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This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear 
medicine physics, with a focus on recent developments from both hardware and software 
perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and 
point spread function, have potential advantages in the image signal-to-noise ratio and spatial 
resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium 
zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems 
(including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, 
PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image 
acquisition, but also subsequent image processing, including image reconstruction and post-
reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of 
nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in 
personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear 
medicine. Now that deep-learning-based image processing can be incorporated in nuclear 
medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face 
the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are 
leading to enhanced image quality and decreased radiation exposure as well as quantitative and 
personalized healthcare. 
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Introduction

1. Overview of nuclear medicine physics

Nuclear medicine physics (NMP) encompasses many 

research areas, including atomic/nuclear physics (e.g., vari-

ous radioactivity decay modes), hardware-related fields 

(e.g., radiation detectors and related electrical instruments), 

counting statistics/systems, software-related fields (e.g., 

digital image processing), tracer kinetic modeling, and 

internal/external radiation dosimetry [1]. Due to the large 

coverage with limited space and time for the 30th anniver-

sary Progress in Medical Physics (PMP) review series, this 

review focuses on recent advances of NMP for in vivo NM 

imaging. Before leaping from the discovery of radioactivity 

to modern NMP, it is worth summarizing the history of NM 

and NMP.

2. History of NM and NMP

Radioactivity was discovered by Henri Becquerel in 1896 

(one year after the discovery of the X-ray by Roentgen), 
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and shortly thereafter, Marie Curie (mother of Irene Curie) 

coined the term radioactivity and developed the theory of 

radioactivity; both were awarded the Nobel Prize in Physics 

in 1903 [2]. Thereafter, there have been dramatic achieve-

ments in many aspects of NMP.

Artificial radioactivity was invented by Irene and Joliot 

Curie in 1934, and in the meantime, Ernest Lawrence in-

vented the cyclotron (i.e., device for accelerating atoms at 

high speed to produce radioisotopes) in 1930 and contin-

ued to develop the medical cyclotron. These two inventions 

led to the production of radionuclide for medical use (e.g., 

I-131 and Tc-99m) [2,3]. 

Ernest Rutherford identified alpha and beta rays and 

proposed the nuclear theory of the atom, which is the basis 

of not only NM therapeutics, but also recent cutting-edge 

technology of theranostics, and was awarded Nobel Prizes 

in Chemistry in 1908 and 1919 [4]. 

NM first gained public recognition through radioactive 

iodine (RAI) research by Hertz and Roberts [3,5]. For NM 

imaging, Hans Geiger invented the first practical scintilla-

tion detector called the Geiger counter using the Geiger–

Muller tube in 1928 [6], which is the basis of modern ra-

diation detection systems and led to the first NM imaging 

study for mapping thyroid iodine uptake [7]. Cassen et al. 

[8] developed the first rectilinear scanner with a motor-con-

trolled/collimated radiation detector, and printer, founding 

the basis of single-photon emission computed tomography 

(SPECT) and coincidence detection of positron emission 

tomography (PET) [3,9,10]. The first gamma camera was the 

scintillation camera developed by Hal Anger [10]. 

Paul Dirac discovered the existence of annihilation posi-

trons and received the Nobel Prize in Physics in 1933 [3] 

(PET is based on the coincidence of an opposite-direction 

511-keV annihilation photon pair originating from this 

phenomenon). More recently, PET was invented by Kuhl 

and Edwards [11] in the early 1950s, who performed a pre-

liminary version of reconstruction followed by coincidence 

imaging without lead collimation [12]. In the meantime, the 

concept of emission/transmission tomography was also de-

veloped into SPECT [3].

3. Two major branches of NM imaging

Unlike other structural imaging, such as X-ray computer-

ized tomography (CT) or ultrasound, traditional NM imag-

ing (i.e., gamma camera/SPECT) and PET provide images 

reflecting physiological functions. To this end, both PET 

and SPECT require a radiopharmaceutical to be distributed 

into the whole body or organs-of-interest of the subject de-

pending on the purpose of the imaging test. 

Although the author will discuss NMP in both modalities, 

modern NM imaging is dominated more by PET, due in par-

ticular to the high image quality in terms of the signal-to-

noise ratio (SNR)/spatial resolution. Therefore, the author 

will focus more on NMP advances of PET. Broadly speaking, 

most innovative physical methods are first developed for 

PET imaging and are then incorporated into traditional NM 

imaging.

4. �NM imaging as picomolar-sensitive molecular 

imaging

Before addressing NMP advances in image acquisition/

reconstruction and related hardware/software develop-

ments, an overview is provided of PET, which is a major 

component of modern NM/NMP.

As summarized by Jones [13], PET is a quantitative im-

aging modality with picomolar sensitivity. Whereas other 

imaging modalities focus mostly on structural imaging of 

the human body, NM imaging (PET in particular) focuses 

on physiology, metabolism, drug distribution, and molecu-

lar pathways/targets. At present, PET is widely considered 

the most sensitive technique available not only for nonin-

vasively studying how the human body functions in terms 

of physiology, metabolism, and molecular pathways, but 

also for studying which in vivo pathologies (e.g., amyloid 

and tau for Alzheimer’s disease) are in the human body. In 

this regard, PET scans sometimes lead other modalities in 

terms of disease detection and early diagnosis. PET trac-

ers should thus be developed to address clinical research, 

diagnostic questions, and challenges to properly distribute 

radiopharmaceuticals in the body (mostly by injection, but 

sometimes by swallowing and inhalation for organs/tissues 

of interest).
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As mentioned, gamma camera (or SPECT) imaging is an-

other major NM imaging modality. Because most gamma 

tracers can be easily synthesized using a generator-based 

radioisotope (mostly for Tc-99m), there are many useful 

NM imaging tests using this modality. Nonetheless, because 

many technological aspects are led by PET, the author fo-

cuses first on recent advances in PET image acquisition/

reconstruction/processing.

5. Limitations and solutions for NM/PET imaging

Although PET is one of the most molecular-sensitive im-

aging techniques and has significantly better sensitivity and 

spatial resolution than gamma camera/SPECT owing to col-

limation-free three-dimensional (3D) imaging, the count-

ing statistics are still intermediate in that PET is a photon-

deficient modality compared with other modalities, such as 

X-ray CT. Therefore, PET has a low SNR and potential limi-

tations in reducing the imaging time and radiation dose. In 

addition, there are well-known fundamental limitations of 

PET spatial resolution [14] compared with other structural 

imaging, such as X-ray CT and magnetic resonance (MR) 

imaging due to many factors, including the physical size 

of the detector elements, non-collinearity of the line of re-

sponse (LOR), and positron range.

To resolve these limitations in PET and PET/CT imaging, 

NMP has evolved greatly over the last two decades thanks 

to hardware developments of hybrid imaging [15] free from 

PET transmission imaging, faster detector systems [16-20], 

and corresponding software developments [21]. The pres-

ent standard of PET/CT scanners has incorporated many 

advanced hardware/software methods in recent decades. 

First, benefits are provided by the flexible structures of it-

erative algorithms, including ordered subset expectation–

maximization (OSEM) and maximum a posteriori (MAP) 

algorithms, which have made it possible to achieve a trade-

off between SNR and spatial resolution and to further con-

sider noise penalization, respectively. Second, there have 

been methods for increasing the effective sensitivity of the 

PET camera, including the time-of-flight (TOF) technique 

and whole-body PET. Third, there have been methods for 

improving the spatial resolution of the PET camera: the 

point-spread function (PSF), depth-of-interaction (DOI), 

and partial volume correction (PVC) techniques.

These developments in NMP have led to better image 

quality in terms of both sensitivity and spatial resolution, 

and have thus improved small lesion detectability (in tumor 

imaging, including FDG PET) [22], in vivo pathology detect-

ability (in neurodegenerative disease imaging, including 

amyloid and tau PET) [23,24], and the general quantifica-

tion accuracy of PET uptake. 

6. Standardized uptake value metric

The Standardized uptake value (SUV) is a well-estab-

lished (semi-)quantitative measure for PET, playing an 

especially large role in whole-body oncology PET studies. 

The SUV is a ratio between concentrations and can be cal-

culated by the activity concentration in a tumor ([Bq/mL]/

injected activity [Bq]×body weight [g]; mL: milliliter, Bq: 

Becquerel). Maximum uptake in a tumor (i.e., SUVmax) is 

one of the most frequently used metrics not only because 

it can be easily measured, but also because its diagnostic 

accuracy is the highest among many FDG PET metrics. Re-

cently, the metabolic tumor volume (MTV) and total meta-

bolic burden (MTV×SUVmean) within the volume called 

total lesion glycolysis are considered additional useful met-

rics. 

Because SUVmax is sensitive to not only to the PET cam-

era characteristics, but also noise and reconstruction pa-

rameters, 1-mL spherical volume-of-interest (VOI)-based 

maximum uptake is also used and referred to as SUVpeak. 

PERCIST criteria adopt this as the metric of choice and 

highly recommend it for tumor assessments between sub-

jects/centers and baseline/follow-up studies [25].

7. Scope of this review

This review offers a brief, comprehensive overview of 

advanced technologies of NMP to provide knowledge to 

medical physicists, NM physicians, and researchers. Be-

cause NMP has both hardware and software aspects, the 

author focuses on recent developments/advances in both 

aspects. Developments in image reconstruction, especially 

TOF and PSF, have potential advantages in terms of image 

SNR and spatial resolution. Regarding hardware systems, 
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modern detector materials and devices, including lutetium 

oxyorthosilicate (LSO), the silicon photomultiplier (SiPM), 

and NM imaging systems (PET/CT, PET/MR, digital PET, 

whole-body PET), will be addressed. 

NMP has distinctive characteristics of molecular imaging 

and multidisciplinary and multicenter study-related phys-

ics (in particular, harmonization methods) compared with 

other MP subspecialties. In this regard, the review also in-

cludes current perspectives of cutting-edge NM techniques 

(e.g., theranostics and deep learning [DL] in NM). For the 

review specific to the Korean NMP society, the author will 

discuss future challenges and roles of the Korean NMP so-

ciety as benchmarking with other NMP societies, and will 

suggest corresponding perspectives for the Korean NMP 

society in the Discussion and Perspective section.

NMP Advances in Image 
Acquisition/Reconstruction

1. Technique for increasing SNR

1) TOF PET

Whereas a conventional PET camera uses coincidence 

information only for determining the LOR of both opposite-

direction annihilation gamma rays, TOF PET resolves the 

difference in arrival time between both gamma rays to 

determine the approximate annihilation position on the 

LOR. By reducing the uncertainty of the annihilation posi-

tion, TOF PET can improve the effective sensitivity and 

SNR, which is proportional to the square root of noise 

equivalent count (NEC) [26], where NEC is reciprocal to the 

uncertainty. Moreover, TOF PET requires neither massive 

modification of the PET detector geometry nor other image 

degradation (e.g., spatial resolution). Rather, the increased 

SNR permits improved trade-off between SNR and spatial 

resolution. Therefore, TOF PET has become the standard 

PET imaging technique.

Although the principle of TOF was proposed earlier, its 

practical implementation was delayed by several decades 

[27]. Only prototypes during the 1980s [28-34] used BaF2 

or CsF as scintillation crystals for the purpose of reducing 

decay time compared with high-density scintillation crys-

tals (i.e., bismuth germinate or bismuth germanium oxide 

[BGO]-based systems). However, these scintillation crystals 

have limited stopping power and light output; thus, these 

systems suffered from poor sensitivity and spatial resolu-

tion. Therefore, a BGO-based PET camera was the method 

of choice during that period, and only limited clinical stud-

ies and research-based experiments were conducted on 

TOF PET cameras [28].

LSO became available in the 1990s, thus making it pos-

sible to implement practical TOF PET, which requires not 

only high timing resolution, but also adequate stopping 

power and energy resolution. The combination of faster 

detector materials (e.g., LSO or lutetium-yttrium oxyortho-

silicate [LYSO]), faster photomultiplier/electrics (i.e., with 

high temporal resolution), and faster computing power [35] 

was a critical prerequisite for achieving the clinically use-

ful TOF technique. In addition, list-mode-based iterative 

reconstruction algorithms played an important role for TOF 

PET with the assistance of an iterative approach, which has 

a flexible pipeline in its iterative nature and can thus modify 

the algorithm to incorporate TOF information.

Due to the patent by Siemens, a similar variation of the 

lutetium-based scintillation crystal (i.e., LYSO) was intro-

duced in the early 2000s by other vendors. Taken together, 

TOF PET became the method of choice in the 2000s [16-20], 

providing a timing resolution of 350–550 ps and a localiza-

tion uncertainty of 5–8 cm. With improvements in the re-

lated electrics, the uncertainly is decreasing daily (~200 ps 

at present).

2) Whole-body PET

Whole-body PET is the epitome of increased sensitivity 

in PET. The world’s first whole-body PET/CT scanner was 

developed by Cherry et al. [36]. By increasing the geometric 

coverage (known as the solid angle in NMP) to encompass 

the entire body, the sensitivity could be increased by a fac-

tor of approximately 40 for whole-body imaging. Moreover, 

significant advances in the TOF technique arising from on-

going improvements in timing resolution may have contrib-

uted to achieve improved effective sensitivity. The overall 

sensitivity gains are considered to be more than hundreds 

of times greater than current state-of-the-art (i.e., bed-

position-based) PET cameras.

Cherry et al. [36] also demonstrated how this step change 
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in sensitivity with unprecedented count density affects the 

way PET is used both in clinical research and patient care. 

His colleagues also reported the first-in-human imaging 

study using the 194-cm axial field-of-view (FOV) whole-

body PET/CT scanner called the EXPLORER, obtaining the 

total adult body in a single acquisition, confirming whole-

body pharmacokinetic studies with 1-s frame durations [37]. 

Moreover, they suggested that large gains in sensitivity and 

SNR can be alternatively used for low-dose (25 MBq or less 

within the FOV) or short-scan-duration (~1 min or less) PET 

imaging.

2. Techniques for improving spatial resolution 

1) PSF iterative reconstruction and DOI technique

PSF-based iterative reconstruction uses a system matrix 

to couple coincidence counts along each LOR to activities 

in neighboring voxels to account for all processes affecting 

the LOR, including the positron range, photon non-collin-

earity, and detector geometry-based effects, such as inter-

crystal scattering/penetration [22,38]. In this regard, the 

central LOR with less crystal penetration and the off-central 

LOR with more crystal penetration are sometimes adopted 

to illustrate different PSF kernel sizes between central and 

off-central LORs. PSF can achieve both (transaxial) unifor-

mity and improvement in spatial resolution. 

In this regard, PSF can address the limited spatial resolu-

tion and also resolve the partial volume effects (PVEs) that 

affect both the visual and quantitative analysis of PET [39]. 

Therefore, PSF-based iterative reconstruction is considered 

to have the most significant impact on SUV measurements. 

For example, PSF-based reconstruction without post-

smoothing can increase SUVmax by approximately 70% in 

small lesions of breast cancer [40] and lung cancer [41].

However, there is another factor of image resolution deg-

radation: the DOI effect, which is the increase in the LOR 

location uncertainly mostly due to inter-crystal penetration. 

Because preclinical imaging has a significantly small rela-

tive bore size (compared with the body size of small ani-

mals) for a larger solid angle than human PET, this problem 

becomes more significant as the bore size decreases and 

the solid angle increases, and there may be a higher prob-

ability of an off-centered LOR from distant crystals. With 

whole-body PET as the method of choice in the near future, 

DOI correction is a challenge in both preclinical and clini-

cal PET imaging. 

2) PVC

Similar to PSF modeling, PVC can be implemented in 

both reconstruction and post-reconstruction steps. In addi-

tion, there is post-reconstruction-based PSF modeling, such 

as Philips PSF reconstruction (whereas reconstruction-

based PSF modeling is for Siemens HD PET and GE Sharp-

IR).

As discussed in a systematic review by Erlandsson et al. 

[42], there are a variety of PVC methods. In a comprehen-

sive review by Rousset et al. [43], many useful PVC methods 

were summarized for the combination of post-reconstruc-

tion-based/reconstruction-based methods and region-

based/voxel-based methods. These methods include the 

classical recovery coefficient method [44], region-based 

method of the geometric transfer matrix (GTM) [45,46], 

voxel-based methods of iterative deconvolution with noise 

constraints [47-50], and a Bayesian approach [51]. Because 

the Bayesian approach can penalize noise by a priori 

knowledge in an iterative reconstruction pipeline, it will 

be addressed in the section ‘2) MAP algorithm’. Recently, a 

voxel-wise version of the GTM method called the region-

based voxelwise (RBV) PVC method and its extension have 

been frequently used in literature [23,52] and Freesurfer 6.0.

In a systematic review of PVC in oncology by Cysouw et 

al. [53], partial volume (PV)-corrected PET may be used as 

an adjunct (i.e., neither a replacement for PV-uncorrected 

PET nor a routine application of PVC in standard clinical 

practice). One major reason for the adjunctive use may be 

the variety of PVC methods and that oncology PET is usu-

ally PV-corrected with voxel-based iterative methods or 

approximated recovery coefficients estimated by a simpler 

structure (e.g., sphere).

In contrast, GTM- and RBV-based approaches have been 

widely used in neuroimaging (in particular, for ADNI co-

hort PET image analysis) in conjunction with proper corti-

cal parcellation (e.g., Freesurfer software). However, more 

attention and effort should be paid to potential anatomical 

image segmentation/registration errors and tissue inho-

mogeneity [43]. As mentioned in a systematic review by 
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Erlandsson et al. [42], additional effort should also be made 

for non-uniform regions [52,54] and correction for tissue 

fraction [55,56]. 

For more detailed information, the reader is referred to 

systematic reviews by Erlandsson et al. [42], Rousset et al. 

[43], and Cysouw et al. [53].

3. Iterative reconstruction algorithms

1) Expectation–maximization algorithm

There are conventional iterative reconstruction algo-

rithms of the maximum-likelihood expectation–maximiza-

tion (MLEM) algorithm and its modification for faster con-

vergence called ordered-subset expectation–maximization 

(OSEM). This class of methods exhibits significant image 

quality improvement compared with classical analytical 

methods, such as filtered back-projection.

Expectation–maximization (EM) methods can improve 

the recovery coefficient of the SUV of lesions as the number 

of iterations (or iterations×subsets in OSEM) is increased. 

However, there is a well-known trade-off between the spa-

tial resolution and SNR. Specifically, the image noise level 

increases with increased iterations, decreasing small lesion 

detectability and increasing false positive findings.

Due to the flexible structure of iterative reconstruction 

pipelines, these methods can be optimized in terms of the 

trade-off of quantitative accuracy and visual lesion detect-

ability for best clinical practice. Specifically, we can reduce 

the image noise by compromising the SUV accuracy (e.g., 

slight SUV underestimation in small lesions) by early-stop-

ping iterations.

2) MAP algorithm

As mentioned above, the PSF and increased number of it-

erations can significantly increase SUV-related quantitative 

metrics in PET. Due to the goal of PSF iterative reconstruc-

tion, reconstructed PET images are usually used as is (with 

no filtering or all-pass filtering) or with relatively small 

kernel-based smoothing. To resolve both the potential deg-

radation of SNR and incomplete recovery by early termina-

tion by PSF iterative reconstruction, Bayesian penalized 

likelihood (BPL) iterative reconstruction (a class of MAP 

algorithms), and the PVC method [51] have recently been 

suggested to improve tumor detection and recovery coef-

ficients while maintaining the stability of SUV metrics. 

As the name MAP/BPL implies, this class of methods 

takes advantage of prior knowledge of the image for the 

noise penalty function (e.g., non-negativity, and small im-

age intensity changes between adjacent voxels), such as 

BPL iterative reconstruction marketed as Q.Clear by GE 

[39]. As a result, this class of methods permits effective con-

vergence of image accuracy by suppressing noise [38,51]. 

In this regard, it is not necessary to comprise the iterative 

reconstruction by early termination due to its robustness 

against noise, that is, high recovery coefficient with low 

noise. However, physicians sometimes feel that the result-

ing images include artificial patterns. Therefore, many 

institutions that employ MAP reconstruction also perform 

tandem OSEM reconstruction.

4. NMP technique for SUV harmonization

1) SUV harmonization problems

Although the development of NMP has led to better im-

age quality in a TOF-based and PSF-capable PET scanner, 

there is an unwanted side effect of not being able to directly 

compare the quantitative measures between PET camera 

generations (i.e., non-TOF/non-PSF generation vs. TOF/

PSF generation). 

Indeed, there are a number of physical factors for the SUV 

measurement error and difference [57-60] during the entire 

imaging process. Specifically, these factors include image 

acquisition/reconstruction parameters, region-of-interest 

(ROI) or VOI methods, SUV normalization factors (body 

weight, lean body mass, or liver SUV-based SUV ratio), and 

image resolutions dominated by PET camera differences (in 

particular, depending on whether PSF is applied). 

2) SUV harmonization solutions

Among many NM societies, the European Association 

of Nuclear Medicine (EANM) and EANM Research Ltd. 

(EARL) established a systematic harmonization approach, 

as reviewed by Boellaard et al. [57-59] and Aide et al. [60]. 

In this review, among the technical causes of errors and dif-

ferences in SUV calculation, reconstruction variability has 

been noted as a prominent factor in the past decades due 
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to the aforementioned software/hardware improvements in 

NMP.

Above all, the significantly increased spatial resolution 

by present PSF corrections is considered the most impor-

tant factor affecting the scanner differences, making direct 

comparison more difficult. To better handle the camera dif-

ferences, EANM suggested producing two reconstructions: 

one optimized for maximum lesion detection and the other 

optimized for quantitative analysis [61]. However, perform-

ing two reconstructions for every PET/CT scan may be not 

clinically feasible. 

Therefore, there have been several approaches for post-

reconstruction-based SUV harmonization. Most harmo-

nization is based on identifying the optimal smoothing 

kernel for post-reconstruction that matches the recovery 

coefficient (and bias) of higher-resolution scanners to that 

of lower resolution scanners.

Joshi et al. [62] performed brain PET image harmoniza-

tion on the United States Alzheimer Disease Neuroimaging 

Initiative (US-ADNI) by comparing the optimal smoothing 

kernel for matching the digital (i.e., bitmap-based) 3D Hoff-

man phantom to the corresponding PET image. Thereby, 

one can achieve brain PET SUV harmonization between 

various PET camera generations. Conversely, this informa-

tion can be also used for PVC by considering the spatial 

blurring of real (PVE-free) uptake as the measured PET up-

take [23,52]. 

For whole-body PET, there are a number of studies us-

ing anthropomorphic phantoms with a hot cylinder or 

spheres for post-reconstruction-based recovery-coefficient-

matching harmonization [61,63-66]. To this end, the NEMA 

IQ phantom or Jaszczak cylindrical phantom (equipped 

with small hot spheres/cylinders) is frequently used with 

various lesion-to-background ratios (e.g., 2.5:1–8:1). A 

dedicated post-reconstruction algorithm (marketed as EQ-

filter; Siemens Healthineers, Erlangen, Germany) and other 

third-party tools are also available. There is a report of <7% 

between-scanner differences by both harmonization meth-

ods of post-reconstruction-based methods and double-

reconstruction methods [61]. 

NMP Advances in Detector Elements

1. �Development of detector elements in PET  

(LSO and LYSO) 

LSO was first used in small-animal PET [67], in a brain 

scanner [68,69], and in a whole-body PET scanner [70,71]. 

As mentioned above, LSO was in the center of TOF PET 

development due to its superior characteristics in terms of 

sensitivity, spatial resolution, reduced deadtime (or fast de-

cay time), and random coincidences. Fast photomultiplier 

tubes (PMTs) and improved electronics led to practical TOF 

PET systems [72,73]. As mentioned above, LSO- and LYSO-

based TOP PET finally became the standard PET method in 

the 2000s [16-19].

2. �Development of detector elements in digital 

PET and PET/MR (SiPM)

The SiPM will be addressed in PET/MR and Digital PET. 

3. �Development of detector elements in gamma 

camera/SPECT (cadmium zinc telluride)

Whereas PET imaging has made a breakthrough with 

TOF/PSF and SiPM-based digital PET and PET/MR, most 

gamma camera detectors remained with an NaI(Tl)-based 

conventional system for many decades. Recently, the 

cadmium zinc telluride (CZT) solid-state detector-based 

SPECT camera has emerged and shown potential strength 

in physical performance, including high sensitivity and spa-

tial resolution, outperforming conventional gamma camera 

scintillators in terms of energy resolution (i.e., better scatter 

rejection performance), and high count rate capability (>100 

million photons/s/mm2). CZT is a room-temperature semi-

conductor detector material that directly converts gamma 

(and X-ray) photons into electrons and holes.

Moreover, the quantification of myocardial perfusion is 

an emerging topic in nuclear cardiology with an expected 

diagnostic/prognostic incremental value, especially in 

coronary artery disease. Dynamic myocardial perfusion 

imaging-based coronary flow reserve or myocardial flow 
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reserve are known to be associated with adverse cardiovas-

cular events independent of luminal angiographic severity 

[74]. The advent of a new dedicated CZT-based camera 

created a new opportunity for perfusion quantification in 

myocardial SPECT. In addition, small-organ imaging, such 

as breast and brain imaging, has also been attempted.

NMP in Hybrid/Advanced Imaging

1. PET/CT

Since the initial integration of PET/CT by Townsend 

(2008), hybrid PET/CT imaging has become crucial for 

clinically feasible routine PET imaging free from the time-

consuming transmission PET scan, allowing PET to afford 

more efforts for emission scan. Moreover, PET/CT allows 

for essential multimodality imaging, providing both ana-

tomical and metabolic information for oncology, neurology, 

and cardiology [15,22]. Now that PET/CT has become the 

standard and most common modality of PET imaging and 

has been installed worldwide, PET usually refers to PET/CT.

2. PET/MR and digital PET using SiPM

Thanks to the soft-tissue contrast of MR and tremendous 

technical advances in both PET and MR, the development 

of hybrid PET/MR systems has been a major focus in the 

past decade. However, there have been several challenges 

in the development of PET/MR [75,76]. First, conventional 

PET photodetectors (i.e., devices for multiplication of light 

produced by scintillation crystals) are based on PMTs that 

are susceptible to the strong magnetic fields used in the MR 

scanner. To avoid this problem, the first integrated PET/

MR was implemented using a type of solid-state semicon-

ductor-based photodetector called avalanche photodiodes 

(APDs). However, APDs (and SiPMs) have much smaller 

physical dimensions than PMTs; therefore, the remaining 

bore size (~60 cm) after PET was inserted in the MR was 

sufficient for patient scanning. 

Whereas ordinary APDs have limited amplifier gain and 

poor timing resolution (~2 ms) and are thus unsuitable for 

TOF PET, Geiger-mode APDs (also known as SiPMs) are 

relatively free from these limitations. Therefore, SiPMs have 

become the current standard for PET/MR photodetectors.

Attenuation correction (AC) is another major physical 

problem in PET/MR, in contrast to CT-based AC, which is 

straightforward in older PET/CT systems. AC of bone has 

remained challenging for many years not only because 

bone is the critical structure of attenuation of the PET emis-

sion signal, but also because it has very low proton density 

(and thus a very low MR signal). 

Several approaches have been proposed, including dedi-

cated fast MR sequence (e.g., Dixon sequence), ultra-short 

time-to-echo (UTE)/zero time-to-echo (ZTE) MR, and a 

combination of both, and TOF-based AC [77-80]. However, 

Dixon sequence-based AC may suffer from bone AC error 

(>10% AC error and >30% quantification error in osseous 

structures adjacent to bone [75,81]) due to assigning the 

same AC coefficients for bone and soft tissue. In addition, 

UTE/ZTE MR suffers from severe noise. 

Alternatively, we can use atlas-based methods [76,82] of 

retrospectively assigning bone information to the MR AC 

map. However, this approach has the potential limitation in 

that it requires previous knowledge for generating the bone 

template and an appropriate spatial registration (more spe-

cifically, spatial normalization and inverse normalization) 

tool.

In addition, there are potential lung segmentation er-

rors, unrealistic uniform AC, and MR FOV truncation. To 

fully understand the limitations and perspectives of current 

PET/MR technology, readers are referred to a systematic re-

view by Boellaard and Quick [75]. The author believes that 

these challenges can be overcome by DL approaches, as 

will be discussed in the final section.

Finally, digital SiPM (near one-to-one coupling of SiPM 

and crystal) has recently been introduced for commercial-

ized digital PET (e.g., GE Signa PET/MR and Discovery MI 

PET/CT with SiPM, Siemens mMR with APD and Vision 

PET/CT with SiPM, Philips Vereos with SiPM). Thanks to 

near one-to-one coupling (2:1–1:1), digital PET can achieve 

improved spatial resolution and time resolution, permit 

high maximum count rates [83-85], and demonstrate higher 

image quality that can also lead to dose reduction [86,87].
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3. Whole-body PET

Whole-body PET has already been described in NMP Ad-

vances in Image Acquisition/Reconstruction section.

NMP in Precision Medicine 

1. NMP in theranostics (also known as theranosis)

1) Theranostics and personalized medicine

Molecular imaging-based personalized/precision medi-

cine and a key technology called theranostics have been a 

well-established and important concept for individualized 

therapeutic strategies [88]. To avoid unnecessary/expensive 

treatments and to optimize patient treatment in terms of 

target localization and treatment methods, personalized 

medicine has been a major focus in recent decades [88].

Although theranostics molecular imaging (i.e., RAI-131) 

was introduced long ago (first performed in 1946), the term 

“theranostics”, which has been used in recent decades (first 

used in the early 1990s), refers to a technique for a specific 

molecular-targeted therapy by combined diagnostic testing 

and therapeutic modalities, mostly based on PET or SPECT 

diagnostic imaging using the same molecule with therapeu-

tics or a very similar molecule (also known as an analogue) 

as a therapeutic radiopharmaceutical [88-90]. 

Theranostics is performed mainly for individualized ther-

apeutic decision-making, for attaining high efficacy, and 

for reducing adverse effects in a patient-specific manner. In 

this regard, theranostics is the epitome and key technology 

of personalized medicine [88]. 

Diagnostic imaging-based visualization/localization of 

therapeutic targets indicating which sites require treatment 

(diagnostic scan [90]) can help treatment outcome predic-

tion and monitoring, confirming that the sites have been 

treated (post-therapy scan [90]), as well as help determine 

the best treatment strategy. By its nature, a tumor is het-

erogeneous within a subject as well as between subjects, 

and there are thus many challenges in the execution of tar-

geted therapy in cancer [90]. In this context, a whole-body 

imaging-based approach may be beneficial; for example, a 

single tumor biopsy cannot capture all tumor heterogeneity 

without underestimating the genetic mutational burden, 

subsequently contributing to treatment failure or drug re-

sistance [88-90].

As the medical specialty of theranostics is well estab-

lished as a molecular imaging-based personalized (i.e., 

specific molecular-targeted) therapy and has been for 

three-quarters of a century [88], we must focus on this new 

area of NMP. Theranostics for thyroid by RAI has been per-

formed for differentiated thyroid cancer, contributing to 

modern tailored personalized management by providing a 

high therapeutic effect and by avoiding significant adverse 

effects [88,91,92]. SPECT/CT, which can provide the SUV 

by appropriate sensitivity calibration, can significantly im-

prove the precision and sensitivity of whole-body iodine 

scintigraphy and in turn contribute to improved precision 

medicine [90].

Recently, somatostatin receptor-based theranostics has 

been studied for neuroendocrine tumors (NETs), for ex-

ample, Lu-177 DOTATOC and DOTATATE-based treatment 

in conjunction with Ga-68-based diagnostic imaging [89]. 

In South Korea, several institutions have also established or 

practiced theranostics of NETs. In addition, Lu-177-based 

SPECT/CT imaging can be used for radiation dosimetry for 

assessing the therapeutic efficiency and unwanted radia-

tion exposure to critical organs (e.g., kidney/bladder/red 

marrow).

For metastatic prostate cancer, for example, we have 

prostate-specific membrane antigen (PSMA) diagnostic 

ligands, including Ga-68 PSMA series for PET imaging and 

therapeutic ligands, including Lu-177 J-591 and Lu-177-PS-

MA-617 [89].

2) NMP perspective: dosimetry for theranostics

Because theranostics other than RAI is at the beginning 

stage, its role in NMP is not yet clear. However, the afore-

mentioned internal dosimetry (e.g., Lu-177-based SPECT/

CT for Lu-177 DOTATOC or DOTATATE-based treatment) 

has become much more important than conventional diag-

nostic PET or SPECT imaging due to its direct association 

with therapeutics per the nature of theranostics. General 

dosimetry may require whole-body organ delineation and 

multiple serial whole-body PET scans [93]. However, this 

may be intractable as routine practice for theranostics due 

to the much longer half-life of the therapeutic radioisotope 
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(e.g. Lu-177) than of F-18. Recently, the single time imaging-

based dosimetry method [94] has reported low variability 

from more rigorous methods (i.e., multi-time-point-based 

exponential fitting for residence time calculation). 

Because internal dosimetry is closely related to the esti-

mation of external radiation, dosimetry may be the main 

NMP part in theranostics. Thanks to the development of 

related DL technique, we can also consider automatic de-

lineation of target lesions and critical organs. 

2. DL in NM precision medicine

1) Artificial intelligence, machine learning, and DL

Before discussing DL in NM, Artificial intelligence (AI)/

machine learning (ML)/DL must be explained. DL is a spe-

cific type of ML using a deep network (i.e., artificial neural 

network [ANN] with more than one hidden layer), and both 

are AI concepts [95]. For the history of ML, common algo-

rithms, and reasons for using machine learning, readers are 

referred to the systematic review by Uribe et al. [96], which 

emphasizes traditional ML techniques, including naïve 

Bayes classification, linear regression, support vector ma-

chine (SVM), random forest, principal component analysis, 

k-means/hierarchical clustering, and ANN. 

Although the principles of AI and ML have been pro-

posed much earlier (first described in 1956), their practi-

cal implementation was delayed by several decades. In 

particular, DL suffered from a larger delay because higher 

computing power and sophisticated training algorithms [97] 

were required for the significantly larger number of training 

parameters than for the traditional ML algorithm. 

In traditional medical image processing (as other bio-

medical research), only a specific algorithm provided by 

humans was used for learning features from medical im-

aging. Therefore, the performance was highly dependent 

on the domain knowledge and expertise of the user or 

programmer. In AI/ML, computers can learn features from 

observations (e.g., medical imaging data) based on a math-

ematical model and cost function by training unknown 

variables (e.g., weights in ANN and SVM), and further make 

statistical inferences from learning [96]. 

Unlike traditional ML, DL can learn features from data 

by training a deep ANN (in NM imaging, mostly based on a 

convolutional neural network [CNN]) without or with very 

little domain knowledge. Each layer of the CNN has mul-

tiple channels of convolution kernels that can learn specific 

filters that can extract hidden features from an image. As 

the layer becomes deeper, the extracted information is in-

tegrated into a higher level of the hierarchy (or larger scale) 

information. Thereby, deep learning can extract a large 

amount of useful information for classification, regression 

by convolution-based encoding, and image generation by 

further transposed convolution-based decoding (e.g., U-

NET).

For more information on AI/ML, readers are referred to 

the aforementioned reviews by Visvikis et al. [95] and Uribe 

et al. [96]. For more information on DL, readers are referred 

to reviews by Visvikis et al. [95] and Choi [98].

2) Rise of ML/DL algorithms

The amount of biomedical data (medical imaging and 

radiomics/radiogenomic-related data) is rapidly increasing, 

thus forming availability of big data, which is the key ingre-

dient for training ML and is particularly important for DL 

[98,99]. Advances in the theory of stochastic gradient (in an 

analogy of MLEM and OSEM) [97] made it possible to train 

ML with big data by faster convergence, which enabled us 

to train DL with a more complex structure more efficiently. 

Computing hardware development (including the central 

processing unit [CPU], graphics processing unit [GPU], and 

neural network Tensor Processing Unit [TPU] [35]) made it 

possible to train ML/DL epochs with big data, especially for 

sufficient epochs to converge the DL network.

3) ML/DL algorithms in medical imaging

Many systematic reviews [95-98] have indicated that re-

cent advances in DL have impacted various scientific fields 

and demonstrated successful results in many areas. In 

particular, there is growing research and clinical interest in 

automatic medical image analysis, including radiomics and 

radiogenomics [100-116] that may reveal additional infor-

mation that is not accessible even by experts [95]. 

4) ML/DL algorithms in NM imaging

As radiomics and radiogenomics have been the most rep-

resentative approach for imaging-based precision medicine 
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in recent decades, the main objective of this evolution (also 

known as Industry 4.0) may be to assign medical imaging a 

larger role [95] as follows. Medical imaging should produce 

more useful information from imaging studies for precision 

medicine. More importantly, NM imaging should move 

beyond diagnosis (as addressed in the section of Theranos-

tics) to be an essential integrative part covering all clinical 

decision-making systems (e.g., therapy planning/monitor-

ing/assessment, predictive modeling, and stratification). 

With sufficient understanding of the rationale of DL in NM, 

the author would like to discuss more specific applications 

as follows.

5) DL application in NM 1: classification

Classification is one of the oldest and most extensively re-

searched ML areas in NM (e.g., disease group classification 

or diagnosis/differential diagnosis, including automatic di-

agnosis of neurodegenerative diseases, such as Alzheimer’s 

disease [24,107,108] and Parkinson’s disease [109], and 

brain perfusion reserve decreases [110]). These methods 

can be easily extended for precision medicine, as the prom-

ising diagnostic accuracy (area-under-the-curve>0.9) may 

lead to automatic classification of the genotype and phe-

notype of tumors with higher accuracy than conventional 

methods, thus aiding decision-making for personalized 

medicine in an extended line of recent radiomics and radi-

ogenomics studies [100-106].

6) �DL application in NM 2: automatic segmentation and 

quantification

Precise and accurate automatic segmentation of lesion 

VOIs is a prerequisite not only for quantitative analysis, 

but also for precision medicine, as the accuracy of VOI can 

dominate the accuracy of subsequent quantification and 

decision-making. Indeed, many useful radiomics and radi-

ogenomics features are extracted from well-delineated VOIs 

[100-106]. 

Although manual delineation may be the gold standard 

for this task, it is labor-intensive to delineate many VOIs 

for research or routine quantification purposes. Moreover, 

differences between raters and their expertise may lead to 

high inter-rater variability. CNN-based DL is considered 

one of the best solutions for accuracy and inter-rater reli-

ability. Therefore, there have been a number of CNN-based 

segmentation studies for PET or CT segmentation for quan-

titative PET analysis [111-113], and CT segmentation for 

quantitative SPECT analysis [114]. Interestingly, U-NET has 

been extensively used in most studies as the generator for 

automatic segmentation. This may be due to the strength 

of U-NET in the automatic encoding of multi-scale features 

by combinations of convolution and strided-pooling layers, 

and in residual learning by skip connection between the 

encoding and decoding parts of the CNN. 

7) DL application in NM 3: image generation

Image generation is a unique area of DL in which tradi-

tional ML technology and/or radiomics/radiogenomics 

technology cannot compete. Although the ordinary struc-

ture of a CNN may be sufficient for generating a binary 

mask of VOI segmented, recent image generation tasks 

are more complex (e.g., increasing SNR of low-dose PET 

[115,116], increasing spatial resolution of PET [117], and 

generating an MR-like mask from amyloid PET [118]). In 

this situation, a generative adversarial network (GAN) [104] 

architecture is useful and has thus been used by many 

previous studies [115-118]. It should be noted that the con-

ditional GAN, which uses a realistic image as the input for 

CNN unlike the original (noise-based) GAN [97], is used for 

the purpose of medical image generation. Thereby, image 

generation can solve many of the aforementioned complex 

and seemingly impossible problems by conventional signal 

processing and ML on the basis of big data. 

Interestingly, DL-based image generation can also be 

used to help image reconstruction. There have been several 

studies using U-NET or autoencoder-based CNN for gener-

ating a CT AC map using a TOF-based MLAA map not only 

for brain PET [119], but also for whole-body PET [120]. In 

addition, Gong et al. [121] performed Dixon and UTE MR-

based AC map generation for PET/MR. 

Discussion and Perspectives

1. Limitations of this review for in vitro NM

In addition to NM imaging, in vitro NM (mostly based on 

radioligand binding assay or radioimmunoassay) is worthy 
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of consideration as another component of NM. Although 

there also are NMP-related parts, including the gamma 

counting-based system in in vitro NM, they are not ad-

dressed in this review for the sake of brevity. 

2. �Limitations of this review on tracer kinetic 

modeling

Tracer kinetic modeling (TKIN) is a promising technique 

for NMP and NM image processing that can provide quan-

titative kinetic model parameters and that has an enor-

mous number of subfields, including graphical analyses 

and tissue compartment models. In this context, the SUV is 

sometime called a semi-quantitative measure, even though 

it is quantitative measure of molecular imaging that other 

modalities cannot achieve.

Although they are quantitative by nature, NM images in 

most clinical publications and routine practice have been 

analyzed mostly visually or by the SUV [95], largely due to 

difficulties of performing TKIN in routine clinical practice. 

In this context, this important area of NMP is not discussed 

in the main text. 

However, routine TKIN may become a key part of NM/

NMP in the near future thanks to whole-body PET and PET/

MR, as noted by Cherry et al. [36] and Cabello and Ziegler 

[76]. Moreover, DL-based and/or PET/MR-based automatic 

delineation of VOI also has potential to facilitate subse-

quent TKIN (e.g., one for arterial input function extraction 

[76]).

3. �Convergence between multiple disciplines and 

multiple centers

As noted by Jones [13], to meet the goals of converging 

molecular imaging with molecular biology and molecular 

medicine, we must collaborate between multiple disci-

plines and between academia and industries. Moreover, 

randomized/controlled multicenter clinical trials are now 

requisite for the successful development of pharmaceutical 

and therapeutic methods for patient healthcare. 

As mentioned by Aide et al. [60], NM and NMP societ-

ies should focus on ensuring exchangeability or pooling of 

quantitative results in a multicenter setting for this purpose, 

which can also be beneficial to derive diagnostic criteria for 

routine PET/CT metrics. In this context, NM imaging stan-

dardization and harmonization is a crucial step for the Ko-

rean NMP society as well and will be discussed in the next 

section.

Theranostics and DL may be pivotal in current NM and 

NMP. In this context, multidiscipline convergence and 

multicenter clinical trials will facilitate theranostics and 

DL, both of which demand (well-labeled) big data. Now 

that many Korean studies have also been published in this 

area, the Korean NMP society should exert more effort in 

contributing to Korean NM/MP, precision medicine, and 

patient welfare.

4. Standardization, harmonization, and beyond 

As mentioned, EANM and EARL have established system-

atic reviews/guidelines/ systems for multicenter NM image 

standardization and harmonization. These developments 

have influenced oncological/neurological/cardiological 

diagnosis and disease staging, as well as therapy response 

monitoring and planning [60]. 

In addition, greater efforts by the NMP society for quality 

control/quality assurance (QC/QA) of NM imaging should 

be made. Indeed, most of the aforementioned standardiza-

tion and harmonization of NM imaging is inevitably related 

to QC/QA, including calibration and corrective action for 

QC errors. Moreover, many useful metrics for NM imaging 

harmonization are from routine QC/QA (e.g., NEMA/ACR 

phantom-based quarterly QC for recovery coefficient mea-

surements). 

In this context, Korean NMP society members should 

also benchmark themselves with the American College of 

Radiology (ACR) accreditation and EANM guidelines and 

EARL accreditation for FDG PET/CT tumor imaging, and 

should align with them and proceed to establish their own 

accreditation system. 

Based on the aforementioned guidelines, EANM/EARL 

launched a PET/CT QC program in 2010 aiming to harmo-

nize image quality and quantification across sites and cam-

eras [60]. Both the EARL program and ACR accreditation 

recommend using a specific set of QC experiments. EARL 

accreditation established the acceptance limits for SUV bias 
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and recovery coefficients based on the results of a feasibil-

ity study performed on PET/CT systems currently used in 

clinical practice. Similar PET scanner qualification is also 

performed as part of the ACR accreditation and in ACRIN 

PET scanner qualification. 

At present, many Korean institutions are accredited or 

qualified by these systems; for example, one Korean insti-

tution (Asan Medical Center) is continually accredited by 

both ACR PET accreditation and ACR NM accreditation, 

and several institutions are continually qualified for their 

PET scanner by ACRIN PET qualification. In addition, many 

Korean studies on standardized/harmonized NM imag-

ing data have also been published in this important area. 

Therefore, it is time for the Korean NMP society to establish 

the perspective for the PET/NM center accreditation and 

PET/SPECT scanner qualification.

Concluding Remarks

In this paper, the author provided a brief and comprehen-

sive review of advanced technologies of NMP. The advances 

are in various areas of NMP, including image acquisition/

reconstruction, detector material/devices, hybrid/advanced 

imaging, precision medicine, and DL, and have led to high-

quality digital imaging of invaluable in vivo whole-body 

molecular information for NM and NMP. Owing to these 

strengths and currents trends of convergence/consilience 

with other imaging modalities and disciplines, the author 

believes that NMP can contribute to enhanced image qual-

ity and decreased radiation exposure, and consequently, 

quantitative and personalized healthcare.

Acknowledgements

It is a great honor for the author to have this opportunity 

to write a nuclear medicine physics review article for the 

30th Anniversary Series in PMP. The publication of this 

article was supported by PMP and the Korean Society of 

Medical Physics (KSMP).

Conflicts of Interest

The authors have nothing to disclose.

Availability of Data and Materials

All relevant data are within the paper and its Supporting 

Information files.

References

1.	 Cherry SR, Phelps ME, Sorenson JA. Physics in nuclear 

medicine. 4th ed. Philadelphia: Saunders/Elsevier; 2012.

2.	 Anderson CJ, Ling X, Schlyer DJ, Cutler CS. A short history 

of nuclear medicine. Radiopharmaceutical chemistry. 

Cham: Springer; 2019:11-26.

3.	 Wagner HN Jr. A brief history of positron emission tomog-

raphy (PET). Semin Nucl Med. 1998;28:213-220.

4.	 L’Annunziata MF. Radioactivity: introduction and history. 

Amsterdam: Elsevier; 2007.

5.	 Hertz S, Roberts A. Radioactive iodine in the study of thy-

roid physiology; the use of radioactive iodine therapy in 

hyperthyroidism. J Am Med Assoc. 1946;131:81-86.

6.	 McCready VR. Milestones in nuclear medicine. Eur J Nucl 

Med. 2000;27(1 Suppl):S49-S79.

7.	 Ansell G, Rotblat J. Radioactive iodine as a diagnostic aid 

for intrathoracic goitre. Br J Radiol. 1948;21:552-558.

8.	 Cassen B, Curtis L, Reed CW. A sensitive directional gam-

ma-ray detector. Oak Ridge, USA: United States Atomic 

Energy Commission. 1950; UCLA-49. 78-81 p. 

9.	 Mallard J, Trott NG. Some aspects of the history of nuclear 

medicine in the United Kingdom. Semin Nucl Med. 1979; 

9:203-217.

10.	 Mallard JR. Hevesy memorial medal lecture 1985. Some 

call it laziness: I call it deep thought (with apologies to 

Garfield). Nucl Med Commun. 1987;8:691-710.

11.	 Kuhl DE, Edwards RQ. Reorganizing data from transverse 

section scans of the brain using digital processing. Radi-

ology. 1968;91:975-983.

12.	 Nellemann P, Hines H, Braymer W, Muehllehner G, Gea-

gan M. Performance characteristics of a dual head SPECT 

scanner with PET capability. IEEE Trans Nucl Sci. 1995;3: 

1751-1755.

13.	 Jones T. The imaging science of positron emission tomog-

raphy. Eur J Nucl Med. 1996;23:807-813.

14.	 Moses WW. Fundamental limits of spatial resolution in 

PET. Nucl Instrum Methods Phys Res A. 2011;648 Supple-



 Jungsu S. Oh：Nuclear Medicine Physics: Review of Advanced Technology94

www.ksmp.or.kr

ment 1:S236-S240.

15.	 Townsend DW. Combined positron emission tomogra-

phy-computed tomography: the historical perspective. 

Semin Ultrasound CT MR. 2008;29:232-235.

16.	 Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, 

Karp JS. Performance of Philips Gemini TF PET/CT scan-

ner with special consideration for its time-of-flight imag-

ing capabilities. J Nucl Med. 2007;48:471-480.

17.	 Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. 

Benefit of time-of-flight in PET: experimental and clinical 

results. J Nucl Med. 2008;49:462-470.

18.	 Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, 

Townsend DW. Physical and clinical performance of the 

mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011; 

56:2375-2389.

19.	 Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli 

L, Gilardi MC. Physical performance of the new hybrid 

PET∕CT Discovery-690. Med Phys. 2011;38:5394-5411.

20.	 Lecoq P. Pushing the limits in time-of-flight PET imaging. 

IEEE Trans Radiat Plasma Med Sci. 2017;1:473-485.

21.	 Berg E, Cherry SR. Innovations in instrumentation for 

positron emission tomography. Semin Nucl Med. 2018;48: 

311-331.

22.	 van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boel-

laard R, van Dalen JA, et al. Quantification, improvement, 

and harmonization of small lesion detection with state-of-

the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1): 

4-16.

23.	 Son HJ, Oh JS, Roh JH, Seo SW, Oh M, Lee SJ, et al. Differ-

ences in gray and white matter 18F-THK5351 uptake be-

tween behavioral-variant frontotemporal dementia and 

other dementias. Eur J Nucl Med Mol Imaging. 2019;46: 

357-366.

24.	 Son HJ, Oh JS, Oh M, Kim SJ, Lee JH, Roh JH, et al. The 

clinical feasibility of deep learning-based classification 

of amyloid PET images in visually equivocal cases. Eur J 

Nucl Med Mol Imaging. 2020;47:332-341.

25.	 Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST 

to PERCIST: evolving considerations for PET response cri-

teria in solid tumors. J Nucl Med. 2009;50 Suppl 1(Suppl 1): 

122S-150S.

26.	 Strother SC, Casey ME, Hoffman EJ. Measuring PET scan-

ner sensitivity: relating countrates to image signal-to-

noise ratios using noise equivalents counts. IEEE Trans 

Nucl Sci. 1990;37:783-788.

27.	 Campagnolo RE, Garderet P, Vacher J. Tomographie par 

emetteurs positrons avec mesure de temps de vol. Col-

loque national sur le traitement du signal. Nice: Rennes 

Cedex; 1979.

28.	 Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp 

JS. Recent developments in time-of-flight PET. EJNMMI 

Phys. 2016;3:3.

29.	 Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, 

Snyder DL. Photon time-of-flight-assisted positron emis-

sion tomography. J Comput Assist Tomogr. 1981;5:227-239.

30.	 Laval M, Gariod R, Allemand R, Cormorèche E, Moszyn-

ski M. The “LETI” positron tomograph architecture and 

time-of-flight improvements. Paper presented at: Work-

shop on Time of Flight Tomography; 1982 May 17-19; St 

Louis, USA.

31.	 Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental 

assessment of the gain achieved by the utilization of time-

of-flight information in a positron emission tomograph 

(Super PETT I). IEEE Trans Med Imaging. 1982;1:187-192.

32.	 Budinger TF. Time-of-flight positron emission tomogra-

phy: status relative to conventional PET. J Nucl Med. 1983; 

24:73-78.

33.	 Wong WH. PET camera performance design evaluation 

for BGO and BaF2 scintillators (non-time-of-flight). J Nucl 

Med. 1988;29:338-347.

34.	 Mallon A, Grangeat P. Three-dimensional PET recon-

struction with time-of-f light measurement. Phys Med 

Biol. 1992;37:717-729.

35.	 Patterson D. 50 years of computer architecture: from the 

mainframe CPU to the domain-specific tpu and the open 

RISC-V instruction set. Paper presented at: 2018 IEEE 

International Solid - State Circuits Conference - (ISSCC); 

2018 Feb 11-15; San Francisco, USA.

36.	 Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. 

Total-body PET: maximizing sensitivity to create new op-

portunities for clinical research and patient care. J Nucl 

Med. 2018;59:3-12.

37.	 Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First 

human imaging studies with the EXPLORER total-body 

PET scanner. J Nucl Med. 2019;60:299-303.

38.	 Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET 



Progress in Medical Physics   Vol. 31, No. 3, September 2020 95

www.ksmp.or.kr

reconstruction with system matrix derived from point 

source measurements. IEEE Trans Med Imaging. 2006;25: 

907-921.

39.	 Takamochi K, Yoshida J, Murakami K, Niho S, Ishii G, 

Nishimura M, et al. Pitfalls in lymph node staging with 

positron emission tomography in non-small cell lung 

cancer patients. Lung Cancer. 2005;47:235-242.

40.	 Bellevre D, Blanc Fournier C, Switsers O, Dugué AE, Levy 

C, Allouache D, et al. Staging the axilla in breast cancer 

patients with 18F-FDG PET: how small are the metastases 

that we can detect with new generation clinical PET sys-

tems? Eur J Nucl Med Mol Imaging. 2014;41:1103-1112.

41.	 Kuhnert G, Boellaard R, Sterzer S, Kahraman D, Scheffler 

M, Wolf J, et al. Impact of PET/CT image reconstruction 

methods and liver uptake normalization strategies on 

quantitative image analysis. Eur J Nucl Med Mol Imaging. 

2016;43:249-258.

42.	 Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton 

BF. A review of partial volume correction techniques for 

emission tomography and their applications in neurology, 

cardiology and oncology. Phys Med Biol. 2012;57:R119-

R159.

43.	 Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume 

correction strategies in PET. PET Clin. 2007;2:235-249.

44.	 Hoffman EJ, Huang SC, Phelps ME. Quantitation in posi-

tron emission computed tomography: 1. Effect of object 

size. J Comput Assist Tomogr. 1979;3:299-308.

45.	 Rousset O, Ma Y, Kamber M, Evans AC. 3D simulations of 

radiotracer uptake in deep nuclei of human brain. Com-

put Med Imaging Graph. 1993;17:373-379.

46.	 Rousset OG, Ma Y, Evans AC. Correction for partial vol-

ume effects in PET: principle and validation. J Nucl Med. 

1998;39:904-911.

47.	 Schafer RW, Mersereau RM, Richards MA. Constrained 

iterative restoration algorithms. Proc IEEE. 1981;69:432-

450.

48.	 Carasso A. Linear and nonlinear image deblurring: a doc-

umented study. SIAM J Numer Anal. 1999;36:1659-1689.

49.	 Rudin L, Osher S, Fatemi E. Nonlinear total variation 

based noise removal algorithms. Phys D. 1992;60:259-268.

50.	 Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, 

Shukla H, et al. Partial-volume correction in PET: valida-

tion of an iterative postreconstruction method with phan-

tom and patient data. J Nucl Med. 2007;48:802-810.

51.	 Green PJ. Bayesian reconstructions from emission tomog-

raphy data using a modified EM algorithm. IEEE Trans 

Med Imaging. 1990;9:84-93.

52.	 Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vanden-

berghe R, Ourselin S, et al. The importance of appropriate 

partial volume correction for PET quantification in Al-

zheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38: 

1104-1119.

53.	 Cysouw MCF, Kramer GM, Schoonmade LJ, Boellaard R, 

de Vet HCW, Hoekstra OS. Impact of partial-volume cor-

rection in oncological PET studies: a systematic review 

and meta-analysis. Eur J Nucl Med Mol Imaging. 2017;44: 

2105-2116.

54.	 Erlandsson K, Hutton BF. Partial volume correction in 

SPECT using anatomical information and iterative FBP. 

Tsinghua Sci Technol. 2010;15:50-55.

55.	 Boening G, Pretorius PH, King MA. Study of relative 

quantification of Tc-99m with partial volume effect and 

spillover correction for SPECT oncology imaging. IEEE 

Trans Nucl Sci. 2006;53:1205-1212.

56.	 Lambrou T, Groves AM, Erlandsson K, Screaton N, Endo-

zo R, Win T, et al. The importance of correction for tissue 

fraction effects in lung PET: preliminary findings. Eur J 

Nucl Med Mol Imaging. 2011;38:2238-2246.

57.	 Boellaard R. Standards for PET image acquisition and 

quantitative data analysis. J Nucl Med. 2009;50 Suppl 1: 

11S-20S.

58.	 Boellaard R. Methodological aspects of multicenter stud-

ies with quantitative PET. Methods Mol Biol. 2011;727:335-

349.

59.	 Boellaard R. Mutatis mutandis: harmonize the standard! J 

Nucl Med. 2012;53:1-3.

60.	 Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boel-

laard R. EANM/EARL harmonization strategies in PET 

quantification: from daily practice to multicentre onco-

logical studies. Eur J Nucl Med Mol Imaging. 2017;44(Sup-

pl 1):17-31.

61.	 Ferretti A, Chondrogiannis S, Rampin L, Bellan E, Mar-

zola MC, Grassetto G, et al. How to harmonize SUVs ob-

tained by hybrid PET/CT scanners with and without point 

spread function correction. Phys Med Biol. 2018;63:235010.

62.	 Joshi A, Koeppe RA, Fessler JA. Reducing between scan-



 Jungsu S. Oh：Nuclear Medicine Physics: Review of Advanced Technology96

www.ksmp.or.kr

ner differences in multi-center PET studies. Neuroimage. 

2009;46:154-159.

63.	 Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. 

Intratumor textural heterogeneity on pretreatment (18)

F-FDG pET images predicts response and survival after 

chemoradiotherapy for hypopharyngeal cancer. Ann Surg 

Oncol. 2015;22:2746-2754.

64.	 Kim JW, Oh JS, Roh JL, Kim JS, Choi SH, Nam SY, et al. 

Prognostic significance of standardized uptake value and 

metabolic tumour volume on 18F-FDG PET/CT in oropha-

ryngeal squamous cell carcinoma. Eur J Nucl Med Mol 

Imaging. 2015;42:1353-1361.

65.	 Ha SC, Oh JS, Roh JL, Moon H, Kim JS, Cho KJ, et al. Pre-

treatment tumor SUVmax predicts disease-specific and 

overall survival in patients with head and neck soft tissue 

sarcoma. Eur J Nucl Med Mol Imaging. 2017;44:33-40.

66.	 Lim WS, Oh JS, Roh JL, Kim JS, Kim SJ, Choi SH, et al. 

Prediction of distant metastasis and survival in adenoid 

cystic carcinoma using quantitative 18F-FDG PET/CT 

measurements. Oral Oncol. 2018;77:98-104.

67.	 Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, 

Chatziioannou A, et al. MicroPET: a high resolution PET 

scanner for imaging small animals. IEEE Trans Nucl Sci. 

1997;44:1161-1166.

68.	 Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Er-

iksson L, et al. The ECAT HRRT: performance and first 

clinical application of the new high resolution research 

tomograph. IEEE Trans Nucl Sci. 2002;49:104-110.

69.	 Schmand M, Eriksson L, Casey ME, Andreaco MS, 

Melcher C, Wienhard K, et al. Performance results of a 

new DOI detector block for a high resolution PET-LSO 

research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45: 

3000-3006.

70.	 Spinks TJ, Bloomfield PM. A comparison of count rate 

performance for 15O-water blood flow studies in the CTI 

HR+ and accel tomographs in 3D mode. Paper presented 

at: 2002 IEEE Nuclear Science Symposium Conference 

Record; 2002 Nov 10-16; Norfolk, USA.

71.	 Muehllrhner G, Karp JS, Surti S. Design considerations for 

PET scanners. Q J Nucl Med. 2002;46:16-23.

72.	 Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1998; 

28:268-275.

73.	 Moses WW, Derenzo SE. Prospects for time-of-flight PET 

using LSO scintillator. IEEE Trans Nucl Sci. 1999;46:474-

478.

74.	 Han S, Kim YH, Ahn JM, Kang SJ, Oh JS, Shin E, et al. 

Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin 

single photon emission computed tomography for quan-

tification of myocardial perfusion reserve in patients with 

stable coronary artery disease. Eur J Nucl Med Mol Imag-

ing. 2018;45:2173-2180.

75.	 Boellaard R, Quick HH. Current image acquisition op-

tions in PET/MR. Semin Nucl Med. 2015;45:192-200.

76.	 Cabello J, Ziegler SI. Advances in PET/MR instrumen-

tation and image reconstruction. Br J Radiol. 2018;91: 

20160363.

77.	 Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards 

quantitative PET/MRI: a review of MR-based attenuation 

correction techniques. Eur J Nucl Med Mol Imaging. 2009; 

36 Suppl 1:S93-S104.

78.	 Mehranian A, Zaidi H. Emission-based estimation of 

lung attenuation coefficients for attenuation correction in 

time-of-flight PET/MR. Phys Med Biol. 2015;60:4813-4833.

79.	 Benoit D, Ladefoged CN, Rezaei A, Keller SH, Andersen FL, 

Højgaard L, et al. Optimized MLAA for quantitative non-

TOF PET/MR of the brain. Phys Med Biol. 2016;61:8854-

8874.

80.	 Cheng JC, Salomon A, Yaqub M, Boellaard R. Investiga-

tion of practical initial attenuation image estimates in 

TOF-MLAA reconstruction for PET/MR. Med Phys. 2016; 

43:4163.

81.	 Samarin A, Burger C, Wollenweber SD, Crook DW, Burger 

IA, Schmid DT, et al. PET/MR imaging of bone lesions-

-implications for PET quantification from imperfect at-

tenuation correction. Eur J Nucl Med Mol Imaging. 2012; 

39:1154-1160.

82.	 Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, 

Beyer T, et al. MRI-based attenuation correction for whole-

body PET/MRI: quantitative evaluation of segmentation- 

and atlas-based methods. J Nucl Med. 2011;52:1392-1399.

83.	 Frach T, Prescher G, Degenhardt C, de Gruyter R, Schmitz 

A, Ballizany R. The digital silicon photomultiplier- prin-

ciple of operation and intrinsic detector performance. 

Paper presented at: 2009 IEEE Nuclear Science Sympo-

sium Conference Record (NSS/MIC); 2009 Oct 24-Nov 1; 

Orlando, USA.



Progress in Medical Physics   Vol. 31, No. 3, September 2020 97

www.ksmp.or.kr

84.	 Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter 

R, Schmitz A, et al. The digital silicon photomultiplier- a 

novel sensor for the detection of scintillation light. Paper 

presented at: 2009 IEEE Nuclear Science Symposium Con-

ference Record (NSS/MIC); 2009 Oct 24-Nov 1; Orlando, 

USA.

85.	 Degenhardt C, Rodrigues P, Trindade A, Zwaans B, Mül-

hens O, Dorscheid R, et al. Performance evaluation of a 

prototype Positron Emission Tomography scanner using 

Digital Photon Counters (DPC). Paper presented at: 2012 

IEEE Nuclear Science Symposium and Medical Imaging 

Conference Record (NSS/MIC); 2012 Oct 27-Nov 3; Ana-

heim, USA.

86.	 Zhang J, Binzel K, Bardos P, Nagar V, Knopp M, Zhang B, 

et al. FDG dose reduction potential of a next generation 

digital detector PET/CT system: initial clinical demon-

stration in wholebody imaging. J Nucl Med. 2015;56 (Suppl 

3):1823.

87.	 Narayanan M, Andreyev A, Bai C, Miller M, Hu Z. TOF-

benefits on the philips digital PET/CT scanner: evaluation 

of faster convergence and reduced scan times. J Nucl Med. 

2016;57(Suppl 2):201.

88.	 Ahn BC. Personalized medicine based on theranostic 

radioiodine molecular imaging for differentiated thyroid 

cancer. Biomed Res Int. 2016;2016:1680464.

89.	 Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schön-

berger S, Gonzalez-Carmona M, et al. Theranostics in nu-

clear medicine practice. Onco Targets Ther. 2017;10:4821-

4828.

90.	 Choudhury P, Gupta M. Personalized & precision medi-

cine in cancer: a theranostic approach. Curr Radiopharm. 

2017;10:166-170.

91.	 Koh JM, Kim ES, Ryu JS, Hong SJ, Kim WB, Shong YK. 

Effects of therapeutic doses of 131I in thyroid papillary 

carcinoma patients with elevated thyroglobulin level and 

negative 131I whole-body scan: comparative study. Clin 

Endocrinol (Oxf). 2003;58:421-427.

92.	 Jun S, Lee JJ, Park SH, Kim TY, Kim WB, Shong YK, et al. 

Prediction of treatment response to 131I therapy by dif-

fuse hepatic uptake intensity on post-therapy whole-body 

scan in patients with distant metastases of differentiated 

thyroid cancer. Ann Nucl Med. 2015;29:603-612.

93.	 Lee N, Oh I, Chae SY, Jin S, Oh SJ, Lee SJ, et al. Radiation 

dosimetry of [18F]GP1 for imaging activated glycoprotein 

IIb/IIIa receptors with positron emission tomography in 

patients with acute thromboembolism. Nucl Med Biol. 

2019;72-73:45-48.

94.	 Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey 

DL. Feasibility and accuracy of single time point imaging 

for renal dosimetry following 177Lu-DOTATATE (‘Lutate’) 

therapy. EJNMMI Phys. 2018;5:33.

95.	 Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. Artificial 

intelligence, machine (deep) learning and radio(geno)

mics: definitions and nuclear medicine imaging applica-

tions. Eur J Nucl Med Mol Imaging. 2019;46:2630-2637.

96.	 Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-

Neto P, Bénard F, et al. Machine learning in nuclear medi-

cine: part 1-introduction. J Nucl Med. 2019;60:451-458.

97.	 Goodfellow I, Bengio Y, Courville A. Deep learning. Cam-

bridge: MIT Press; 2016.

98.	 Choi H. Deep learning in nuclear medicine and molecular 

imaging: current perspectives and future directions. Nucl 

Med Mol Imaging. 2018;52:109-118.

99.	 Weber GM, Mandl KD, Kohane IS. Finding the missing 

link for big biomedical data. JAMA. 2014;311:2479-2480.

100.	 Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook 

GJ. Quantifying tumour heterogeneity in 18F-FDG PET/

CT imaging by texture analysis. Eur J Nucl Med Mol Im-

aging. 2013;40:133-140.

101.	 Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et 

al. Are pretreatment 18F-FDG PET tumor textural features 

in non-small cell lung cancer associated with response 

and survival after chemoradiotherapy? J Nucl Med. 2013; 

54:19-26.

102.	 Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, 

Miles KA. Non-small cell lung cancer: histopathologic 

correlates for texture parameters at CT. Radiology. 2013; 

266:326-336.

103.	 Ha S, Choi H, Cheon GJ, Kang KW, Chung JK, Kim EE, et 

al. Autoclustering of non-small cell lung carcinoma sub-

types on (18)F-FDG PET using texture analysis: a prelimi-

nary result. Nucl Med Mol Imaging. 2014;48:278-286.

104.	 Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. Differen-

tiating the grades of thymic epithelial tumor malignancy 

using textural features of intratumoral heterogeneity via 

(18)F-FDG PET/CT. Ann Nucl Med. 2016;30:309-319.



 Jungsu S. Oh：Nuclear Medicine Physics: Review of Advanced Technology98

www.ksmp.or.kr

105.	 Aerts H. Radiomics: there is more than meets the eye in med-

ical imaging. Proc SPIE. 2016:9785:2016SPIE.9785E..0OA.

106.	 Hatt M, Tixier F, Visvikis D, Cheze Le Rest C. Radiomics 

in PET/CT: more than meets the eye? J Nucl Med. 2017;58: 

365-366.

107.	 Choi H, Jin KH; Alzheimer’s disease neuroimaging initia-

tive. Predicting cognitive decline with deep learning of 

brain metabolism and amyloid imaging. Behav Brain Res. 

2018;344:103-109.

108.	 Choi H, Kim YK, Yoon EJ, Lee JY, Lee DS; Alzheimer’s 

Disease Neuroimaging Initiative. Cognitive signature of 

brain FDG PET based on deep learning: domain transfer 

from Alzheimer’s disease to Parkinson’s disease. Eur J 

Nucl Med Mol Imaging. 2020;47:403-412. 

109.	 Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis 

of Parkinson’s disease with deep learning-based inter-

pretation of dopamine transporter imaging. Neuroimage 

Clin. 2017;16:586-594.

110.	 Ryoo HG, Choi H, Lee DS. Deep learning-based inter-

pretation of basal/acetazolamide brain perfusion SPECT 

leveraging unstructured reading reports. Eur J Nucl Med 

Mol Imaging. 2020;47:2186-2196.

111.	 Huang B, Chen Z, Wu PM, Ye Y, Feng ST, Wong CO, et al. 

Fully automated delineation of gross tumor volume for 

head and neck cancer on PET-CT using deep learning: 

a dual-center study. Contrast Media Mol Imaging. 2018; 

2018:8923028.

112.	 Chen L, Shen C, Zhou Z, Maquilan G, Albuquerque K, 

Folkert MR, et al. Automatic PET cervical tumor segmen-

tation by combining deep learning and anatomic prior. 

Phys Med Biol. 2019;64:085019.

113.	 Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulén J, 

Poulsen MH, et al. Deep learning for segmentation of 49 

selected bones in CT scans: first step in automated PET/

CT-based 3D quantification of skeletal metastases. Eur J 

Radiol. 2019;113:89-95.

114.	 Park J, Bae S, Seo S, Park S, Bang JI, Han JH, et al. Mea-

surement of glomerular filtration rate using quantitative 

SPECT/CT and deep-learning-based kidney segmenta-

tion. Sci Rep. 2019;9:4223.

115.	 Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D 

conditional generative adversarial networks for high-

quality PET image estimation at low dose. Neuroimage. 

2018;174:550-562.

116.	 Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-

low-dose PET reconstruction using generative adversarial 

network with feature matching and task-specific percep-

tual loss. Med Phys. 2019;46:3555-3564.

117.	 Song TA, Chowdhury SR, Yang F, Dutta J. PET image 

super-resolution using generative adversarial networks. 

Neural Netw. 2020;125:83-91.

118.	 Choi H, Lee DS; Alzheimer’s Disease Neuroimaging Ini-

tiative. Generation of structural MR images from amyloid 

PET: application to MR-less quantification. J Nucl Med. 

2018;59:1111-1117.

119.	 Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. 

Improving the accuracy of simultaneously reconstructed 

activity and attenuation maps using deep learning. J Nucl 

Med. 2018;59:1624-1629. 

120.	 Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. 

Generation of PET attenuation map for whole-body time-

of-flight 18F-FDG PET/MRI using a deep neural network 

trained with simultaneously reconstructed activity and 

attenuation maps. J Nucl Med. 2019;60:1183-1189.

121.	 Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q. Attenua-

tion correction for brain PET imaging using deep neural 

network based on Dixon and ZTE MR images. Phys Med 

Biol. 2018;63:125011.




