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Routine Chromosomal Microarray Analysis is Necessary 
in Korean Patients With Unexplained Developmental 
Delay/Mental Retardation/Autism Spectrum Disorder
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Background: All over the world, chromosomal microarray (CMA) is now the first tier diag-
nostic assay for genetic testing to evaluate developmental delay (DD), mental retardation 
(MR), and autism spectrum disorder (ASD) with unknown etiology. The average diagnostic 
yield of the CMA test is known to be about 12.2%, while that of conventional G-banding 
karyotype is below 3%. This study aimed to assess the usefulness of CMA for the purpose 
of clinical diagnostic testing in the Korean population.

Methods: We performed CMA and multiplex ligation-dependent probe amplification 
(MLPA) tests in 96 patients with normal karyotype and unexplained DD, MR, or ASD. The 
CMA was conducted with CytoScan 750K array (Affymetrix, USA) with an average resolu-
tion of 100 kb. 

Results: Pathogenic copy number variations (CNVs) were detected in 15 patients by CMA 
and in two patients by MLPA for four known microdeletion syndromes (Prader-Willi/Angel-
man syndrome, DiGeorge syndrome, Miller-Dieker syndrome and Williams syndrome) 
designated by National Health Insurance system in Korea. The diagnostic yield was 
15.6% and 2.1%, respectively. Thirteen (13.5%) patients (excluding cases with patho-
genic CNVs) had variants of uncertain clinical significance. There was one patient with a 
17.1-megabase (Mb) region of homozygosity on chromosome 4q. 

Conclusions: Our findings suggest the necessity of CMA as a routine diagnostic test for 
unexplained DD, MR, and ASD in Korea. 
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INTRODUCTION

Clinical genetic testing plays an important role in evaluating pa-

tients with developmental delay (DD), mental retardation (MR), 

and autism spectrum disorders (ASD) with unknown etiology. 

DD indicates deficits in learning and adaptive functioning at the 

expected age. MR, often referred to as “intellectual disability”, is 

a disorder with intellectual and adaptive deficits and can be di-

agnosed after the age of five years [1]. MR and DD affect 1-3% 

of general population [2]. ASD encompasses a group of disor-

ders like autism, Asperger’s syndrome, and pervasive develop-

mental disorder. ASD shows features like impairment in social 

communication and interactions, and repetitive and restrictive 

behaviors [1]. The frequency of occurrence of ASD is approxi-

mately 1% of general population [1]. Genetic causes, including 

known genetic syndromes and chromosomal abnormalities, 

comprise the main etiology of these disorders. Approximately 

17.4-47.1% of DD/MR and 10% of ASD can be explained by 
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genetic causes [3, 4]. 

  The National Health Insurance system of the Republic of Ko-

rea only permits multiplex ligation-dependent probe amplifica-

tion (MLPA) tests for four microdeletion syndromes (Prader-Willi/

Angelman syndrome, DiGeorge syndrome, Miller-Dieker syn-

drome, and Williams syndrome), conventional cytogenetics, and 

FISH. Thus, the medical institutions in Korea cannot perform 

other diagnostic genetic tests. Conventional cytogenetics allows 

for detection of numerical and structural chromosomal abnor-

malities present in the entire genome, but has a limited resolu-

tion of 5-10 megabases (Mb). Thus, submicroscopic aberra-

tions cannot be detected, and interpretation of the test results 

remains subjective. FISH and MLPA can detect specific cytoge-

netic aberrations with a higher sensitivity than conventional cy-

togenetics; however, they cannot cover entire regions of chro-

mosomes. Thus, it takes substantial effort to detect abnormali-

ties involving multiple regions, and the diagnostic yield is de-

creased when the clinical spectrum of the disease is variable. 

DD, MR, and ASD are difficult to define disease categories clini-

cally owing to overlapping symptoms and comorbidities. 

  Chromosomal microarray (CMA) is now recommended world-

wide as the first-tier clinical diagnostic test for patients with DD, 

MR, and ASD of unknown causes [5]. CMA detects copy num-

ber variations (CNVs) in the entire genome with a much higher 

resolution than conventional cytogenetics. Before the CMA test 

was adopted as a routine clinical diagnostic test, conventional 

cytogenetics and single gene tests such as fragile-X syndrome 

testing were done as initial tests for unexplained DD, MR, and 

ASD. However, the diagnostic yields of conventional cytogenet-

ics and fragile-X syndrome testing in patients with DD/MR is be-

low 3% and 1.2%, respectively [5, 6]. CMA detects pathogenic 

CNVs with an average diagnostic yield of 12.2% in 33 previous 

studies involving 21,698 patients with neurodevelopmental dis-

orders or multiple congenital anomalies [5]. 

  We evaluated the utility of CMA as a routine clinical diagnostic 

test in the Korean population. In addition, we aimed to report a 

few interesting clinical cases confirmed by CMA test. We used 

Affymetrix single nucleotide polymorphism (SNP) array with an 

average resolution of 100 kb. The SNP array has been validated 

in a previous study indicating that it has sufficient resolution to 

detect single gene deletions [7]. Although CMA detects genomic 

imbalance with higher diagnostic yield than conventional cyto-

genetics, it cannot detect balanced rearrangements and low-

level mosaicism [8]. Thus, we selected clinically affected indi-

viduals with normal karyotype. 

METHODS

1. Patients
Genetic tests were requested by physicians from pediatrics, re-

habilitation, neurology, and psychiatric departments for unex-

plained DD, MR, and ASD with or without dysmorphism or sei-

zures. Written informed consent approved by institutional review 

board was obtained from patients or patients’ parents for ge-

netic analysis. 

  Conventional G-banded karyotype analysis from peripheral 

blood was performed as a part of initial screening tests, and 96 

patients with normal karyotypes were included in this study. As 

we retrospectively performed CMA using the blood samples col-

lected during MLPA studies, parental samples could not be ob-

tained and were therefore, not available for analysis. 

  From March 2012 to April 2014, 96 patients with normal 

karyotype (67 males and 29 females, Table 1) were referred for 

further genetic testing. The median age at diagnosis was three 

Table 1. Number of patients with copy number variations according to demographic and clinical features

N of total patients (%) N of patients with pathogenic CNVs (%) N of patients with VOUS (%)* N of patients with benign CNVs (%)†

Sex

   Male 67 (69.8) 11 (16.4) 8 (11.9) 1 (1.5)

   Female 29 (30.2) 4 (13.8) 5 (17.2) 4 (13.8)

Clinical features 

   ASD 34 (35.4) 0 - 2 (5.9) 2 (5.9)

   DD/MR 54 (56.3) 15 (27.8) 7 (13) 3 (5.6)

   ASD and DD/MR 8 (8.3) 0 - 4 (50) 0 -

Total 96 (100) 15 (15.6) 13 (13.5) 5 (5.2)

*Patients with pathogenic CNVs were excluded; †Patients with pathogenic CNVs or with VOUS were excluded. 
Abbreviations: CNV, copy number variation; VOUS, variant of uncertain clinical significance; ASD, autism spectrum disorder; DD, developmental delay; MR, 
mental retardation.
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years (range: 7 months-22 yr). Thirty four patients were ASD, 

54 patients were DD and/or MR, and 8 patients were ASD com-

bined with DD and/or MR (Table 1).

2. DNA preparation
EDTA whole blood was used to extract DNA by using the Easy-

DNA kit (Invitrogen Corporation, Carlsbad, CA, USA). The con-

centration and quality of genomic DNA was analyzed by Nano-

drop ND-1000 (Thermo Scientific, Wilmington, DE, USA).

3. MLPA
Microdeletion syndromes were screened by using SALSA MLPA 

P245 Microdeletion Syndromes probemix (MRC-Holland, Am-

sterdam, The Netherlands) according to the manufacturer’s in-

structions. The P245 probemix contains 49 different MLPA 

probes with amplification product sizes between 130 and 486 

nucleotides. The probes target 40 causative genes implicated in 

23 known microdeletion/microduplication syndromes. DNA was 

denatured at 98°C for five minutes and hybridized with the 

probe set overnight at 60°C. Ligation reaction with ligase-65 en-

zyme was performed at 54°C for 15 min, followed by five min-

utes at 98°C for heat inactivation of the enzyme. PCR was per-

formed with the specific SALSA PCR primers for 35 cycles (95°C 

for 30 sec; 60°C for 30 sec; 72°C for one minute) by using the 

GeneAmp PCR System (Applied Biosystems, Foster City, CA, 

USA). MLPA fragment analysis data were generated by using the 

Applied Biosystems 3,500×L Genetic Analyzer (Applied Biosys-

tems). The data were analyzed by using the GeneMarker soft-

ware (SoftGenetics, State College, PA, USA). For confirmatory 

analysis of abnormal results found with the P245 screening 

probemix, an MLPA test with P372, P373, or P374 syndrome-

specific probemix, or a P339 SHANK3 probemix (MRC-Holland) 

was performed by using the same protocol. Pathogenic CNVs 

detected by CMA that were smaller than 1 Mb were confirmed 

by using a P343 or P181 probemix. 

4. Chromosomal microarray
CMA was performed with a CytoScan 750K array (Affymetrix, 

Santa Clara, CA, USA) according to the manufacturer’s recom-

mendations. The platform is composed of 550,000 non-poly-

morphic CNV probes and more than 200,000 SNP probes with 

an average resolution of 100 kb. The data were analyzed by us-

ing Chromosome Analysis Suite v2.1 Software (Affymetrix) and 

Nexus Copy Number v.7.5 Software (BioDiscovery, El Segundo, 

CA, USA). The February 2009 human reference sequence 

(GRCh37/Hg19) was used for genomic assembly. 

5. Interpretation of detected CNVs
Detected CNVs were classified as pathogenic, benign, or variant 

of uncertain clinical significance (VOUS) in accordance with the 

recommended guidelines from the International Standard Cy-

togenomic Array and the American College of Medical Genetics 

[5, 9, 10]. The data were interpreted by using information avail-

able in scientific literature, public databases and other general 

information about pathogenic or benign CNVs (size, content of 

Online Mendelian Inheritance in Man [OMIM] morbid genes or 

dosage sensitive genes, and type of dosage imbalance: duplica-

tion or deletion) [5, 11]. Genomic map from the UCSC Genome 

Browser (http://genome.ucsc.edu/cgi-bin/hgGateway) was used 

to map the locations of CNVs and gene distribution. The Data-

base of Genomic Variants (DGV, http://dgv.tcag.ca/dgv/app/

home) provided catalogs of structural variations found in healthy 

controls. The dbVar (http://www.ncbi.nlm.nih.gov/dbvar/) data-

base was also used to get information about CNVs from both 

normal and diseased populations. We also used the DatabasE of 

Chromosomal Imbalance and Phenotype in Humans using En-

sembl Resources (DECIPHER, https://decipher.sanger.ac.uk/) 

as a reference for known microdeletion and microduplication 

syndromes, and the OMIM (http://omim.org/) for disease-caus-

ing genes, their functions and inheritance patterns. 

  Besides excluding pathogenic CNVs overlapping with known 

genomic imbalance syndromes and benign CNVs reported as 

normal variant in healthy controls, VOUS should meet at least one 

of the three criteria: the CNV is not a common polymorphism, 

OMIM genes in the CNV interval are not known for dosage sensi-

tivity, and are not associated with patient’s phenotypes.

RESULTS

1. Results of MLPA and CMA
We identified 42 CNVs in 33/96 (34.4%) patients. Among these, 

17 CNVs were classified as pathogenic (40.5%), 15 as VOUS 

(35.7%), and 10 as benign (23.8%). One or more pathogenic 

CNVs were reported in 15 patients (Table 1). Therefore the di-

agnostic yield of CMA was 15.6% (15/96) in our study. VOUS, 

excluding cases with pathogenic CNVs, were reported in 13/96 

patients (13.5%). One or more benign CNVs, excluding cases 

with pathogenic CNVs and VOUS, were reported in five patients 

(5.2%). 

  Most of the 15 CNVs of unknown significance were not a com-

mon polymorphism, except a 2.3 kb-sized duplication at 8p23.2 

found in three patients (Table 2, Case 20, 21, and 22). The du-

plicated region, which includes CSMD1 (MIM 608397) gene, 
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was also found in normal controls [12]. CSMD1 was shown to be 

interrupted by duplication in a patient with speech delay and au-

tism in a previous study [13]. 

  One patient showed a deletion in 2q13 (Case 18), which in-

cluded four OMIM genes (RGPD6, RGPD5, MALL, and NPHP1). 

The four genes are not known to have any relation with this pa-

tient’s phenotype, but homozygous deletion of NPHP1 (MIM 

607100) is known to be associated with nephronophthisis [14]. 

TBC1D32 gene (MIM 615867) was deleted in one patient (Case 

19). TBC1D32 has been reported to be mutated in a patient with 

multiple congenital anomalies [15]. A duplication at 11q13.4 in a 

patient (Case 23) includes six OMIM genes (DHCR7, NADSYN1, 
KRTAP5-9, FAM86C1, IL18BP, and NUMA1). Mutation of 

DHCR7 gene is associated with Smith-Lemli-Opitz syndrome 

(SLOS, MIM 270400), which is an autosomal recessive multiple 

congenital anomaly and intellectual disability syndrome [16]. 

Thus far, the only reported DHCR7 mutations associated with 

SLOS are point mutations or multiple exonic deletions [16,17]. 

Thus, it is difficult to interpret the significance of duplication in 

our patient. A 753 kb-sized duplication at 14q12 in a patient 

(Case 26) contains no OMIM gene, so the CNV is likely to have a 

benign nature. However, we interpreted it as VOUS because the 

duplicated region was not reported in databases for control pop-

ulation [9]. 

  Pathogenic CNVs were identified in 27.8% patients with DD 

and/or MR (Table 1). No pathogenic CNVs were seen in patients 

with ASD and ASD combined with DD and/or MR in our study. 

The size range of the pathogenic CNVs was 444 kb to 28.4 Mb. 

Most of the pathogenic CNVs (94.1%) were above 500 kb (Ta-

ble 3). Six CNVs between 5-10 Mb and three CNVs above 10 

Mb were not detected by conventional cytogenetics. All benign 

CNVs were below 5 Mb (Table 3). 

  MLPA microdeletion syndrome screening probemix for 23 

chromosomal disorders detected six patients with known micro-

deletion or microduplication syndromes with a diagnostic yield 

of 6.3%. There were one patient with Angelman syndrome and 

one with DiGeorge syndrome. Therefore, the diagnostic yield of 

four microdeletion syndromes designated by National Health In-

surance system in Korea was 2.1%.  

2. Clinical case reports 
1) �Hypoparathyroidism, sensorineural deafness, and renal dysplasia 

syndrome 

A 3-yr-old female (Table 2, Case 3) was referred for evaluation 

of developmental delay. G-banded karyotype was normal, while 

CMA revealed a 5.6 Mb deletion at 4q35.1q35.2 region and a 

28.4 Mb duplication at 10p15.3p11.2 region.

  Chromosome 4q deletion is known to be associated with intel-

lectual disability, ASD, and craniofacial dysmorphism [18]. The 

critical region for ASD phenotype, containing MTNR1A, FAT1, 

and F11 at 4q35.2 [18], is identical to that in our patient. Dupli-

cation of GATA3 gene at 10p14 can cause hypoparathyroidism, 

sensorineural deafness, and renal dysplasia syndrome (HDR 

syndrome, MIM 146255) [19]. DD and facial dysmorphism 

have also been described in a HDR syndrome patient [19]. A 

previous study reported unbalanced cryptic translocation der(4)

(4;10)(q35;p15), similar to our case [20]. Parental study re-

vealed that the genomic imbalance was originated from unbal-

anced segregation of maternal balanced reciprocal translocation 

t(4;10)(q35;p15) [20]. Both patients showed learning disabili-

ties, facial dysmorphisms, and immunodeficiency [20]. Our pa-

tient’s karyotype was initially interpreted as normal, however, af-

ter CMA results, a more detailed karyotype analysis revealed 

der(4)(4;10)(q35;p15), as previously described [20].

  There were three patients with cryptic unbalanced transloca-

tions involving two chromosomes in our study (Case 3, 6, and 

7), suggesting inheritance from parental balanced translocation. 

In these cases, other family members were given genetic evalu-

ation and proper counseling about the disorders and the recur-

rence risk in family [9]. 

2) Patient with a region of homozygosity on chromosome 4
A 9-month-old female (Table 2, Case 29) was evaluated for de-

layed development due to central hypotonia. CMA showed no 

CNV, but there was one 17.1-Mb region of homozygosity (ROH) 

on chromosome 4. 

  SNP- based array, unlike array-based CGH, can identify copy-

number changes as well as ROH, which indicates uniparental 

disomy (UPD) or identity by descent (IBD) [21]. When the ROHs 

exist on multiple chromosomes, they usually suggest IBD, i.e. 

inheritance from a common ancestor [22]. In contrast, UPD is 

Table 3. Size distribution of pathogenic CNVs found in patients

Size (Mb)  N of pathogenic CNVs (%)  N of VOUS  (%)  N of benign CNVs  (%)

<0.5 1 (5.9) 4 (26.7) 6 (60)

0.5-1 2 (11.8) 5 (33.3) 1 (10)

1-5 7 (41.2) 4 (26.7) 3 (30)

5-10 5 (29.4) 1 (6.7) 0 -

>10 2 (11.8) 1 (6.7) 0 -

Total 17 (100) 15 (100) 10 (100)

Abbreviations: Mb, megabase; CNV, copy number variation; VOUS, variant 
of uncertain clinical significance.
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suspected when the large ROH is on a single chromosome [22]. 

ROH may have pathogenic implications in two ways: if there are 

imprinted genes within the region, or if it leads to homozygosity 

for deleterious alleles involved in autosomal recessive disorders 

[23]. In our case, 28 OMIM genes map to this 17.1 Mb ROH on 

chromosome 4. Previous reports included chromosome 4 UPD 

in a patient with mental disorder [23] and an interstitial deletion 

at 4q32q34, a region that overlaps with our case, in a patient 

with DD and dysmorphism [24]. However, multiple ROHs can 

be detected in a normal population. Therefore, caution should 

be exercised when reporting and interpreting ROH [22]. A pa-

rental study and genetic counseling should be recommended in 

this instance. 

3) Cri du chat syndrome 
A 3-yr-old male (Table 2, Case 4) visited the psychiatric depart-

ment for speech delay. He also had esotropia in his left eye and 

was diagnosed as having DD. MLPA with P245 probemix re-

vealed deletion in only one probe site on exon 3 of TERT gene 

(Fig. 1A), which is known to be involved in the phenotype of cri 

du chat syndrome (MIM 123450). CMA showed a deletion at 

5p15.33p15.31(113,576-7,183,668) (Fig. 1B), confirming the 

MLPA result. A decreased signal for only one probe in MLPA ex-

periment can indicate a false-positive result owing to polymor-

phism in the probe ligation site [25]. Therefore, confirmation of 

MLPA finding by another method is essential in such cases [25]. 

The region involved in the cri du chat syndrome is known to be 

variable in size, and it can be a terminal or an interstitial deletion 

[26]; so confirmative tests like CMA can be of help. 

DISCUSSION

We conducted CMA analysis in 96 unexplained DD, MR, and 

ASD patients with normal karyotype as assessed by conventional 

cytogenetics. The diagnostic yield of CMA was 15.6%, which is 

higher than the average rate from previous reports including 

chromosomal aneuploidies (12.2%) [5]. Our finding supports 

the necessity of implementing CMA as a routine diagnostic test 

in the Korean population. Moreover, first-tier use of CMA for 

clinical genetic evaluation of unexplained DD, MR, and ASD in 

the Korean population could be beneficial for patients, consider-

ing the cost-effectiveness of CMA compared with current con-

ventional cytogenetics and MLPA or FISH test strategy [27-29]. 

Owing to the significantly higher diagnostic yield of CMA (CMA 

15.6% vs. MLPA for the four microdeletion syndromes 2.1%), 

an additional 13.5% of patients with genetic etiology can be di-

agnosed through initial CMA testing and can save much time, 

cost, and effort from additional diagnostic tests. 

  Although we found no pathogenic CNV in patients with ASD 

and ASD combined with DD/MR, the possibility of later onset of 

symptoms of autistic features in these patients has to be consid-

ered, with regard to the previous findings about high frequency 

of pathogenic CNVs in ASD patients [1, 30, 31].

  It is known that the size of CNV is of limited importance in in-

terpretation of pathogenicity [9]. The size distribution of patho-

genic CNVs varied a lot  in this study. Pathogenic CNVs greater 

than 5 Mb were missed by conventional cytogenetics in six cases 

(Cases 2, 3, 4, 6, 9, and 11). One patient (Case 3) had a terminal 

deletion on chromosome 4 and a terminal duplication on chro-

mosome 10. Initially, the karyotype of the patient was interpreted 

as normal; however, after referring to the CMA results, a reanaly-

sis of the karyotype revealed der(4)(4;10)(q35;p15). Case 11 with 

Angelman syndrome had a 6 Mb-sized deletion downstream of 

the centromere. Four of these six cases (Cases 2, 4, 6, and 9) in-

volved a terminal deletion. Although 5-6 Mb is usually considered 

A

B

Fig. 1. Multiplex ligation-dependent probe amplification (MLPA) 
and microarray results of patient with Cri du Chat syndrome. (A) 
The MLPA scatter plot showing deletion of a probe site on TERT. (B) 
Microarray profile with a copy number loss on 5p15.33p15.31 
(113,576-7,183,668) (red bar). 
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to be the detection limit of conventional G-banded karyotyping, 

some cases, such as chromosome abnormalities involving termi-

nal or near-centromere regions, can be missed [11].

  Among our cases, two patients (2/96, 2.1%) were diagnosed 

as having Phelan-McDermid syndrome (MIM 606232). These 

two patients had deletions in 22q13 region, involving ARSA and 

SHANK3 loci (Cases 7 and 15). Haploinsufficiency of the 

SHANK3 product is known to have a causative role in neurologic 

symptoms in Phelan-McDermid syndrome [32]. Deletions, trans-

locations, or point mutations involving SHANK3 locus have been 

reported as pathogenic in ASD/DD [32-34]. Higher frequency of 

CNVs involving SHANK3 was reported in Chinese patients 

(1.7%), compared with 20 studies of European, American, and 

Australian populations (0.24%) [34]. The prevalence of imbal-

ance involving SHANK3 in our study (2.1%) was also higher 

than that reported in a previous study of Caucasian population 

(0.24%) [34], suggesting higher frequency of Phelan-McDermid 

syndrome in DD/MR/ASD patients among East Asians.  

  The result of a parental study [5] is one of the most useful evi-

dences of clinical significance of CNVs found in a patient. The 

interpretation of VOUS can be helped from the information 

whether it is inherited from a healthy parent or if it occurred de 
novo in the proband [5]. The absence of parental analysis is a 

limitation of our study. Although we could not validate VOUS with 

a parental study and only included patients with normal karyo-

type, the detection rate of pathogenic CNVs in our study was 

higher than that in previous reports [5]. Parental studies will help 

not only the interpretation of clinical significance of CNVs, but 

also the genetic counseling and evaluation of recurrence risk of 

the genetic abnormality in families, when CMA is available as a 

routine diagnostic test in future in Korea. 

  One major obstacle in implementing CMA as a routine diag-

nostic test is the current introduction system for medical technol-

ogy in Korea [35]. All new diagnostic tests, including genetic 

tests, must go through a unified regulatory process. It is possible 

to apply to New Health Technology Assessment of Health Insur-

ance Review & Assessment Service for a new medical device af-

ter getting permission from Ministry of Food and Drug Safety in 

Korea. Rapidly changing technology in clinical genomic testing 

requires a flexible system for assessing newly introduced medi-

cal procedures and health technology.
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