for development of animal models in
which the early stage of carcinogenesis can be replicated. Such
model will allow for identification of predictive and correlative
biomarkers in studying a particular therapeutic approach. Perhaps
an ideal model would be a combination of carcinogen induced
model and a transgenic model where the application of carcino-
genic agents to transgenic mice leads to early formation of tumors.
This would be analogous to chronic exposure of a patient to tobac-

co and alcohol in an individual with genetic predispositions for
developing cancers in the head and neck region. Until a disease
model with greatest resemblance to human cancer can be creat-
ed, the advantages and disadvantages of each model should be
considered carefully and utilized judiciously.
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