
ISSN 2234-3806 • eISSN 2234-3814 

https://doi.org/10.3343/alm.2023.43.1.5 www.annlabmed.org    5

Ann Lab Med 2023;43:5-18
https://doi.org/10.3343/alm.2023.43.1.5

Review Article
Clinical Chemistry

Calibration Practices in Clinical Mass Spectrometry: 
Review and Recommendations
Wan Ling Cheng , M.Sc.1, Corey Markus , M.Sc.2, Chun Yee Lim , Ph.D.3, Rui Zhen Tan , Ph.D.3,  
Sunil Kumar Sethi , MBBS.1, and Tze Ping Loh , MB.BCh.BAO.1; for the IFCC Working Group on Method Evaluation 
Protocols
1Department of Laboratory Medicine, National University Hospital, Singapore, Singapore; 2Flinders University International Centre for Point-of-Care Testing, 
Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia; 3Engineering Cluster, Singapore Institute of Technology, Singapore, 
Singapore

Background: Calibration is a critical component for the reliability, accuracy, and precision 
of mass spectrometry measurements. Optimal practice in the construction, evaluation, 
and implementation of a new calibration curve is often underappreciated. This systematic 
review examined how calibration practices are applied to liquid chromatography-tandem 
mass spectrometry measurement procedures.

Methods: The electronic database PubMed was searched from the date of database in-
ception to April 1, 2022. The search terms used were “calibration,” “mass spectrometry,” 
and “regression.” Twenty-one articles were identified and included in this review, following 
evaluation of the titles, abstracts, full text, and reference lists of the search results.

Results: The use of matrix-matched calibrators and stable isotope-labeled internal stan-
dards helps to mitigate the impact of matrix effects. A higher number of calibration stan-
dards or replicate measurements improves the mapping of the detector response and 
hence the accuracy and precision of the regression model. Constructing a calibration curve 
with each analytical batch recharacterizes the instrument detector but does not reduce 
the actual variability. The analytical response and measurand concentrations should be 
considered when constructing a calibration curve, along with subsequent use of quality 
controls to confirm assay performance. It is important to assess the linearity of the calibra-
tion curve by using actual experimental data and appropriate statistics. The heteroscedas-
ticity of the calibration data should be investigated, and appropriate weighting should be 
applied during regression modeling.

Conclusions: This review provides an outline and guidance for optimal calibration prac-
tices in clinical mass spectrometry laboratories.
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INTRODUCTION

Quantitative laboratory measurements are performed by estab-

lishing the relationship between the observed instrument signal 

and the measurand concentration. This relationship is most 

commonly established using an assay-calibration procedure. 

Calibration involves testing a set of standards with known ana-

lyte concentrations to obtain an instrumental signal response. 

This relationship is mathematically defined by regression model-

ing of the measured signal and analyte concentration [1]. Sub-

sequently, a sample of unknown analyte concentration is sub-

jected to the same measurement procedure, and the generated 
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signal is used in the regression equation to interpolate the ana-

lyte concentration in the unknown sample.

  Calibration is a critical component of the reliability, accuracy, 

and precision of laboratory measurements. The quality of quanti-

tative data is highly dependent on the quality of the fitted calibra-

tion. A poorly calibrated instrument may show a clinically unac-

ceptable bias, leading to negative patient outcomes. Similarly, 

highly variable calibration affects the precision of the reported re-

sults.

  Clinical mass spectrometry measurement procedures are gen-

erally quantitative in nature and rely heavily on fitted calibration 

models. It is important to understand the underlying principles 

of calibration processes as well as the advantages and disad-

vantages of different regression approaches to ensure optimal 

practice for a clinical mass spectrometry laboratory.

  Commercial and governmental guidelines vary with regard to 

the requirements for calibration procedures, such as the num-

ber of calibrator points and replicates, working calibrator range, 

and calibrant spacing [2]. Zabell, et al. [2] summarized the sug-

gested practices and highlighted differences in three guidelines 

with relevance to clinical and preclinical markets: the European 

Medicines Agency, Eurachem, and United States Food and Drug 

Administration (USFDA). Regulatory authorities may also pro-

pose guidelines without necessarily providing an explanation or 

evidence for their recommendations. For example, the USFDA 

requires the use of a minimum of six non-zero calibrators and a 

zero standard but does provide reasoning as to why at least seven 

points are needed in the construction of a calibration curve [2].

  Although considerable resources are invested in most aspects 

of full method validation, the rationale behind calibration curve 

construction, evaluation, and implementation is often overlooked. 

Common misunderstandings made when considering calibra-

tion procedures include the use of correlation coefficients (r) or 

determination coefficients (R2) to assess linearity and unrecog-

nized heteroscedasticity in calibration data, leading to improper 

selection of weighting factors [3]. Application of an inappropri-

ate calibration regression model can be a potential source of 

bias and imprecision in the measurements.

  This systematic review was undertaken to examine how cali-

bration practices are applied to liquid chromatography coupled 

with tandem mass spectrometry (LC-MS/MS) methods used in 

clinical mass spectrometry laboratories and to provide general 

guidance for the establishment of optimal calibration practices.

  Commercial calibrators may have manufacturer-suggested cal-

ibration practices that should be judiciously modified only with 

sufficient data and expertise to demonstrate their impact on im-

proving analytical performance. However, the post-analytical cali-

bration practices summarized in this review could still be applica-

ble with the use of inhouse-prepared or commercial calibrators.

LITERATURE REVIEW STRATEGY

The systematic literature review was conducted by searching 

the electronic database PubMed from the date of database in-

ception to April 1, 2022. The search terms used were “calibra-

tion,” “mass spectrometry,” and “regression.” Studies were in-

cluded if they examined regression approaches for calibration in 

clinical mass spectrometry applications and were published in 

English. Studies were excluded if they reported on method de-

velopment without a specific examination of regression approa

ches for calibration in clinical mass spectrometry applications.

  The titles of all retrieved articles were reviewed to exclude non-

English and non-relevant studies. The abstracts were then re-

viewed to select relevant articles for full-text reading. The bibli-

ographies of the selected articles after full-text reading were re-

viewed to identify other relevant references. The review of all ar-

ticles was assessed independently by two co-authors (WLC and 

TPL), and differences in assessments were resolved through 

discussion.

  The database search identified 834 publications. These titles 

and abstracts were evaluated for relevance, with 798 articles 

excluded through title review, and a further 11 articles were ex-

cluded through abstract review. Twenty-five articles were se-

lected for the full-text review, and 16 articles met the inclusion 

criteria. An additional five relevant articles were identified from 

the reference lists of the included articles to provide a total of 21 

studies included in this systematic review (Fig. 1).

DEFINITIONS OF LINEARITY

The term linearity has several meanings because there are dif-

ferent ways to describe linear functions. Linearity refers to the 

response function term used to describe the relationship be-

tween the instrumental signal response and the concentration 

(calibration function). Linearity also refers to the relationship be-

tween the quantity introduced (input) and the quantity back-

calculated from the calibration curve (output) [3]. Linearity also 

has a graphical and mathematical meaning as a linear (straight-

line) as opposed to a non-linear (quadratic) regression model 

used to describe the calibration curve. The scope of this review 

was restricted to the linearity of the instrument response func-

tion, calibration curve, and regression models.
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RECOMMENDATIONS

Calibration materials, matrices, and internal standards

Recommendations
1.	�Where possible, use of matrix-matched calibrators is pre-

ferred to reduce matrix differences when compared to a 

patient sample matrix. Matrix effects may cause ion sup-

pression or enhancement, leading to under- or over-esti-

mated values.

2.	�Addition of a stable isotope-labeled internal standard for 

each target analyte compensates for the influence of ma-

trix ion suppression or enhancement as well as any poten-

tial loss in recovery through inefficient extraction processes. 

Calibration matrix
A key assumption in the calibration process is that the signal-to-

concentration relationship is fully conserved between the calibra-

tion material matrix and the clinical sample matrix. A long-stand-

ing recommendation is that calibrator standards should ideally be 

prepared in matrix-matched materials to avoid bias resulting from 

matrix differences between patient samples and calibrators. 

However, the effectiveness of a matrix-matched calibration ap-

proach is related to the commutability of the calibration matrix 

and how representative it is of clinical patient samples [4]. If 

there are significant matrix differences between calibrators and 

clinical patient samples, the signal-to-concentration relationship 

may not be conserved, leading to biased measurements.

  For the measurement of exogenous analytes, blank matrices 

(i.e., matrices devoid of target analytes) from commercial sources 

or inhouse preparations are readily available. The measurement 

of endogenous analytes poses a greater challenge, as a “proxy” 

blank matrix is required for the preparation of calibrators. These 

matrices (commercial or inhouse-prepared) are often generated 

through the removal of analytes by dialysis, stripping the native 

matrix with activated charcoal, or using synthetic matrix materi-

als [5]. Subjecting the matrix to more rounds of stripping (e.g., 

triple-stripped serum) may reduce the quantity of endogenous 

analytes in the matrix. However, these additional processes may 

cause the blank matrix to deviate from the native human matrix 

and become less representative of the clinical patient samples.

  Other variables to consider for calibrator matrix preparation 

are when the calibration matrix cannot be depleted (e.g., in the 

case of amino acids), when there is qualitative or quantitative 

difference in binding proteins of stripped matrix, compared to 

the ones in native human matrix [6], and in the matrix prepara-

tion of unstable molecules. These cases may require spiking of 

Fig. 1. Flowchart for selection of articles to be included in the literature review.

Records identified through database search  
(N=834)

Titles screened 
(N=834)

Abstracts screened
(N=36)

Full-text articles assessed for eligibility
(N=25)

Final studies included for review
(N=16)

Total studies included for review
(N=21)

A�dditional studies identified through 
review of reference lists of included  
studies (N=5)

Records excluded (N=9)
- �No specific examination of regression 

approaches

Records excluded (N=11)
- Not relevant

Records excluded (N=798)
- Not relevant
- Not published in English
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additional components into the blank matrix, such as bovine se-

rum albumin—for nonspecific binding, and antioxidants or pre-

servatives for stabilizing unstable analytes. A synthetic matrix or 

solvent-based calibrator may be considered when endogenous 

analytes cannot be effectively removed [5].

  It may be desirable to verify the commutability of the calibra-

tor matrix during method development, which can be performed 

following the CLSI EP07 guideline [7]. Evaluation of differences 

between the calibrator matrix and native patient matrix, such as 

spike and recovery experiments, can be conducted to determine 

the presence of matrix effects [5, 7, 8].

  A matrix effect may enhance or suppress ionization of the an-

alyte or internal standard (IS), leading to over- or underestima-

tion of the analyte concentration, respectively. The extent of ma-

trix effect interference can be variable and unpredictable; it may 

be dependent on interactions between the target and co-eluting 

molecules or may have a nonspecific effect on instrument re-

sponses. The same analyte can give different responses in dif-

ferent matrices, and the same matrix can affect various analytes 

differently [4, 9]. Matrix effects can be assessed by examining 

the recovery of a spiked analyte in the matrix under investiga-

tion or by observing signal enhancement or suppression by co-

infusing a blank matrix with a pure labeled/unlabeled standard 

[10, 11]. These effects can be reduced using selective sample 

extraction steps, diverting flow to waste to reduce ion source 

contamination, or adopting matrix-matched calibration strate-

gies; however, these practices may not completely negate all 

matrix effects [4]. The matrix effect may be better mitigated by 

chromatographically optimizing the resolution between regions 

of suppression/enhancement and the analyte of interest during 

method development to separate the analyte from the bulk waste 

of unretained species.

Internal standards
Use of a stable isotope-labeled (SIL)-IS helps to minimize the is-

sues caused by matrix ion suppression or enhancement during 

quantitation [9]. An SIL-IS allows for accurate quantitation with-

out the need for matrix-matched calibrators by compensating 

for matrix effects and any potential losses in recovery during 

cleanup or extraction processes [9, 12]. Although the absolute 

response can vary, the response ratio (or relative response) of 

the analyte to SIL-IS remains the same [13]. As described above, 

other matrices should be evaluated to determine the effects of 

matrix differences.

  Ideally, the SIL-IS should exactly mimic the target analyte(s) 

to correct matrix-related responses. An SIL-IS must behave in 

the same way as the target analyte in both the sample extraction 

and ionization processes. For this compensation to be effective, 

it is necessary for the IS to resemble the analyte in terms of physi-

cal and chemical properties. The coincidental retention time of 

two structurally unrelated molecules is insufficient to ensure 

ideal behavior as an IS. The overall variability of experimental 

results increases as the structures of the target analyte and IS 

become more divergent [14]. An IS must be structurally similar 

and chromatographically co-eluted with the target analyte to ef-

fectively compensate for non-proportional ionization due to the 

matrix effect [9, 15].

  Although several options for SIL-IS are available, 13C- or 15N-la-

beled compounds are preferred over deuterium (2H)-labeled 

compounds because they demonstrate better labeling stability 

and often have greater purities. They also display identical or al-

most identical chromatographic and ionization behaviors to those 

of unlabeled target analytes [16]. SIL-IS is expected to reduce 

the effects of matrix ion suppression or enhancement, provided 

they co-elute from the column. For an SIL-IS labeled with deute-

rium, the position of deuterium isotopes may lead to hydrogen-

deuterium exchange, causing IS response variability, leading to 

the loss of deuterium isotopes in some cases. An SIL-IS heavily 

labeled with deuterium isotopes may not co-elute with the target 

analyte because of slight differences in physiochemical proper-

ties, resulting in partial ionization differences in the matrix [17, 

18]. Importantly, a certificate of analysis for an SIL-IS usually in-

dicates purity as a function of liquid chromatography-UV analy-

sis, which is not capable of indicating isotopic purity.

  Signal drifts can be observed during an analytical run, which 

may be caused by fluctuations in liquid chromatography hard-

ware performance, variations in the electrospray process, changes 

in ion transfer caused by fouled or moved optics, and changes 

in detector sensitivity [9, 19]. Among these variations, electro-

spray ionization at the ion source is considered the major cause 

of instrumental response fluctuations. An IS is commonly used 

in quantitative analyses to compensate for these drifts using the 

analyte-to-IS ratio [19, 20].

Number of calibrator standards, analysis, and positioning of 
calibrators

Recommendations
3.	�Increasing the number of calibration standards in a cali-

bration procedure enables better mapping of the detector 

response and reduces the error estimate, thus increasing 

the accuracy and precision of a calibration regression model.
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4.	�An alternative approach with similar performance is to in-

crease the number of calibration replicates while using 

fewer calibration standards. 

Constructing a calibration curve
A minimum of two data points is needed to draw a straight-line 

graph and for linear regression modeling (first-degree polyno-

mial) according to Equation 1:

                      y=ax+b                          (Equation 1)

where y is the instrument response (or normalized ratio), x is 

the concentration of the analyte, a is the analytical sensitivity of 

the instrument (i.e., the signal per unit change in the concentra-

tion of an analyte [21], or slope), and b is the instrument re-

sponse when no analyte is present (or intercept).

  Increasing the polynomial order of the equation to a second-

degree polynomial would require a minimum of three data points 

to plot the curve, and a further increase to a third-degree polyno-

mial requires four data points. In general, a higher number of 

data points is required for non-linear regression. Non-linearity in 

calibration curves is commonly observed in LC-MS. Common 

causes of the observed non-linearity are matrix effects, saturation 

during ionization, dimer or multimer formation, isotopic effects, 

and detector saturation [19, 22]. If known causes of non-linearity 

can be mitigated during method development, they should be 

implemented to achieve a linear calibrator response. However, if 

non-linearity remains at the end of method development, non-

linear curve fitting may be considered, as elaborated below.

Number of calibration levels
The aim of regression modeling calibration data is to minimize 

the error in the estimation of parameters describing the relation-

ship between the standard concentration and observed signal 

response. Increasing the number of points in the calibration 

curve reduces the uncertainty in the estimated parameters. A 

sufficient number of calibration standards is needed to define 

the response profile in relation to the concentration range of the 

standards. There is no agreement on calibration strategies from 

regulatory bodies and organizations regarding the number and 

concentrations of calibrators required, which are often arbitrarily 

selected. One common recommendation by commercial guide-

lines and regulatory authorities is that a calibration curve should 

include a minimum of six non-zero samples covering the intended 

calibration range, a zero sample (matrix with only the IS), and a 

blank sample (matrix without any analyte or IS) [2, 23]. The 

non-zero calibrators should also encompass the lower limit of 

quantitation (LLOQ) and upper limit of quantitation (ULOQ) [2, 

23]. Zero and blank samples (also known as blank and double 

blank, respectively) should not be included in the calibration 

curve regression [5]. They are to be utilized to ensure that the 

veracity of the system does not unduly bias the intercept.

  Having a greater number of calibration standards leads to a 

smaller error estimate for the calculated concentration and, con-

sequently, better precision and a narrower confidence interval at 

the determined concentrations. Although more calibration points 

can improve the accuracy and precision of the model, this must 

be balanced against operational and financial costs such as 

greater laboratory effort in the preparation and analysis of addi-

tional calibration standards or replicates [24].

  Similar accuracy and precision can be achieved by using as 

few as one calibration standard (with the regression being forced 

through the origin) or two calibration standards (without the re-

gression being forced through the origin) to construct the cali-

bration curve as against using eight or ten standards [25-27]. 

Under the two-calibration standard approach, previously estab-

lished linear multipoint calibration data were retrospectively lin-

early regressed using two critical concentrations, the LLOQ and 

ULOQ, with no additional batch failure or QC rejections ob-

served. More specifically, the differences in mean QC concen-

trations were within −0.8% to 2.5%, and the differences in %CV 

were within −0.7% to 0.9% for the 12 measurement procedures 

studied [27]. These studies involved exogenous analyte applica-

tions, which may be associated with better opportunities for ma-

trix matching between the calibrators and samples. It is impor-

tant to determine the susceptibility of a low-number calibration 

strategy to calibration drift or shift errors, and its ruggedness 

over time.

  An increased number of points in a calibration curve is only 

an indication of the back-calculated values of the standard curve 

points and is not directly correlated with the inaccuracy or im-

precision of points that were not used to generate the model 

(e.g., QCs or samples). Additional calibration points/replicates 

may improve the precision of the regression model, but this does 

not directly correlate with improved performance of the assay. 

This may be especially true for assays with modified matrices 

(e.g., endogenous analytes using a stripped matrix).

  Tan, et al. [26] demonstrated that the impact of using differ-

ent high-concentration levels as calibration points was almost 

identical. Hence, the ULOQ calibrator can be represented by 

adjacent high-concentration standards close to the ULOQ, and 

extrapolation at the higher concentration end is generally linear 

and acceptable [26]. The addition of a concentration point at 
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the geometric mean of the LLOQ and ULOQ can establish qua-

dratic regression models. Placing a calibration point at the geo-

metric mean also provides better overall accuracy than using 

other adjacent points, although extrapolation beyond the highest 

concentration is not advised [26]. These results should be inter-

preted within the specific simulation parameters. For example, 

the degree of quadraticity of the regression curve may vary from 

day to day depending on the condition of the source/ion optics/

detector. The application of such a strategy in other LC-MS/MS 

techniques warrants examination.

  It may be difficult to determine the true linearity of a calibra-

tion curve using only two points. Musuku, et al. [27] demon-

strated alternative approaches to verify the linearity of the curve, 

such as performing a regression using the two calibrators together 

with QC samples; however, this may not always be sufficient to 

conclude linearity. It is advisable to validate the method using 

more calibrator concentrations first to map out the detector re-

sponse and investigate polynomial regression models, while con-

ducting experiments to critically stress the linearity assumption 

before subsequently removing some calibration levels to main-

tain the performance specifications [2, 26]. It may be necessary 

to remap the detector response when a significant analytical shift 

or drift is observed.

Number of replicates
The above studies show that optimal accuracy for regression 

statistics can be obtained using fewer calibration concentrations 

with a higher number of replicates at each concentration, in-

stead of the commonly adopted practice of using more calibra-

tion concentrations with fewer replicates [26]. Additional repli-

cates help to reduce the imprecision of the estimated parame-

ters [24]. Having fewer calibration standards also reduces the 

risk of error from calibration standard preparation. The number 

of replicate calibrator injections is also an arbitrarily set criterion. 

Duplicate injection of calibrators is recommended because it 

improves the precision of the observed result without requiring 

additional calibration standard preparations [23, 24, 26].

  The number of calibrator points and replicates analyzed, as 

well as their concentration levels, should be dependent on the 

characteristics of the particular bioanalytical measurement pro-

cedure, such as the presence of linearity or non-linearity and 

the precision of the analysis [26].

Order of calibrator assessment
The order of calibrator assessment does not significantly influ-

ence the performance and can be conducted in either ascend-

ing or descending order [23]. Nonetheless, the addition of a blank 

sample after injection of the highest-concentration calibrator can 

assist in the detection of carryover [23].

  Having the calibrations bracket an analytical run, with one set 

at the beginning and one at the end of a sequence, can help re-

duce the effect of analytical drift throughout the run. Combining 

both sets of data points to construct a calibration curve helps to 

compensate for any variations in instrument sensitivity (slope 

changes) during the run. If only one replicate injection of the 

calibration is adopted, interspersing the calibrators in the run 

can achieve the same compensation [24].

Distribution of standard concentrations
Another related issue is how calibration levels should be distrib-

uted across the measurement range. The concentration levels 

can be evenly (equidistant) or unevenly distributed. Unequal 

spacing of calibration points with clustering at lower concentra-

tions improves the accuracy and stability of the calibration curve 

at the lower end, which subsequently improves the precision of 

measurements near the limit of detection and LLOQ. Having a 

single very high calibrator concentration (i.e., spaced far away 

from other points on the x-axis) may lead to a high degree of le-

verage, with a small error having a disproportionately large influ-

ence on the regression model estimates [2].

  Although not thoroughly examined in the literature covered 

for this review, different distributions of calibrators can influence 

stability of the regression model when an incorrect weighting 

factor is used. With an appropriate weighting factor, the curve 

was stable regardless of the calibrator distribution [28]. Weight-

ing the response also reduces leverage effects [2]. Further re-

search is required in this area of calibration data heteroscedas-

ticity, precision profiles, and appropriate regression model wei

ghting.

  It is generally considered suboptimal to prepare calibrators by 

serial dilution from a single stock because this carries a higher 

risk of error if the primary stock is prepared incorrectly.

Frequency of calibrations

Recommendations
5.	�Constructing a calibration curve with each analytical batch 

recharacterizes the instrument detector response but does 

not remove the variability in observed signal measure-

ments.
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6.	�Calibration procedures that optimally associate the instru-

ment signal response to the concentration of the stan-

dards should be considered, with subsequent use of qual-

ity controls in every batch to confirm the response and 

monitor longitudinal assay performance.

Another area of interest in determining calibration practices is 

how often a calibration procedure should be performed. Con-

ventionally, calibrations are performed for each sample analysis 

batch.

  Alladio, et al. [16] demonstrated the possibility of collecting 

calibration data from analyses over a few weeks to build a ro-

bust averaged calibration curve using gas chromatography-mass 

spectrometry. It may be advantageous to use this averaged cali-

bration curve built from data collected on different days, giving 

a larger number of replicates, instead of changing the calibra-

tion curve daily, especially when the instrumental conditions are 

stable. The authors cautioned that this conclusion might not 

hold for LC-MS/MS methods because of the larger between-day 

variation [16].

  Early evidence suggests that this averaged calibration appro

ach may indeed be useful for LC-MS/MS analysis. In one study, 

tacrolimus values extracted together with calibrators were com-

parable to the values extracted within 24 hours of the initial cali-

bration [29]. This would be an interesting area for further study, 

as a reduction in calibration frequency could result in significant 

operational and financial savings.

  Calibration curves were constructed to associate the analyti-

cal response with the standard concentration, and QC was used 

to confirm the response associated with the concentration and 

monitor the performance of the measurement procedure. The 

robustness of a measurement procedure is defined by the sta-

bility of its performance [2].

  Other factors may influence the calibration stability. The 

SIL-IS is a global normalization factor that relates to the his-

toric calibration curve. Any environmental or analytical change 

that dissociates the SIL-IS from the historic calibration curve 

and contemporaneous samples may introduce analytical er-

rors. Variations across analytical batches arising from reagent 

preparation, instrument conditions, and technical expertise 

may cause shifts in the calibration curve [1]. Calibration with 

each batch to recharacterize the instrument does not resolve 

the actual variability but could be an inappropriate soft correc-

tion for possible day-to-day variances, while presuming that 

the calibration is error-free [2]. Zabell, et al. [2] placed a 

stronger emphasis on using QC performance to indicate recal-

ibration or after major changes in reagents or instrument con-

ditions.

Calibration modeling (regression approaches and weightage)

Recommendations
7.	�Correlation coefficients (r) or determination coefficients (R2) 

are not appropriate for assessing the linearity of a calibra-

tion procedure (linear or non-linear regression model). Lin-

earity should be assessed using appropriate statistical me

thods or alternative measures.

8.	�To account for heteroscedasticity in calibration data (i.e., 

non-constant assay variance across the calibrator concen-

trations), weighted forms of regression are preferred to 

minimize the influence of higher concentration standards. 

The choice of weighting depends on the relationship of the 

variance and standard concentrations and should be as-

sessed by appropriate statistical methodology.

When examining calibration data for fit, it is important to con-

sider the regression method (e.g., least-squares, Deming), model 

(e.g., linear or polynomial), and fitting technique (e.g., weight-

ing). Selecting an inappropriate regression approach for a cali-

bration procedure could lead to significant bias and imprecision 

by modeling an inappropriate relationship between the signal 

measurements and standard concentrations. The selection of a 

correct regression model during the method development and 

validation stages is critical for a smooth transfer from the method 

validation stage to production, which should also be maintained 

in the production stage [28].

Linear or non-linear regression models
As mentioned above, it is common to observe non-linear cali-

bration data using LC-MS methods. Non-linear behavior may 

not be evident from visual inspection of the calibration data but 

may display significant bias when fitted with an inappropriate 

curve. When non-linearity is determined in calibration data, there 

are two options to overcome this limitation. First, a quadratic or 

higher-order calibration regression model can be used. Second, 

the calibration data can be divided into two separate ranges. A 

linear regression model may be used to fit the lower calibration 

ranges. This lowers the calibration range to narrower linear ranges, 

reducing the dynamic range of the measurement procedure 

[14, 15, 30].
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  Although r and R2 are commonly used indicators to assess 

the goodness of fit for calibration models, they are not appropri-

ate for assessing linearity [31]. Both r and R2 are statistical mea-

sures; r is an indicator of the degree of correlation between two 

variables (signal and concentration), and R2 is an indicator of 

the proportion of variability in the response explained by the re-

gression. The correlation and response variability are only loosely 

related to linearity, and using these two coefficients to determine 

linearity may be misleading. These coefficients used in isolation 

are not adequate to assess linearity because values close to 

unity (e.g., R2 >0.999) can be obtained even when the data 

show signs of curvature [3, 32]. Linearity should instead be as-

sessed using appropriate statistical methods (e.g., ANOVA) and/

or other mathematical measures (e.g., residual plot), which will 

be further discussed in Section 5 below.

  The two most commonly used regression models for construct-

ing LC-MS/MS calibration curves are linear and quadratic re-

gression equations, which use either weighted or non-weighted 

fitting techniques [1]. To determine whether the calibration model 

should be weighted, the calibration data should be examined 

for evidence of heteroscedasticity.

Regression fitting technique
Heteroscedasticity in regression analysis refers to the error term 

or residuals, which are unequal across the values of the depen-

dent variable (calibration standards in this case). Calibration 

data may be homoscedastic, where the variance of each con-

centration level is constant and independent of the concentra-

tion range, or heteroscedastic, where the variance increases as 

a proportion of the concentration range. When calibration data 

are heteroscedastic, a scatter plot of these variances often shows 

a funnel shape, in which the variance widens or narrows in re-

sponse to the standard concentration [32]. A standard non-wei

ghted (ordinary least-squares) calibration regression model as-

sumes that the measurement error is homoscedastic (i.e., ex-

hibits constant variance). If calibration data are heteroscedastic, 

it is more appropriate to use weighted least-squares regression 

[1].

  When the calibration data are heteroscedastic, but no weight-

ing is applied during regression modeling, the influence of er-

rors at different concentration levels on the estimation of the pa-

rameters is ignored, which reduces the stability of the calibra-

tion models. Model stability is defined as the resistance of a cali-

bration to significant errors from calibration samples [28]. Using 

a non-weighted regression means that a small bias at higher 

calibration concentrations could change the curve significantly 

and cause large deviations at low concentrations. This is espe-

cially detrimental for heteroscedastic data because the variance 

at each level could increase with increasing concentrations.

  To account for the heteroscedasticity of the data, weighted re-

gression analysis has been used to maintain constant variance 

through the measured concentration range. Weighted regres-

sion models minimize the influence of higher concentrations by 

balancing the regression line to distribute the variance uniformly 

throughout the calibration range [31]. Appropriate weighting 

factors can be calculated using the inverse of variance (1/σ2). 

However, this practice requires several determinations for each 

calibration point [31]. Instead, weighting methods commonly 

involve adjusting the data using a factor related to an inverse 

function of the concentration of the standards. Weights of 1/x2 

have been recommended as LC-MS/MS bioanalytical methods 

[26, 28, 33]. Simply following historical practices may not be 

appropriate, as many of these recommendations are based on 

the “test-and-fit” strategy, which involves fitting the calibration 

data points with different models and weighting factors, starting 

with the most simplistic unweighted linear regression and pro-

gressively fitting more complex models and subsequently as-

sessing which model provides the best fit. This is often largely 

based on the analyst’s subjective interpretation that the data 

points are close to the trend line and that the regression has an 

R2 value close to unity.

  Good recovery of the calibration standard concentrations and/

or QC performance does not necessarily mean that a correct 

weighting factor has been applied. Acceptable recovery may be 

achieved when an inappropriately weighted calibration model 

coincidentally overlaps or is close to the underlying true relation-

ship. Gu, et al. [28] demonstrated that, in some cases, no wei

ghting or 1/x weighting could generate good calibration curves 

and QC performance, although the weighting factor determined 

from the collected data should have been 1/x2. Hence, recovery 

and assay performance data should not be used as criteria for 

the selection of weighting factors. The choice of weighting de-

pends on the relationship of the variance for the data with other 

variables, and correct application of weighting factors generally 

results in better longitudinal assay performance and stability, as 

explained further below in Section 5.

  Other weighting factors that are less commonly used in clini-

cal LC-MS/MS applications are 1/y and 1/y2. In most cases, the 

effects of using either 1/x or 1/y or 1/x2 and 1/y2 are similar for 

bioanalytical LC-MS/MS measurement procedures, as linear or 

quadratic models with very mild curvatures are commonly en-

countered. Instrument response errors (or variances) are directly 
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related to the y-axis instead of the x-axis on the calibration curve 

plot. When the curves are linear or close to linear, the empirical 

functions between 1/σ2 and y can be translated into the same 

empirical functions between 1/σ2 and x [28].

  When the quadratic curve has strong curvature, or for the 

four-parameter logistic and five-parameter logistic curves com-

monly used in ligand-binding assays, the empirical function be-

tween 1/σ2 and y cannot be translated to the same empirical 

function between 1/σ2 and x. In such cases, 1/y or 1/y2 weight-

ing factors are preferable [28, 34].

Impact of heteroscedasticity on calibration performance
Heteroscedasticity in calibration data should not be overlooked. 

Heteroscedasticity can lead to a significant loss of precision, par-

ticularly at low concentrations, in the calibration model. This is 

crucial in clinical mass spectrometry as it affects the limits of 

detection and quantitation of the measurement procedure.

  Non-weighted regression modeling of calibration data that are 

heteroscedastic leads to an increase in imprecision, particularly 

at lower concentrations, resulting in falsely higher limits of de-

tection and quantitation and incorrect performance characteris-

tics of the measurement procedure. Alternatively, application of 

weighting to homoscedastic calibration data could lead to a falsely 

lowered calculation of detection and quantitation limits [14, 30-

32].

Validation and statistical assessment of calibration models

Recommendations
  9.	�Scatter plots of residuals with fitted values and subse-

quent visual assessment can provide guidance for the fit 

of an appropriate regression model.

10.	�The percentage relative error (%RE) can also assist in 

selection of the optimal regression model to be applied.

11.	�Use of an F-test to compare the variance of the signal 

responses at the lowest and highest calibrator concen-

tration levels can determine if calibration data are het-

eroscedastic and hence the need for weighting factors.

Several studies recommended simple procedures for selecting 

the correct regression model and weighting factors for calibra-

tion models based on the experimental data collected [14, 28, 

32]. Using a combination of graphical plots with visual assess-

ment and statistical methods, the calibration linearity and ho-

mogeneity of variances can be evaluated. It is highly recom-

mended to use these methods to determine the correct regres-

sion approaches for the measurement procedure.

  Several procedures can be followed to test whether the ex-

perimental calibration data are homoscedastic or heteroscedas-

tic and whether a weighting factor should be applied. This can 

be performed graphically, visually (qualitatively), or through sta-

tistical approaches (quantitatively).

  For graphical methods, a scatter plot of the residuals derived 

from unweighted least-squares regression versus the predicted 

values can be generated [31, 32, 35]. The residual (R), which 

is the difference between the measured values (Sexp) and the cal-

culated or fitted values from the regression equation (Sint), can 

be established using Equation 2 [31].

                                    R=Sexp - Sint                          (Equation 2)

where Sexp is the experimental/observed signal and Sint is the in-

terpolated signal derived from the regression equation. The re-

sidual is calculated for each calibration data point, and the re-

siduals are plotted against concentration. The graphs are then 

visually assessed to determine whether the residuals are ran-

domly distributed across the concentration axis (x-axis). A fun-

nel-shaped trend, where the variance is more pronounced at in-

creasing concentrations, indicates heteroscedastic data and that 

a weighting factor should be applied [31, 32].

  Residual plots can be generated using different calibration 

models (linear or quadratic) and weighting factors. The plot dis-

playing the most symmetrical distribution of the residuals around 

the concentration axis indicates that the assumptions of the mo

del and subsequent error terms are correct [35]. However, re-

sidual plots may not always be easy to interpret, particularly when 

the number of calibration points is limited.

  The percent relative error (%RE) can also be used as a qual-

ity indicator in optimal model selection [30]. The %RE can be 

derived from regression models, as shown in Equation 3, with 

the deviations from the calibration model determined by com-

paring the back-calculated concentrations with the theoretical 

or nominal values of the calibration standards.	
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                                                                               (Equation 3)

In Equation 3, Cexp is the experimental or observed value and 

Cnom is the nominal or theoretical concentration. The sum of the 

absolute %RE values is used to determine if appropriate model 

fitting is achieved for all calibration points. The optimal regres-

sion model provides a narrow horizontal band of randomly dis-

tributed %RE across the concentration axis and the least abso-

lute sum %RE [30].

  The F-test is a statistical approach that can be used to deter-
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mine if the variances of signals at the lowest and highest cali-

brator levels differ significantly [14, 32]. If the calibration data 

are heteroscedastic (at a significance level of P <0.05), a wei

ghted model is a more appropriate choice. Generally, a 1/x wei

ghting factor is used when the variance increases proportionally 

with the standard concentration, and a 1/x2 weighting factor is 

used when there is a quadratic increase in variance. The weight-

ing factor that generates the smallest variance of the weighted 

normalized variances is selected as the optimal factor [14]. Simi-

larly, Bartlett’s or Levene’s tests can be performed to simultane-

ously compare variances at all concentration levels [14, 32]. An 

additional benefit of Bartlett’s test is that it can be used to com-

pare variances with unequal sample sizes, which may occur 

when calibration replicates are excluded from variance evalua-

tion due to poor injections or gross errors [36].

  The number of terms for the calibration model can be estab-

lished by comparing the variances of the linear and quadratic 

models using a partial F-test [14, 33]. If the quadratic calibra-

tion model significantly improves the modeled variance of the 

data in comparison with the linear model (at a significance of 

P <0.05), then the quadratic model should be selected. The 

ANOVA-lack of fit (LoF) test can also be performed to verify the 

goodness of the calculated calibration model, although Alladio, 

et al. [14] caution that this test is sensitive to the number of rep-

licates and calibration levels [33].

  Statistical tests or mathematical functions, in comparison to 

graphical assessment, are less empirical approaches for deter-

mining linearity. However, any issues occurring in the measure-

ment procedures, such as nonspecific adsorption, cross-con-

tamination, systematic bias, errors due to preparation or stor-

age, and matrix interferences, may influence the regression 

models and estimated parameters. Care must be taken to en-

sure that the data collected and used for statistical modeling are 

a true and accurate representation of the calibration procedure. 

Validation of the calibration regression should be conducted 

over many runs performed over a certain time period to capture 

more sources of variation.
  The calibration curve slope and intercept should theoretically 

be consistent for a validated measurement procedure over the 

period of method validation and sample analysis, particularly 

when an SIL-IS is used. In reality, owing to the factors mentioned 

above, variances across batches may lead to variability in the 

slope and intercept. This consistency of calibration curve slope 

and intercept is often used to assess the robustness of a method 

[23]. The calibration data collected for validation of the regres-

sion model can be monitored for the precision of the curve slopes 

and/or intercepts to assess the ruggedness of the selected model 

and reveal any potential issues.

  In a regulated clinical laboratory environment, the procedure 

for determining calibration regression models should be clearly 

defined in the laboratory’s standard operating procedures. Once 

the optimal model is determined during method validation, it 

should not be altered during production. Changing the regres-

sion model terms and weighting factor (i.e., changing from a lin-

ear to quadratic model or no weights to applying 1/x2 weights) to 

improve the fit of the calibration model to pass an analytical run 

should never be undertaken.

  Assessment and selection of the calibration model and wei

ghting using only calibration data may run the risk of missing 

important matrix-related effects in patient samples that are not 

accounted for by the calibration material. For example, a cali-

brator using a depleted matrix may behave differently from a 

patient sample, which may not be fully accounted for by the 

SIL-IS. Consequently, the signal-to-concentration relationship 

may not be conserved between calibrators and patient samples, 

leading to analytical errors. The validation requirement of the 

calibration curve should consider the clinical utility of the mea-

surement procedure, including the dynamic range and clinical 

interpretation of the results.

  Validation of the calibration model focuses only on the me-

chanics of calibration practice. Further metrics for validation, 

such as accuracy, precision, linearity, and determination of the 

measurement limits, should be adopted. The methods used to 

validate the calibration regression are summarized in Table 1. 

Internal calibration

Recommendations
12.	�Novel internal calibration approaches based on isotope 

pattern deconvolution may overcome challenges such as 

matrix effects and instrument signal drift encountered 

with conventional external calibration practices.

13.	�For these approaches to be used successfully, thorough 

method development must be undertaken to ensure that 

assay linearity, stability of the stable isotope labels, natu-

ral isotopic abundances, and deconvolution patterns of 

the resulting combined distribution of isotopic abundances 

are well characterized.

There are many challenges with current calibration practices in 

clinical mass spectrometry, as discussed above. Internal calibra-
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tion is a novel approach, which obviates the use of external cali-

bration curves [13, 16, 37-39]. Currently, an SIL-IS is commonly 

used to normalize instrumental responses and attenuate the 

overall analytical variation caused by random errors, matrix ef-

fects, poor recovery, or instrumental drift [16].

  Internal calibration is an alternative approach based on the 

measurement of isotopic abundances with subsequent isotopic 

pattern deconvolution. When an SIL-IS is added to the sample, 

the altered isotopic abundances represent a mixture of a linear 

combination of those from naturally occurring isotypes and those 

from the spiked labeled standards. Multiple linear regression is 

then used to deconvolute the resulting combined distribution of 

abundances to obtain their molar fractions [37]. The concentra-

tion of the measurand in the unknown sample is calculated from 

the ratio of the signals of the unknown analyte to the SIL-IS mul-

tiplied by the SIL-analyte concentration equivalent [16].

  This approach overcomes some of the challenges of conven-

tional external calibration curve approaches, such as matrix ef-

fects, because the SIL-IS is spiked into patient samples, thus 

eliminating the difference between the matrices of calibration 

standards and clinical samples. Internal calibration also reduces 

the effects of signal drift because the analysis occurs concur-

rently and can be performed without the need for sample batch-

ing with calibrators. Another advantage is a simplified concen-

tration calculation that does not require the plotting of calibra-

tion curves and the resulting selection of models, methods, and 

weighting [9]. Nonetheless, such novel approaches and the re-

quired calculations may not be readily available in routine mass 

spectrometry middleware.

  A possible limitation of this approach is that the ULOQ de-

pends on the SIL-IS concentration used. In the studies men-

tioned above, the SIL-IS concentration was considered to be the 

upper limit of the studied dynamic range. Additional validation 

must be performed to determine the linearity of the measure-

ment procedure beyond the SIL-IS concentration. A similar limi-

tation may also apply to the LLOQ, which should be evaluated. 

The range in which this method provides acceptable measure-

ment performance may be restricted compared with that of tra-

ditional external calibration approaches [9].

  Other limitations associated with SIL-IS use (see the Internal 

Standards section above) also affect the internal calibration ap-

proach. These include the purity of the SIL-IS labeled with deu-

terium, hydrogen-deuterium exchange during the course of anal-

ysis, and isotope dissociation [40]. The effect of heteroscedas-

Table 1. Validation and assessment of calibration regression

Method Interpretation Acceptance criteria Other comments

Plot relationship between residuals and 
concentration [31, 32, 35]

The optimal regression model and 
weighting factor will result in randomly 
distributed variation around the 
concentration axis.

Not available Quick and easy graphical visualization; 
reveals whether the assumptions on 
the errors and the model are correct. 
May not always be easy to interpret, 
especially when the data size is 
limited.

Relative errors and sums of relative 
errors [30, 31] 

The optimal regression model will result 
in the least absolute sum of relative 
errors and a narrow distribution band 
in a plot of residual error against 
concentration.

Acceptable deviation in relative error is 
20% at the lower limit of quantitation 
and 15% for the rest of nominal 
concentrations [36].

Less empirical approach to assessing the 
linearity of a calibration curve 
compared to graphical visualization.

Acceptance criteria of 15%–20% could 
be considered excessively high [3].

ANOVA F-test to compare the variance of 
the signals at the lowest and highest 
calibrator concentration levels [14, 31]

Data are heteroscedastic if P <0.05. Acceptance limit based on statistical 
significance.

None

Bartlett’s or Levene’s test to compare the 
variances of replicates at all 
concentration levels [32, 35]

Test for homogeneity of variances. Data 
are heteroscedastic if P <0.05.

Acceptance limit based on statistical 
significance.

Bartlett’s test can be used to compare 
variances with unequal sample sizes.

ANOVA partial F-test to compare the 
variances of linear and quadratic 
models [14]

If the quadratic calibration model 
significantly improves the captured 
variance of the data in comparison 
with the linear model (P <0.05), the 
former is accepted.

Acceptance limit based on statistical 
significance.

None

ANOVA-lack of fit test [14] Lack of fit of the regression model is 
determined if P <0.05.

Acceptance limit based on statistical 
significance.

Sensitive to the number of replicates and 
calibration levels.



Cheng WL, et al.
Calibration in clinical laboratories

16    www.annlabmed.org https://doi.org/10.3343/alm.2023.43.1.5

ticity on this approach is underexplored and may not be negligi-

ble [41].

  For widespread use, the internal calibration method needs to 

be developed diligently to ensure assay linearity and stability of 

the SIL standards. Experiments must also be performed during 

validation to examine the effects of the matrix and the time re-

quired for SIL standard equilibration with the sample (if any). 

This approach also requires full characterization of both the an-

alyte and SIL compounds in terms of their isotopic distribution 

of abundances [37]. Similar to the SIL-IS used for external cali-

brations, these SILs should resemble the analyte in both physi-

cal and chemical properties and must co-elute chromatographi-

cally.

KEY TAKE HOME MESSAGES AND PRACTICAL 
RECOMMENDATIONS

A calibration curve is a regression model that estimates the rela-

tionship between the known concentration of a measurand and 

the observed instrument response, which facilitates estimation 

of the concentration of the measurand in an unknown sample. 

Calibration plays a critical role in LC-MS/MS analyses; however, 

insufficient consideration has been given to the decisions be-

hind good calibration practices.

  In this review, we briefly summarized the factors to be consid-

ered when implementing calibration protocols, such as the im-

portance of using matrix-matched calibrator materials and SIL-

IS, the number and concentrations of calibration points, and the 

non-constant variance in the calibration data.

  Although the use of weighted regression results in more com-

plex models than ordinary least-squares regression and requires 

additional statistical testing, weighting should be considered 

during method validation to obtain better assay performance 

specifications, particularly at the LLOQ. The regression method, 

model, and fitting technique used for the measurement proce-

dure should be tailored to the empirical data-generating process 

characterized during method validation. Interested readers are 

encouraged to read two excellent reviews by Rappold [42, 43] 

to gain additional insights into method development and opera-

tionalization of clinical mass spectrometry.

  A stepwise approach to determine an optimal calibration strat-

egy for LC-MS/MS bioanalytical measurement procedures is pre-

sented below.

Recommendations
a.	�Consideration should be given to the calibrator matrix used. 

If possible, use of matrix-matched calibrators to reduce 

differences compared to patient samples is strongly en-

couraged.

b.	�Where possible, investigate sources for suitable stable iso-

tope-labeled internal standards for each target analyte to 

compensate for matrix effects and poor recovery. 

c.	�Initially, during method development, use more calibrator 

concentration levels to first map out the LC-MS/MS detec-

tor response, followed by polynomial regression, with sub-

sequent experiments to critically stress-test the linearity of 

the calibration curve.

d.	�Use appropriate statistical methods (e.g., ANOVA-LoF) 

and/or other mathematical measures (e.g., residual plots 

or percentage relative error) to evaluate the linearity and 

heteroscedasticity of the experimental calibration data.

e.	�From these assessments of calibration data, an appropri-

ate calibration model (linear or polynomial; unweighted,  

1/x, or 1/x2 weighting) can be derived.

f.	� Once the optimal model is selected during method devel-

opment, this should be carried over to production. Some 

calibration levels or replicates can be subsequently removed 

from production calibration practices, provided regression 

and performance specifications are maintained.

g.	�The frequency of calibrations may also be reduced for pro-

duction calibration practices, with reliance on QC samples 

for response confirmation and longitudinal monitoring of 

performance. 
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