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History of Magnetic Resonance Imaging

1. International contributions

The first nuclear magnetic resonance (NMR) signals from 

a living animal were acquired from an anesthetized rat 

in 1968 [1]. The capability of NMR to differentiate tumors 

from normal tissue was reported by Damadian in 1971 

[2]. Magnetic resonance imaging (MRI) was developed by 

Lauterbur [3] based on the encoding spatial information of 

NMR signals with magnetic field gradients. The first cross-

sectional image of a living mouse was published in 1974 by 

Lauterbur [4]. The echo-planar imaging (EPI) technique 

was developed by Mansfield [5]. The first MRI body scan 

of a human being was performed by Damadian in 1977 

[6]. For their efforts, Paul C. Lauterbur and Peter Mansfield 

were awarded the Nobel Prize in Physiology and Medicine 

in 2003 in justification of the fundamental importance and 

applicability of MRI in medicine. The k-space was patented 

by Richard S. Likes in U.S.A (#U.S. Patent 4,307,343). The 

first clinical MRI system was installed in the early 1980s. 

The first whole-body MRI scanner was developed in Korea 

in 1982 and was commercialized in 1984 by Goldstar (Seoul, 

Korea). At same time, another whole-body MRI system was 

built at the University of Aberdeen and was used at St. Bar-

tholomew’s Hospital (London, UK) in 1983. Superconduct-

ing MRI was developed and it was clinically used in 1985 to 

1988 at Siemens (Erlangen, Germany), General Electric (GE, 

Boston, MA, USA), and Goldstar. Fig. 1 shows the timeline 

of MRI developments and a summary of the major contri-

butions achieved internationally and domestically.
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2. Domestic contributions

The first MRI system was developed by the Korean Ad-

vanced Institute of Science and Technology (Daejeon, 

Korea), and was installed in Shin Hwa Hospital (Shin Hwa 

Nursing Hospital, Seoul, Korea) in 1984. This MRI scanner 

used a 0.2 T permanent magnet. Therefore, its use for clini-

cal studies was limited considerably at that time. The first 

commercial MRI (Spectro-20000; Goldstar) was installed 

in Seoul University Hospital (Seoul, Korea) in 1987. This 

MRI system was a 2.0 Tesla superconductivity magnet. Dur-

ing this period, GE, and Siemens also developed the 1.5 T 

superconductive MRI systems. In 1990, the first animal 4.7 

T MRI system (Biospec, Bruker, Switzerland) was installed 

in Seoul’s Asan Joong Ang Hospital (Asan Medical Center, 

Seoul, Korea). Among the many incremental developments 

in MRI in Korea, one of the notable progresses made dur-

ing the early 21st century was the development of ultrahigh 

field (UHF) 7.0 T MRI and its applications [7-11]. Another 

notable worldwide research activity was the development 

of the hybrid positron emission tomography–MRI (PET–

MRI) system. Since the introduction of the UHF (7.0 T) MRI 

system in Korea, an effort was initiated for the construction 

of a hybrid system with 7.0 T MRI and PET that led to the 

development of one of the world’s most advanced PET–MRI 

systems in 2007. With these developments, a number of 

neurotransmitter studies was initiated to study the seroto-

nergic distribution in the brainstem in vivo [7,8]. Another 

new and interesting development with UHF 7.0 T MRI was 

the super-resolution tractography initiative with resolution 

down to 200 µm [12].

3. Development of basic imaging contrast

In 1950, spin echoes and free induction decay were de-

tected by Hahn [13,14]. Therefore, the spin echo (SE) is 

commonly referred to as Hahn’s echo. MR angiography was 

developed by Charles L. Dumoulin and Howard R. Hart at 

the General Electric in 1986 (“Blood-flow checker”. Popular 

Science: 12. 1987). The fluid attenuation inversion recovery 

(FLAIR) pulse sequence that yields high-signal regions in 

normal white matter, was demonstrated by Hajnal et al. in 

1992 [15]. Blood Oxygen Level Dependent signal was recog-

nized by Ogawa [16] at AT&T Bell labs in 1990. Susceptibili-

ty-weighted imaging (SWI) was developed by Reichenbach 

et al. [17] at Washington University in 1997.

Fig. 2 shows patient cases that demonstrate the use of im-

aging contrast agents acquired from a 83-year-old female, 

71-year-old male, and from a 26-year-old male with a 3 T 

MRI system.

Fig. 1. Timeline of MRI developments and summary of the major contributions. MRI, magnetic resonance imaging; M, magnetic; R, 
resonance; I, imaging; F, functional; NMR, nuclear magnetic resonance; BOLD, blood oxygen level-dependent; NIH, National Institutes of 
Health; PET, positron emission tomography; MRI–LINAC, MRI-guided linear accelerators.
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Fast Imaging Techniques

Speed is always important to clinical practice. Fast MRI 

techniques were introduced and were based on the use of 

multiple refocusing pulses, commonly referred to as turbo 

spin-echo (TSE) imaging or turbo gradient-echo imaging. 

Fig. 2. Patient cases to show imaging contrasts acquired from (a) 83-year-old female, (b) 71-year-old male, and (c) 26-year-old male using a 
3 T MRI system. F, female; M, male; T1W, T1-weighted; T2W, T2-weighted; FLAIR, fluid attenuated inversion recovery; GRE, gradient-echo; 
TOF, time of flight; CE MRA, contrast-enhanced magnetic resonance angiography; DWI b0, diffusion-weighted image with b=0 s/mm2; 
DWI b1000, diffusion-weighted image with b=1000 s/mm2; ADC, apparent diffusion coefficient; CE T1W, contrast-enhanced T1-weighted; 
APT, amide proton transfer; DSC rCBV, dynamic susceptibility contrast relative cerebral blood volume; DSC rCBF, dynamic susceptibility 
contrast relative cerebral blood flow; DSC MTT, dynamic susceptibility contrast mean transit time; SVS, single voxel spectroscopy; DTI 
b1000, diffusion tensor imaging with b=1000 s/mm2; DTI FA, diffusion tensor imaging fractional anisotropy; fMRI, functional MRI.
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Rapid Acquisition with Refocused Echoes (RARE) tech-

nique was commercially implemented after Hennig [18] 

described it in 1986. In this sequence, the echo train length 

(ETL), also known as the turbo factor, denotes the number 

of echoes acquired at a given repetition time (TR). Spiral 

sequences were introduced in 1986 by Ahn et al. [19].

1. Technical developments

Several pulse sequences for fast imaging were developed, 

such as TSE or turbo field echo, half-Fourier, single-shot 

turbo spin echo (HASTE), gradient and spin echo (GRASE), 

balanced steady-state free-precession (bSSFP), EPI, and 

spiral [20]. First, the principle of operation of TSE or RARE 

sequences was based on the filling of many k-space lines 

after every radiofrequency (RF) excitation that reduced the 

MR scan time by reducing the number of RF excitations 

required for each image [21]. Second, HASTE was a single-

shot version of the TSE technique [22] wherein slightly more 

than half the total number of required phase encoding lines 

of the k-space were acquired after a single RF excitation. 

Third, turbo gradient spin echo or GRASE, is a turbo SE se-

quence with additional phase encoding gradient echoes be-

tween successive 180° refocusing pulses [23]. Fourth, bSSFP 

is a gradient-echo sequence that accomplishes fast acquisi-

tions by eliminating idle times [24]. In the most common 

case, the data are mapped line-by-line from the top to bot-

tom parts of k-space in a lexicographic manner, commonly 

referred to as Cartesian sampling. Fifth, EPI allows the col-

lection of all the data required to reconstruct an image after 

a single RF excitation [25] and spiral imaging acquires data 

using two oscillating gradients that create a spiral trajectory 

in k-space [19]. The single-shot approach of EPI or spiral is 

the fastest with a subsecond acquisition time. Therefore, 

these techniques are usually used in functional MRI (fMRI). 

Furthermore, radial trajectories have also been introduced 

[26].

Several reconstruction methods were also developed to 

achieve higher signal-to-noise ratios (SNR) and reduced 

scan times. Parallel imaging techniques in conjunction with 

the use of phased array coils have been developed to reduce 

scan times by acquiring a reduced amount of k-space data 

with an array of receiver coils. These techniques include 

the simultaneous acquisition of spatial harmonics (SMASH) 

[27], sensitivity encoding (SENSE) [28], and generalized 

auto-calibrating partially parallel acquisitions (GRAPPA) 

[29]. SENSE is based on reconstruction in the imaging do-

main, but GRAPPA is based on k-space domain reconstruc-

tion. These parallel imaging techniques are being further 

developed nowadays [30]. Recently, multiband excitation 

imaging and finger printing imaging techniques have been 

developed to reduce the scan times even further.

The simultaneous multislice (SMS) pulse sequence [31] 

applies a multiband composite RF pulse with a slice-selec-

tive gradient to simultaneously excite multiple slice planes 

[32]. The multiband technique is simultaneous image re-

focused (SIR) EPI or simultaneous echo refocused (SER) 

EPI that does not use parallel imaging and coil sensitivity 

for image separation [33]. Another recently developed fast 

imaging technique is magnetic resonance fingerprinting 

(MRF) [34]. This technique allows simultaneous and ef-

ficient measurements of multiple tissue properties with 

one acquisition [35]. In MRF, the acquisition parameters, 

such as the RF excitation angle, phase, repetition time, 

and k-space sampling trajectory, are varied throughout the 

acquisition. When implemented properly, this acquisition 

could generate a unique signal time course for each tissue. 

For every MRF sequence, the dictionary of signal evolutions 

can be generated on a computer using mathematical algo-

rithms to predict spin behavior and signal evolution during 

the acquisition.

2. Clinical applications

Ultrafast imaging is used to eliminate the effects of physi-

ological motion, thus capturing dynamic events in real time 

or shortening the total scan time. Shortening the scan time 

helps improve patient comfort and compliance, thereby 

minimizing motion during scans [36]. At higher imaging 

speeds, it becomes feasible to examine a wide range of rel-

evant physiological processes or to freeze induced motion 

that may otherwise lead to artifacts. Relevant physiological 

processes include, among others, respiration [37], cardiac 

rhythm [38], and hemodynamics from neuronal activation 

[39]. For example, ultrafast imaging is often used in cardio-

vascular imaging [40,41].
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SENSE or GRAPPA are commonly used in the clinical 

practice nowadays. Multiband technique is used in fMRI. 

However, there is always an inherent trade-off between im-

aging speed and quality. MRF was initially evaluated in brain 

relaxometry [35], prostate [42], liver [43], cardiac [44], mus-

culoskeletal imaging [43], arterial spin labeling (ASL) perfu-

sion measurement [45], and microvascular properties [46].

Diffusion MRI

A diffusion process is described by Fick’s law. Einstein 

described the relationship between the mean-squared dis-

placement and diffusion coefficient in Brownian motion 

[47]. Diffusion is dependent on concentration, pressure, 

and temperature (https://en.wikipedia.org/wiki/Diffusion). 

Diffusion MRI is currently a well-established technique that 

is used in routine clinical practice to identify lesions and 

to characterize them. Diffusion MRI was developed by Le 

Bihan in 1989 [48]. Diffusion tensor imaging (DTI) and fiber 

tractography were developed by Peter Basser and Le Bihan 

in the early 1990s [49-51]. The diffusion coefficient for water 

at 37°C is approximately D=3×10−9 m2/s.

1. Technical developments

Diffusion-weighted imaging (DWI) was developed to in-

vestigate microstructural properties by evaluating the pro-

ton diffusion process. The technique is used to characterize 

the microscopic behaviors of protons noninvasively. The 

diffusion coefficient or apparent diffusion coefficient (ADC) 

is measured on the basis of the use of diffusion gradients 

around the refocusing pulse in the SE sequence, or the use 

of bipolar gradients in the gradient-echo sequence within 

the echo time (TE) time period, and is fitted by the mono-

exponential decay curve [50].

S=S0e
–b D

where b is the b-factor that can be calculated using the 

strength of the applied diffusion gradient, the duration of 

the diffusion gradient, and the duration of the period be-

tween two diffusion gradients.

A two-compartment model was applied to measure diffu-

sion from intracellular and extracellular compartments, re-

spectively referred to as slow (Dslow) and fast (Dfast) diffusion 

with the corresponding volume fractions Fslow and Ffast [52].

S=S0 [Ffast e
–b Dfast+Fslow e

–b Dslow]

The intravoxel incoherent motion (IVIM) method was 

introduced to separate diffusion from flow effects in a voxel 

[50]. In this technique, the flowing vascular volume frac-

tion of incoherently flowing blood in the tissue (F), pseudo-

diffusion coefficient (D*) associated to the IVIM effect, and 

true diffusion coefficient (D) can be measured by applying 

multiple b-values.

S=S0 [Fflow e–b D*+(1–Fflow)e–b D]

Because in vivo proton movement is not isotropic, aniso-

tropic diffusion was introduced by assuming ellipsoidal 

diffusion, known as DTI [51]. The diffusion coefficient in 

the DTI model is a 3×3 symmetric matrix. Eigenvalues and 

eigenvectors can be extracted from the tensor matrix to 

calculate the isotropic diffusion effects by using the mean 

diffusivity (MD=(Dxx+Dyy+Dzz)/3), and anisotropic diffusion 

effects by using fractional anisotropy (FA) index that repre-

sents the variance of the three eigenvalues divided by norm 

of the eigenvalues.

Tensor models can be applied by assuming Gaussian 

distributions of proton movements. However, in biologi-

cal structures, water molecular diffusion is hindered in the 

extra-axonal space and restricted in the intra-axonal space 

[53]. To take this effect into account, other models were 

introduced, such as the ball-and-stick model [54], Q-ball 

imaging (QBI) [55], diffusion spectrum imaging (DSI) [56], 

spherical deconvolution model [57], and neurite orienta-

tion dispersion and density imaging (NODDI) [58]. Fur-

thermore, non-Gaussian diffusion kurtosis imaging, was 

applied in clinical studies [59].

Finally, tractography techniques were introduced to de-

tect white matter fiber bundles by measuring the eigenvec-

tors along the fibers [60,61]. Improvements of fiber tracking 

were further achieved by using probabilistic models [62]. 

Tractography is currently used to investigate white matter 

connectivity in healthy brains and in several pathologic 
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conditions [63].

2. Clinical applications

Diffusion MRI techniques, including DWI, DTI, and 

tractography, are currently extensively used in clinical set-

tings. DWI is routinely applied in stroke and tumor patients. 

Diffusion indices of MD and FA are altered in the presence 

of ischemic injury [64] and in neoplasms [65]. In brain 

neoplasms, ADC values have been shown to be decreased 

in highly cellular tumors, such as central nervous system 

(CNS) lymphoma, medulloblastoma, and high-grade 

glioma [66]. Diffusion imaging techniques were applied 

in Alzheimer’s disease [67-71]. Furthermore, malignant 

lesions have lower ADC values compared with surround-

ing normal tissue, edema, and benign tumors in the brain, 

head and neck malignancies, prostate, and liver cancer [72]. 

Diffusion-weighted whole-body imaging with background 

suppression (DWIBS) was performed with the short tau 

inversion recovery (STIR) EPI sequence with a high b value 

for background suppression to evaluate metastatic lesions 

in the body [73]. DTI was used to evaluate dislocation, dis-

ruption, infiltration, and edema. Tractography was used 

to evaluate corticospinal tract fibers, optic radiation fibers, 

and language fibers in patients to perform presurgical plan-

ning in neoplastic brain tumor cases.

 Perfusion MRI

Perfusion refers to the delivery of blood to a capillary bed 

in tissue. This is different compared with bulk flow motion 

(https://en.wikipedia.org/wiki/Perfusion). August Krogh 

first described the mechanism of regulation of capillaries 

in muscle, and was awarded the Nobel Prize in Physiology 

or Medicine [74]. Perfusion MRI is categorized according to 

the use of a contrast agent or not. Dynamic-susceptibility-

contrast (DSC)-based perfusion MRI was developed by 

Villringer et al. in 1988 [75]. The ASL technique was devel-

oped by Koretsky in 2012 [76].

1. Technical developments

Details of perfusion MRI were summarized in a previous 

paper [77]. Three important techniques are currently used 

in clinical practice to obtain perfusion-related parameters. 

The first-pass DSC-enhanced MR perfusion is based on the 

susceptibility effects of gadolinium-based contrast agents 

on the signal echo. Therefore, T2- or T2*-weighted imaging 

sequence, usually a gradient-echo or an EPI sequence, is 

used to obtain the signal attenuation of the time-series im-

ages. Cerebral blood volume (CBV) and flow (CBF) values 

as well as time-related parameters, such as the mean transit 

time (MTT) and time-to-peak can be mapped in each pixel. 

Convolution theory is used to evaluate the measured con-

centrations of the hemodynamic changes of the contrast 

agent as follows [78],

  -  

  where Ca(t) is the measured arterial input function (AIF) 

that describes the shape of the tracer that enters a voxel, 

and R(t-t’) is the unknown residue function that describes 

the probability of the tracer entering a voxel. Therefore, 


∞∞∞

 

  , and CBF=CBV/MTT.

The dynamic contrast-enhanced (DCE) MR perfusion is 

based on the relaxivity effects of gadolinium-based contrast 

agents on the signal echo. Therefore, a transverse relax-

ation (T1)-weighted imaging sequence (usually a three-

dimensional sequence), is used to obtain signal increments 

of time-series images. The area under-the-curve can be 

mapped. Furthermore, a pharmacokinetic model is used 

to map permeability-related parameters such as Ktrans and 

Kep and the corresponding volume fractions such as vp and 

ve. The general equation used to express the hemodynamic 

event after injecting the contrast agent is expressed with the 

extended Tofts model as follows [79],









 --  

  where Cp(t) is the concentration of contrast agent in blood, 

Ktrans is the permeability–surface area constant from the vas-

cular to the extracellular space, and ve is volume fraction in 
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the extravascular and extracellular space.

The ASL MR perfusion is based on an endogenous con-

trast agent using magnetically labeled arterial blood water 

as a diffusible flow tracer. Therefore, the proton-density-

weighted sequence is used to obtain signal changes with 

and without the use of magnetically labeled blood by either 

continuous or pulsed RF pulses. CBF value can be quanti-

fied. A general kinetic model for the evaluation of the differ-

ence of the longitudinal magnetization in the tissue owing 

to the labeled blood can be expressed to quantify the blood 

flow as follows [80],

  --  

  where M0b is the equilibrium magnetization in a blood 

filled arterial voxel, Ca(t) is the delivery function, such as 

AIF, R(t-t’) is the residue function that describes the wash-

out of tagged spins from a voxel, and m(t-t’) includes the 

longitudinal magnetization relaxation effects. The pseudo-

continuous ASL (pCASL) technique was introduced to im-

prove the ASL signals [81], and is currently used in clinical 

practice.

2. Clinical applications

Perfusion MRI is a promising tool used to assess stroke, 

tumors, and neurodegenerative diseases. DSC perfusion 

MRI is the standard technique used to evaluate brain dis-

eases, such as stroke [82] and tumors [83]. A combination of 

perfusion and DWI is used to evaluate a mismatch between 

the size of a perfusion defect and the diffusion abnormality 

that is referred to as the ischemic penumbra [84]. Tumor 

grade, recurrence, postoperative changes, or radiation ef-

fects can be established with DSC perfusion imaging [85].

DCE perfusion MRI is often applied in brain diseases [86] 

and in patients with breast, prostate, pelvic, and muscle dis-

eases, and can be useful in differentiating between tumor 

recurrence and radiation necrosis. The DCE parameters 

reflect a more extensive BBB disruption and a higher tumor 

grade [87], evaluate the treatment prediction [88], and dif-

ferentiate pseudo-progression from true progressive disease 

in GBM patients [89].

ASL perfusion MRI is mainly applied in brain diseases, 

such as neurodegenerative [90,91], renal, and cardiovascu-

lar diseases. ASL perfusion MRI has been used to evaluate 

pseudo-progression in brain tumor [92]. This method is 

particularly useful for patients with poor intravenous ac-

cess, infants and children, and pregnant women [93].

Molecular MRI/MR Spectroscopy

MR spectroscopy (MRS) is used to determine the mo-

lecular structure of compounds, or to detect their presence. 

Proton MRS is based on the proton’s magnetic moment and 

its interaction with magnetic fields. MRS is thus sensitive 

to certain aspects of tissue metabolism. Proton MRS can 

detect N-acetyl aspartate (NAA), creatine/phosphocreatine 

(Cr/PCr), choline (Cho), glucose (Glu), myoinositol (ml or 

mlns), lactate (Lac), alanine (Ala), glutamate and glutamine 

(GIx), citrate, and ethanol in the human body. MRS can 

detect other nuclei in compounds of biological interest, 

such as phosphorus-31 (found in PCr) or carbon-13 (found 

in glycogen). However, proton MRS is more routinely per-

formed in clinical practice compared with 31P or 13C MRS. 

Therefore, in this review, we only discuss proton MRS.

Chemical exchange saturation transfer (CEST) is a novel 

MR technique that enables molecular imaging to obtain 

certain compounds at concentrations that are too low to 

impact the contrast of standard MRI and too low to be di-

rectly detected in MRS at typical water imaging resolutions.

1. Technical developments of MRS

1) Pulse sequences

A single voxel spectroscopy (SVS) study is performed with 

short or long TE values. The SVS pulse sequences are the 

following: point resolved spectroscopy (PRESS) [94], stimu-

lated echo acquisition mode (STEAM) [95], image selected 

in vivo spectroscopy (ISIS) [96], and depth-resolved spec-

troscopy (DRESS) [97]. Longer TE results in the signal de-

crease as a result of the transverse relaxation (T2) that leads 

to the alteration of the phase of multiplet signals because 

of J-coupling [98]. TE values in the range of 135–144 ms are 

typically used, as this leads to the production of a spectrum 

in which the doublet signal of Lac with a J-coupling con-

stant of nearly 7 Hz is entirely reversed owing to the short 
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TE and long TR [99].

A spectroscopic imaging is an area of interest. Chemical 

shift imaging (CSI) is used for multiple-voxel spectroscopic 

acquisitions. In spectroscopic imaging, phase encoding 

gradients can be applied in all three dimensions to sample 

k-space to select a volume that resembles methods used in 

MRI [100].

2) Water suppression methods

The water resonance must be suppressed to detect the 

millimolar concentrations of other molecules/moieties. The 

most common suppression method is based on the use of a 

chemical shift selected (CHESS) pulse sequence [101].

3) Spectral quantification

The typical postprocessing techniques used include Fou-

rier Transform (FT), baseline correction, zero filling, and 

phasing. Quantification of the MRS signal amplitude can 

provide a means for estimating the tissue concentration 

of the signal generating molecules. While MRS signals are 

usually acquired in the time domain as free induction de-

cays or echoes, they are usually viewed and analyzed in the 

frequency domain. The frequency domain representation is 

derived from the acquired time domain data by the FT. Sig-

nal averaging is used in virtually all MRS studies to increase 

the SNR by averaging the signals obtained in repeated 

measurements. To quantify the proton spectrum in most of 

the clinical studies, the internal reference signal is typically 

used that is either the Cr signal at 3.05 ppm or the water sig-

nal at 4.69 ppm. When Cr is used as a reference signal, it is 

more common to report results as signal amplitude ratios, 

such as NAA/Cr, or Cho/Cr. One weak aspect related to the 

use of the Cr signal as a reference is attributed to the fact 

that the Cr signal is not as uniform throughout the normal 

brain [102]. Another weak aspect pertains to the fact that 

the assumption of the Cr levels do not change with disease 

and other physiological characteristics may be erroneous. If 

the water signal is used as a reference signal, its amplitude 

must be measured by performing a separate measurement 

in the same brain region without using water suppression.

A linear least-squares optimization procedure has been 

established and used in spectral fitting techniques. The 

most popular spectral fitting software is currently the LC-

Model [103,104]. Furthermore, spectrum fitting software 

is available either in the time [105] or frequency domains 

[106,107].

2. Molecular imaging tools other than MRS

CEST can be used to apply molecular imaging [108]. This 

technique is more appropriate compared with CSI or MR 

spectroscopy imaging because it provides relatively high 

resolution. The principle of CEST is based on the use of 

the magnetization transfer effects from other molecules 

to water molecules. Therefore, the requirement of CEST is 

that the chemical species must have in their structures a 

1H proton that is exchangeable with those of water. Known 

endogenous diamagnetic CEST agents are involved with 

exchangeable groups of amide proton (-NH), amine proton 

(-NH2), and hydroxyl proton (-OH), whose chemical shifts 

are ~3.5, ~1.8–3.0, and ~0.5–1.5 parts per million (ppm), re-

spectively [109]. Amide CEST is usually referred to as amide 

proton transfer (APT). CEST techniques have been applied 

to map glutamate (amine proton), creatine (amine proton), 

glycosaminoglycan (Gag) (hydroxyl proton), myoinositol 

(MI) (hydroxyl proton), and glucose (hydroxyl proton). The 

detailed principle of CEST technique has been described in 

numerous previous papers [110-116].

3. Clinical applications

The goal of clinical spectroscopy is to provide physicians 

with biochemical information that will assist in the differ-

ential diagnosis when standard clinical and radiologic tests 

fail or are too invasive. Proton spectroscopy has attained 

clinical value in that it can monitor the evolution of diseas-

es and associated therapies. Disease can sometimes lead to 

large changes in metabolite levels.

MR spectroscopy has also been shown to be of diagnostic 

value for evaluating and monitoring the progression of cer-

tain brain diseases, such as stroke [117], epilepsy, multiple 

sclerosis [118], Alzheimer’s disease [119,120], brain tumors 

[121] and other tumors, such as prostate cancer [122] and 

breast cancer [123]. Lactate signal levels are elevated in 

ischemic brain tissue. Choline signal levels are elevated in 

some neoplastic or inflamed tissues.
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The main applications for amide CEST or APT are the 

detection of cancer and ischemic stroke. In tumor regions, 

the concentration of proteins are elevated compared with 

surrounding tissues, and thus lead to increased APT levels 

[124]. This method was applied to classify tumor progres-

sion from radiation necrosis [125]. The CEST technique 

is applied in stroke because reduced pH in the ischemic 

region leads to lowered APT exchange rate, and results in 

decreased CEST values [126]. CEST was applied in other-

than-brain pathologies, such as breast [127], prostate [128], 

and knee [129].

Hybrid MRI Systems

1. PET–MRI

PET–MRI is an imaging system that incorporates MRI and 

PET to gain from the benefits of soft tissue morphological 

imaging (MRI) and metabolic imaging (PET). This hybrid 

system is mainly used in the fields of oncology and neurol-

ogy for clinical and preclinical studies. Some systems oper-

ate in totally separate rooms, but other systems do operate 

in the same room with separate machines. In these cases, 

a bed is shared to transfer the subjects from MRI to PET 

or to fully integrated systems. The first whole-body PET–

MRI systems were produced by Philips (Amsterdam, The 

Netherlands) and were installed in the US (Mount Sinai 

Medical Center, New York, NY) and in Switzerland (Geneva 

University Hospital, Geneva) in 2010. The system featured 

a PET and MRI scanner separated by a revolving bed. The 

simultaneous PET–MR acquisition system (Siemens) was 

installed in 2010. The fully integrated whole-body systems 

were provided in 2011 by Siemens and in 2014 by GE. In Ko-

rea, the first PET–MRI system was installed at the Gachon 

University Hospital (Inchen, Korea) [7,8].

1) Technical developments

In this part, we only discussed the issues of the fully in-

tegrated PET–MRI system. Placing PET detectors in the MR 

magnet can alter the local magnetic field strength causing 

the protons to spin at wrong frequencies, thus leading to 

the formation of severe image distortions and artifacts, such 

as susceptibility artifacts. The presence of PET hardware 

within the gradient coil significantly alters the MR eddy 

current characteristics of the system possibly leading to 

degraded spatial linearity. The gradient imperfection would 

impact imaging spatial resolution and image homogeneity. 

The lutetium-based scintillation crystals have acceptable 

magnetic properties [130]. The avalanche photodiode for 

PET can be used in a 7 T MRI system without inducing ma-

jor effects to magnetic fields [131].

Attenuation correction describes a method to account 

for the self-absorption of the emitted annihilation pho-

tons, and is a prerequisite for accurate quantification of 

the PET data [132]. It is not possible to directly derive the 

attenuation properties of tissues from MRI measurements. 

MRI-based attenuation correction methods have been in-

troduced [133]: segmentation-based [134] that are usually 

used in T1-weighted images [135] or Dixon-sequence-based 

images [136], atlas-based [133], and reconstruction-based 

[137] methods. Attenuation correction of bone is calculated 

by using ultrashort echo time images [138].

The simultaneous acquisition of MRI and PET data in the 

fully integrated PET–MRI systems has major advantages 

compared with sequential acquisitions. Two-dimensional 

or three-dimensional (3D) navigator MRI is used to correct 

respiratory motion in PET images [139]. 3D Cine MRI has 

been used to correct cardiac motion in PET images [140]. A 

high resolution MRI has been used for the correction of the 

partial volume effect in PET images [141]. MR-guided PET 

reconstruction techniques have been developed by incor-

porating “a priori” anatomical information from the MRI 

[142]. Finally, MR anatomical images have been used for 

aligning functional information obtained from PET [143].

2) Clinical applications

While PET provides a) the high sensitivity required to 

detect minute amounts of radiotracers and b) the abil-

ity to quantify radiotracer activity throughout the body in 

absolute terms, MRI provides excellent soft-tissue contrast 

according to multiple contrast mechanisms at high-spatial 

resolution. Therefore, PET/MRI imaging combines the di-

agnostic breadth and information content of both PET and 

MRI. The PET–MRI system has been used for the study of 

patients with hepatobiliary cancer [144], neuroendocrine 

tumors [145], pancreatic adenocarcinoma [146], prostate 
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cancer [147], primary brain tumors [148], dementia [149], 

epilepsy [150], musculoskeletal tumor [151], and coronary 

artery disease [152].

2. MR-guided focused ultrasound surgery

High-intensity focused ultrasound (HIFU) is a noninva-

sive therapeutic technique that uses nonionizing ultrasonic 

waves to heat tissue [153]. HIFU has been combined with 

MRI to enable guidance of the treatment and monitoring. 

It is referred to as MR-guided focused ultrasound surgery 

(MRgFUS). It is a 3D imaging technique that features high-

soft-tissue contrast and provides information about tem-

perature, thus allowing the monitoring of ablation. In 1992, 

reports were published that described MRgFUS on ex vivo 

muscle tissue [154], and the following year on in vivo tissue 

[155]. MRgFUS developed by Hynynen [155] was later trans-

ferred to InsighTec in Haifa, Israel in 1998. The InsighTec 

ExAblate 2000 was the first MRgFUS system used to obtain 

Food and Drug Administration market approval in the US 

in 2004.

1) Technical developments

In MRgFUS, MR is used for both target localization and 

in vivo real time monitoring of temperature based on a 

technique referred to as MR thermometry [155], and for 

verifying tissue destruction using a postprocessing tool. The 

thermometric technique of temperature-dependent phase 

changes in gradient-recalled echo pulse sequences are 

commonly used to determine the temperature change [156]. 

The change in temperature is represented as








 

where Δϕ is the phase change, γ is the gyromagnetic ratio, 

c is the proton-resonance frequency shift constant (–0.01 

ppm/°C) [157], Bo is the main magnetic field strength, and 

TE is the echo time. For the bone tumors, the calcification 

issues can be resolved be using susceptibility-weighted MRI 

to identify calcifications rather than computer tomography. 

An ultrashort TE sequence can be used to improve ther-

mometry in bone. 

2) Clinical applications

Clinical applications of MRgFUS are still limited. MRg-

FUS has been used in clinical studies in patients with uter-

ine fibroids [158], bone metastases [159], prostate cancer 

[160], breast cancer [161], and brain diseases, such as brain 

tumors [162], intractable essential tremor [163], Parkinson’s 

disease [164], obsessive-compulsive disorder [165], major 

depressive disorders [166], and neuropathic pain [167].

3. MRI-guided linear accelerator

MRI-guided linear accelerator (MRI–LINAC) is a recently 

developed and advanced radiation treatment system. As 

indicating the name, the MRI–LINAC is fully integrated 

with the MRI for imaging soft-tissue tumors together with 

LINAC for the radiotherapy to treat cancers throughout the 

body. The advantage of MRI-based imaging on a linear ac-

celerator has superior high-definition image quality, espe-

cially for some soft-tissue cancers compared with CT-based 

imaging in the traditional linear accelerators to visualize 

the target area and adjacent anatomy for treatment setup 

and delivery. The first technical prototype MR–Linac was 

developed and installed in the University Medical Center 

Utrecht in Utrecht, The Netherlands. Similar types of mea-

surements have been performed on a hybrid MRI Cobalt-60 

device [168]. The first clinically active MRI-guided radia-

tion therapy machine (ViewRay) was installed at the Alvin 

J. Siteman Cancer Center at Barnes-Jewish Hospital at the 

Washington University School of Medicine (St. Louis, MO, 

USA). The treatment of the first patients was announced in 

February 2014.

1) Technical developments

LINAC is affected by MRI. Two main configurations of 

MRI–LINAC that are being pursued with the radiotherapy 

beam are either parallel or perpendicular to the main mag-

netic field. This configuration is affected by the interference 

between the delivery of the radiation beam of LINAC and 

MRI. The operation of the multileaf collimator in the strong 

magnetic field can be a problem in the shaping of the X-

ray beam [169]. Both configurations have this problem, 

and vendors lowered magnetic field to minimize this issue. 

Another issue in the MRI–LINAC is that the accelerated 
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electrons used to produce the X-ray beam can be deviated 

or defocused, thus causing a loss of the beam current. Pre-

vious studies showed that the perpendicular configuration 

is dominant to the total beam loss compared with the par-

allel one [170,171]. Skin dose can be increased by second-

ary electrons owing to the influence of the magnetic field 

[172]. In this case, the perpendicular configuration should 

be advantageous, although the electron return effect can 

still appear [173]. Receiver coils can cause attenuation of 

the primary beam and can increase the skin dose. Detailed 

explanation can be found in another paper [174].

MRI quality is also affected by the LINAC. Any RF noise 

generated by the LINAC can cause artifacts or noise in im-

ages. In addition, LINAC components, such as the accel-

erator or multileaf collimators cause inhomogeneity of the 

main magnetic field, thus worsening the imaging quality 

[175]. Finally, the radiation beam can affect conductors or 

electronics in the coil, causing imaging artifacts [176,177].

2) Clinical applications

The MRI-LINAC can adapt the radiation treatment plan 

based on movement of the organs or tumor, and also track 

the motion of the tumor. This system reduces complications 

after radiation treatments. The MRI–LINAC can be used to 

improve the personalization of the radiation therapy using 

existing contrast imaging mechanisms, such as diffusion, 

perfusion, functional, and metabolic, to evaluate treatment 

effects. The hybrid system has been focused on daily plan 

changes based on geometric changes in the organs-at-risk 

[178,179]. Furthermore, MRI has been used to evaluate ra-

diation treatment effects [180]. Currently, this hybrid system 

is used to treat patients with prostate cancer [181], pelvic 

lymph nodes [182], and the esophagus [183].
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