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Background: Tigecycline, eravacycline, and omadacycline are recently developed tetracy-
clines. Susceptibility of microbes to these tetracyclines and their molecular mechanisms 
have not been well elucidated. We investigated the susceptibility of Moraxella catarrhalis 
to tigecycline, eravacycline, and omadacycline and its resistance mechanisms against 
these tetracyclines. 

Methods: A total of 207 non-duplicate M. catarrhalis isolates were collected from different 
inpatients. The minimum inhibitory concentrations (MICs) of the tetracyclines were deter-
mined by broth microdilution. Tigecycline-, eravacycline-, or omadacycline-resistant iso-
lates were induced under in vitro pressure. The tet genes and mutations in the 16S rRNA 
was detected by PCR and sequencing. 

Results: Eravacycline had a lower MIC50 (0.06 mg/L) than tigecycline (0.125 mg/L) or om-
adacycline (0.125 mg/L) against M. catarrhalis isolates. We found that 136 isolates (65.7%) 
had the tetB gene, and 15 (7.2%) isolates were positive for tetL; however, their presence 
was not correlated with high tigecycline, eravacycline, or omadacycline (≥1 mg/L) MICs. 
Compared with the initial MIC after 160 days of induction, the MICs of tigecycline or erava-
cycline against three M. catarrhalis isolates increased ≥eight-fold, while those of omada-
cycline against two M. catarrhalis isolates increased 64-fold. Mutations in the 16S rRNA 
genes (C1036T and/or G460A) were observed in omadacycline-induced resistant isolates, 
and increased RR (the genes encoding 16SrRNA (four copies, RR1-RR4) copy number 
of 16S rRNA genes with mutations was associated with increased resistance to omadacy-
cline. 

Conclusions: Tigecycline, eravacycline, and omadacycline exhibited robust antimicrobial 
effects against M. catarrhalis. Mutations in the 16S rRNA genes contributed to omadacy-
cline resistance in M. catarrhalis.
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INTRODUCTION 

Moraxella catarrhalis, a gram-negative aerobic diplococcus, has 

been recognized as an increasingly important pathogen in re-

spiratory infections [1-3]. M. catarrhalis usually causes sinusitis 

and otitis media in children and lower respiratory tract infections 
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and exacerbation of chronic obstructive pulmonary disease in 

adults [4]. Currently, penicillin is most commonly used to treat 

M. catarrhalis infections [5]. However, M. catarrhalis isolates are 

frequently resistant to ampicillin owing to the production of β-lac

tamase (typically BRO-1 or BRO-2) [3]. The positive rate of β-lac

tamase in M. catarrhalis is >90% in many countries [6, 7]. This 

high prevalence of β-lactamase production in M. catarrhalis iso-

lates led to the initial use of tetracyclines as an alternative to 

β-lactamase antimicrobials for the treatment of respiratory ill-

nesses caused by M. cattarhalis [8]. However, the tetracycline 

resistance rate among M. catarrhalis isolates fluctuates between 

0–30% [9]. 

Tetracycline resistance is usually attributed to the acquisition 

of mobile genetic elements carrying tetracycline-specific resis-

tance genes (encoding an efflux pump, a ribosome protective 

protein, or a drug inactivating enzyme), mutations within the ri-

bosomal binding sites, and/or chromosomal mutations leading 

to an increased expression of intrinsic resistance mechanisms 

[10]. Since Mendez, et al. [11] first studied the genetic mecha-

nism of plasmid-mediated tetracycline resistance genes in En-
terobacteriaceae and Pseudomonas in 1980, various tetracy-

cline resistance genes have been discovered in gram-positive 

and gram-negative bacteria [12]. These genes often combine 

with mobile components, such as transferable plasmids, trans-

posons, conjugative transposons, and integrants, resulting in 

the extensive spread of resistance genes among flora [12, 13]. 

Some studies on tetracycline resistance mechanisms in M. ca-
tarrhalis have identified tetM, tetL, tetW, tetO, and tetQ as the 

genes involved in tetracycline resistance in Neisseria spp., which 

show high similarity with M. catarrhalis with respect to pheno-

typic characteristics and ecological niche. Reports suggest that 

tetM, tetL, tetW, tetO, and tetQ could be involved in tetracycline 

resistance in M. catarrhalis, while another study has shown that 

the tetB is also involved in tetracycline resistance [12–14].

Owing to the severe problem of resistance to traditional tetra-

cyclines, such as doxycycline and minocycline, new tetracyclines, 

such as tigecycline, eravacycline, and omadacycline, have been 

developed recently and have shown excellent activity against 

gram-positive and gram-negative bacteria [15, 16]. However, 

the susceptibility of different microbes to these new tetracyclines 

and their mechanism of action against M. catarrhalis have not 

been well elucidated. Tigecycline resistance has been linked to 

genetic mutations affecting the 30S ribosomal subunit of the 

tetracycline binding site, including mutations affecting the genes 

encoding 16S rRNA (four copies) and ribosomal protein S10 

[17]. Moreover, these gene mutations have not been shown to 

increase the minimum inhibitory concentrations (MICs) of oma-

dacycline and eravacycline against M. catarrhalis. Thus, this 

study explored the susceptibility of M. catarrhalis to these novel 

tetracyclines and investigated the possible resistance mecha-

nisms.

MATERIALS AND METHODS

Bacterial strains
A total of 207 non-duplicate M. catarrhalis isolates were collected 

from different inpatients at Shenzhen Nanshan People’s Hospi-

tal Shenzhen University, China, between January 1st, 2012 and 

December 31st, 2017 from the following sources: 161 from 

sputum (77.8%), 43 from throat swabs (20.8%), two (0.9%) 

from blood, and one (0.5%) from bronchoalveolar lavage fluid. 

The isolates were identified using the Phoenix 100 automated 

microbiology system (Becton Dickinson [BD], Franklin Lakes, 

NJ, USA), and their identities were confirmed by matrix-assisted 

laser desorption ionization time-of-flight mass spectrometry (IVD 

MALDI Biotyper; Bruker, Bremen, Germany). Staphylococcus 
aureus ATCC 29213 was used as the quality control strain. 

All procedures involving human patients in this retrospective 

study were approved by the ethics committee of Shenzhen Nan-

shan People’s Hospital, according to the ethical standards of 

Shenzhen University and the 1964 Helsinki declaration and its 

later amendments, or comparable ethical standards (approval 

number: SZNS2017015). For this type of study, formal consent 

was not required.

Chemicals and antimicrobial susceptibility testing
Doxycycline (catalog No. HY-N0565), minocycline hydrochlo-

ride (catalog No. HY-17412), tigecycline hydrochloride (catalog 

No. HY-B0117A), eravacycline (catalog No. HY-16980), and 

omadacycline (catalog No. HY-14865) were purchased from 

MedChemExpress (MCE, Shanghai, China). 

Antimicrobial MICs were determined using the broth microdi-

lution method according to the Clinical and Laboratory Standards 

Institute (CLSI) document M45-A2 [18]. Overnight bacterial cul-

tures were diluted 1:100 in 2 mL of 1×Mueller-Hinton broth 

(MHB). Following 3 hours of incubation at 37°C, 10.82×g, the 

colony suspension (corresponding to a 0.5 McFarland standard, 

1.0–1.5×108 colony forming units [cfu]/mL) was diluted 1:100 

in 1 mL 2×MHB. Aliquots (100 μL) of the colony suspension 

(1.0–1.5×106 cfu/mL) were inoculated into polystyrene microti-

ter plates (Costar3599; Corning, NY, USA) containing 100-μL 

aliquots of tigecycline, eravacycline, or omadacycline (0.0078, 
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0.0156, 0.031, 0.06, 0.125, 0.25, 0.5, 1, 2, 4, or 8 mg/L). Fol-

lowing 24 hours incubation at 35°C, the MICs were calculated as 

the drug concentration in the well without obvious bacterial pre-

cipitation. At present, there are no unified criteria for determining 

the antimicrobial susceptibility of M. catarrhalis. Thus, we used 

the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST)-recommended MIC breakpoints for M. catarrhalis. 

Isolates with an MIC≤1 or >2 mg/L were considered susceptible 

or resistant, respectively, to doxycycline or minocycline. 

In vitro induction of tigecycline-, eravacycline-, or 
omadacycline-resistant isolates
To explore the possible resistance mechanisms of M. catarrhalis 

against the new tetracyclines, tigecycline-, eravacycline-, or om-

adacycline-resistant isolates were induced under in vitro selec-

tion pressure. Three M. catarrhalis isolates (MC1 [tetB-, tetL-], 
MC2 [tetB-, tetL+], and MC3 [tetB+, tetL-]; the genotypes were 

determined by PCR detection of tetracycline-specific resistance 

genes) with low tigecycline (0.125 mg/L), eravacycline (0.125 

mg/L), and omadacycline (0.25 mg/L) MICs were used to in-

duce the resistant isolates. The parental isolates were subcul-

tured serially in MHB containing gradually increasing concen-

trations of tigecycline, eravacycline, or omadacycline. The initial 

inducing concentration was 0.5×the initial MIC, which was then 

successively increased to 1×, 2×, 4×, 8×, 16×, 32×, or 64× 

the initial MIC [19]. Isolates were cultured for 3–5 passages be-

fore being transferred into the next concentration. Isolates from 

the passages of each concentration were stored at -80°C in MHB 

containing 40% glycerol to identify genetic mutations and to test 

subsequent MIC. 

PCR detection of the tet genes and mutations in the 16S 
rRNA and the 30S ribosomal protein S10 genes after 160 
days of induction

DNA was extracted and purified from all isolates using the 

DNeasy Blood and Tissue Kit (Qiagen, Shanghai, China), ac-

cording to the manufacturer’s protocol for gram-negative bacte-

ria. tet primers described by Collins, et al. [20] and Villedieu, et 
al. [21] were used. The primers used for the 16S rRNA and 30S 

ribosomal protein S10 genes are listed in Table 1. Mutations in 

the 16S rRNA and the 30S ribosomal protein S10 genes were 

detected by PCR amplification and sequence alignment [17]. 

PCR amplification was performed in a total volume of 50 μL, 

containing 2×PCR Master Mix (TIANGEN Biotech Beijing Co., 

Ltd., Beijing, China), 0.5 μmol/L of each primer, and 1 μL of 

template DNA. The cycling conditions were as follows: 94°C for 

5 minutes; 30 cycles of 94°C for 30 seconds, 55°C for 30 sec-

onds, and 72°C for 30 seconds; and a final 10-minute exten-

sion step at 72°C. Each PCR set included a no-template control 

and a positive control. The amplification products were analyzed 

by electrophoresis on 1.0% agarose gels. 

Statistical analysis
MIC data are reported as absolute values and compared using 

the Chi-square test or Fisher’s exact test. P <0.05 was consid-

ered statistically significant. All data were analyzed using SPSS 

(version 17.0; SPSS Inc., Chicago, IL, USA). 

RESULTS 

Susceptibility of M. catarrhalis to tetracyclines
The MIC distributions of the tetracyclines among the M. catarrh-
alis isolates are summarized in Table 2; eight isolates had a dox-

ycycline MIC≥1 mg/L, and four isolates had a minocycline MIC 

Table 1. PCR primers used for amplification of the 16S rRNA and 
S10 protein genes in this study

Primer Sequence (5´ → 3´) Amplicon size (bp)

16S rRNA-R1-F GGCTACCTTGTTACGACTT 1,491

16S rRNA-R1-R AGAGTTTGATCATGGCTCAGA

16S rRNA-R2-F ATGGAACAATCAACAGACGCT 2,213

16S rRNA-R2-R GGCTACCTTGTTACGACTT

16S rRNA-R3-F CTATAATTTGCGACCTGTAAC 2,047

16S rRNA-R3-R GGCTACCTTGTTACGACTT

16S rRNA-R4-F GATGCACATCGAGCCATCCAA 2,443

16S rRNA-R4-R GGCTACCTTGTTACGACTT

16S rRNA-S10-F TGCAAAGCGTACAGGCGCACAA 302

16S rRNA-S10-R ACCGACTAAACCAATCGCCAT

Abbreviations: rRNA, ribosomal RNA; RR1-RR4, four copies of 16S rRNA 
gene; S10, 30S ribosomal subunit protein S10 in M. catarrhalis.

Table 2. MIC distribution of tetracyclines among 207 M. catarrhalis 
clinical isolates

Tetracyclines
Distribution of MICs (mg/L) (N)

0.06 0.125 0.25 0.5 1 2 ≥4 MIC50/MIC90

Doxycycline    0 37 121 41 2 2 4 0.25/0.5

Minocycline    0 169 34   0 0 1 3 0.125/0.25

Tigecycline   71 129 5   0 1 1 0 0.125/0.125

Eravacycline 156* 45 1   3 1 1 0 0.06/0.125

Omadacycline   33 162 2   5 3 1 1 0.125/0.125

*Among isolates with MIC=0.06 mg/L, eravacycline group vs. tigecycline or 
omadacycline groups, P <0.001 (Chi-square test). 
Abbreviation: MIC, minimum inhibitory concentration.
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≥1 mg/L. Applying the EUCAST interpretive criteria, 97% of the 

isolates were susceptible to doxycycline and 98% were suscep-

tible to minocycline. 

Of the three new tetracyclines, eravacycline had a lower MIC50 

(0.06 mg/L) than tigecycline (0.125 mg/L) or omadacycline 

(0.125 mg/L) and MIC90 (0.125 mg/L) for the 207 M. catarrhalis 

isolates (Table 2). The number of isolates with an MIC of 0.06 

mg/L was the highest for eravacycline (156/207, 75.4%), fol-

lowed by tigecycline (71/207, 34.3%; P <0.001), and omadacy-

cline (33/207, 15.9%; P <0.001). Only two isolates had tigecy-

cline or eravacycline MICs≥1 mg/L, while five isolates had an 

omadacycline MIC≥1 mg/L. 

Tetracycline resistance-related tet genes in M. catarrhalis
We found that 136 (65.7%) M. catarrhalis isolates harbored 

tetB, and 15 (7.2%) isolates harbored tetL; tetM, tetW, tetQ, and 

tetT were not detected in any of the isolates. Only four M. ca-
tarrhalis isolates harboring tetB had a high doxycycline MIC (≥ 

2 mg/L), and two isolates had a high minocycline MIC (≥2 mg/

L). Similarly, of the tetB-positive isolates, only one had a high ti-

gecycline or eravacycline MIC (≥1 mg/L), and only four had a 

high omadacycline MIC (≥1 mg/L) (Fig. 1A). None of the M. 
catarrhalis tetL-positive isolates demonstrated high tetracycline 

MICs (≥1 mg/L) (Fig. 1B). 

Tigecycline-, eravacycline-, and omadacycline-resistant 
isolates were induced under in vitro selection pressure
It was difficult to induce resistance to tigecycline or eravacycline 

in the three parental M. catarrhalis isolates; the MICs of the MC1 

and MC2 isolates only increased four-fold compared with the 

Fig. 1. Distribution of tetracycline MICs among the (A) tetB- and (B) tetL-positive M. catarrhalis isolates.
Abbreviation: MIC, minimum inhibitory concentration.
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initial MICs, while the MICs of MC3 increased eight-fold com-

pared with the initial MICs (Fig. 2). Compared with tigecycline 

and eravacycline MICs, the omadacycline MICs of the MC1 and 

MC3, but not the MC2 isolates, easily increased 64-fold com-

pared with the initial MICs after 160 days of induction. 

Detection of 16S rRNA mutations in tigecycline-, 
eravacycline-, and omadacycline-resistant isolates
Interestingly, the tigecycline-induced resistant isolates showed 

decreased susceptibilities to the other two new tetracyclines, 

eravacycline and omadacycline. A similar effect was observed 

in the eravacycline-induced resistant isolates (Table 3). How-

ever, no mutations in the 16S rRNA genes were identified in 

these tigecycline- or eravacycline-induced resistant isolates. The 

omadacycline-induced resistant isolates also demonstrated sig-

nificantly reduced susceptibilities to tigecycline and eravacy-

cline, and novel mutations in the 16S rRNA genes (C1036T 

and/or G460A) were identified. Among these omadacycline-in-

duced resistant isolates, increased RR copy number of the 16S 

rRNA genes with mutations was associated with increased re-

sistance to omadacycline. No S10 protein mutations were de-

tected in the new tetracycline-resistant isolates (data not shown). 

DISCUSSION 

In the present study, >97% of the M. catarrhalis isolates were 

susceptible to doxycycline and minocycline and also had low 

MICs for the three new tetracyclines (tigecycline, eravacycline, 

or omadacycline). These results support the potential applica-

tion of the novel tetracyclines in the treatment of M. catarrhalis 

Fig. 2. Tigecycline-, eravacycline, and omadacycline-resistant iso-
lates were induced under in vitro selection pressure. The arrows in-
dicated the time point at which mutations in the 16S rRNA and 30S 
ribosomal protein S10 genes were detected in the induced isolates. 
Abbreviations: rRNA, ribosomal RNA; MIC, minimum inhibitory concentra-
tion.
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Table 3. Antimicrobial susceptibility and resistance mechanism of tigecycline-, eravacycline-, and omadacycline-induced resistant isolates

Induced isolates
MIC (mg/L) Mutations in 16S rRNA

Tig Era Oma RR1 RR2 RR3 RR4

MC1 (parental isolate) 0.125 0.125 0.25 W W W W

MC1-Tig-12* 0.5 0.25 1 W W W W

MC1-Tig-21 0.5 0.25 1 W W W W

MC1-Tig-35 0.5 0.5 1 W W W W

MC2 (parental isolate) 0.125 0.125 0.25 W W W W

MC2-Tig-14 0.5 0.5 2 W W W W

MC2-Tig-25 0.5 0.5 2 W W W W

MC2-Tig-38 0.5 0.5 2 W W W W

MC3 (parental isolate) 0.125 0.125 0.25 W W W W

MC3-Tig-16 1 0.5 2 W W W W

MC3-Tig-28 1 0.5 2 W W W W

MC3-Tig-45 1 0.5 2 W W W W

MC1 (parental isolate) 0.125 0.125 0.25 W W W W

MC1-Era-14* 1 0.5 2 W W W W

MC1-Era-23 1 0.5 2 W W W W

MC1-Era-38 1 0.5 2 W W W W

MC2 (parental isolate) 0.125 0.125 0.25 W W W W

MC2-Era-17 1 0.5 2 W W W W

MC2-Era-29 1 0.5 2 W W W W

MC2-Era-43 1 0.5 2 W W W W

MC3 (parental isolate) 0.125 0.125 0.25 W W W W

MC3-Era-15 1 0.5 2 W W W W

MC3-Era-28 1 0.5 2 W W W W

MC3-Era-44 1 1 4 W W W W

MC1 (parental isolate) 0.125 0.125 0.25 W W W W

MC1-Oma-11* 1 0.5 2 W W W W

MC1-Oma-23 1 0.5 2 W W W W

MC1-Oma-32 4 2 16 W C1036T C1036T C1036T

MC2 (parental isolate) 0.125 0.125 0.25 W W W W

MC2-Oma-15 1 0.5 2 W W C1036T W

MC2-Oma-26 1 0.5 2 W W C1036T W

MC2-Oma-36 1 0.5 2 W W C1036T W

MC3 (parental isolate) 0.125 0.125 0.25 W W W W

MC3-Oma-13 4 2 8 G460A W C1036T W

MC3-Oma-27 4 2 16 G460A W C1036T W

MC3-Oma-46 4 2 16 G460A W C1036T W

*Tig-, Era- and Oma-induced passages.
Abbreviations: rRNA, ribosomal RNA; MIC, minimum inhibitory concentration; Tig, tigecycline; Era, eravacycline; Oma, omadacycline; W, wildtype; RR1-4, 
16s rRNA gene copies.

infections. 

The MIC50/90 of omadacycline (0.125/0.125 mg/L) in this study 

was similar to those reported previously [22]. However, the tige-

cycline MIC50 (0.125 mg/L) of the 207 M. catarrhalis isolates in 
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this study was higher than the previously reported data (0.004 

mg/L) [23]. This may be due to environmental and regional vari-

ation. Although a recent study has demonstrated that Klebsiella 
pneumoniae isolates from China have higher eravacycline MICs 

than isolates from Europe and the United States, the eravacy-

cline MIC for M. catarrhalis isolates in our study was low (MIC50 

at 0.06 mg/L) and lower than that of tigecycline or omadacy-

cline [24]. 

The mechanisms of tetracycline resistance in gram-positive 

and gram-negative pathogens include ribosomal protection pro-

teins and efflux pumps [10]. Overexpression of the ribosomal 

protection protein gene tetM and the efflux pump gene tetL has 

been reported to reduce the susceptibility of Enterococcus fae-
cium to tigecycline [25]. However, our results showed that the 

efflux pump genes tetB and tetL did not affect the susceptibility 

of the M. catarrhalis isolates to tigecycline, eravacycline, or om-

adacycline. This suggests that either efflux pumps are not the 

main tetracycline resistance mechanism in M. catarrhalis or that 

the three new tetracyclines can overcome tetB-mediated resis-

tance in M. catarrhalis. 

Crystallographic studies of the 30S ribosomal subunit of Ther-
mus thermophilus revealed the presence of at least six tetracy-

cline binding sites in 16S rRNA [26-28]. Several bacterial spe-

cies have exhibited higher binding affinities for tigecycline and 

omadacycline than for tetracycline, and mutations in 16S rRNA 

that affect the tetracycline binding sites of the 30S ribosomal 

subunit have been shown to confer tetracycline and tigecycline 

resistance [28-31]. We investigated mutations in the four copies 

of the 16S rRNA gene in M. catarrhalis, induced under in vitro 

tigecycline, eravacycline, or omadacycline pressure. Consistent 

with previous studies, we found that M. catarrhalis isolates with 

higher copy numbers of 16S rRNA with genetic mutations tended 

to have greater omadacycline resistance [17]. The mutational 

characteristics of the 30S ribosomal protein S10 were consistent 

with previous results demonstrating that mutations occurred at 

a relatively low rate in isolates with omadacycline-induced resis-

tance [32]. These results indicate that the role of S10 in the emer-

gence of omadacycline resistance needs to be further studied. 

Interestingly, it was very difficult to induce tigecycline- or erava-

cycline-resistant M. catarrhalis isolates in this study. For exam-

ple, the tigecycline or eravacycline MICs of the M. catarrhalis 

isolates increased only eight-fold compared with the initial MICs 

after 120 days of induction and remained eight-fold higher than 

the initial MICs even after 160 days of induction. In contrast, in 

S. aureus, the solithromycin (a novel fluoroketolide antimicro-

bial) MIC could be induced 128-fold compared with the initial 

MIC by <30 days of induction [19]. These results indicate that 

M. catarrhalis cannot easily develop resistance against tigecy-

cline and eravacycline, and this finding is valuable with respect 

to antimicrobial application against M. catarrhalis. In contrast, 

M. catarrhalis may acquire omadacycline resistance more read-

ily, as the omadacycline MIC increased 64-fold compared with 

the initial MIC after 120 days of induction. 

This study has potential limitations. All strains were collected 

from inpatients, and thus, the in vitro activity of the novel tetra-

cyclines against M. catarrhalis in outpatients remains unknown. 

Further studies are needed to reveal M. catarrhalis susceptibility 

from outpatients to tigecycline, eravacycline, and omadacycline.

In conclusion, the traditional tetracyclines, doxycycline and 

minocycline, and the three novel tetracyclines, tigecycline, erava-

cycline, and omadacycline, exhibited robust antimicrobial effects 

against clinical M. catarrhalis isolates from China. The present 

data contributes to understanding potential resistance mecha-

nisms that may impact the clinical application of omadacycline.
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