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Brown adipose tissue (BAT) is a thermogenic organ contributing to non-shivering thermogenesis. BAT becomes active under cold 
stress via sympathetic nervous system activation. However, recent evidence has suggested that BAT may also be active at thermo-
neutrality and in a postprandial state. BAT has superior energy dissipation capacity compared to white adipose tissue (WAT) and 
muscles. Thus, it has been proposed that the recruitment and activation of additional BAT may increase the overall energy-expending 
capacity in humans, potentially improving current whole-body weight management strategies. Nutrition plays a central role in obesi-
ty and weight management. Thus, this review discusses human studies describing BAT hyper-metabolism after dietary interventions. 
Nutritional agents that can potentially recruit brown adipocytes via the process of BAT-WAT transdifferentiation are also discussed. 
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INTRODUCTION

Adipose tissue with the unique capacity to produce heat by con-
suming circulatory and intracellularly stored substrates is com-
monly known as brown adipose tissue (BAT). This adipose tis-
sue is labelled as “brown” due to its characteristic brownish 
macroscopic appearance. This unique tissue morphology is due 
to the dissimilar cellular composition of brown adipocytes com-
pared to white adipocytes [1]. A white adipocyte typically con-
tains a large single lipid droplet with a few mitochondria within 
the cytoplasm, while a brown adipocyte characteristically pos-
sesses several small lipid droplets [2] and is densely packed 
with mitochondria [3]. Additionally, brown fat depots are highly 
vascularised [4] and innervated by abundant sympathetic nerve 
efferent fibres, unlike white fat depots [5,6]. The possession of 
multiple lipid droplets by brown adipocytes instead of a single 
giant lipid droplet allows the cell to increase the lipid droplet 

surface-to-volume ratio, which facilitates the rapid consumption 
of lipids in cellular respiration reactions, leading to thermogene-
sis [7]. The ability of brown adipocytes to produce heat arises 
from the presence of a large number of mitochondria, along 
with the high expression of uncoupling protein-1 (UCP1) [8]. 
Brown adipocytes express low levels of adenosine triphosphate 
(ATP) synthase [9], which is usually used to produce ATP by 
utilising the proton gradient across the mitochondrial inner 
membrane in the cellular respiration. In the mitochondria of 
brown adipocytes, the presence of high levels of UCP1, instead 
of ATP synthase, diminishes the proton gradient by uncoupling 
cellular respiration without producing ATP, and dissipating en-
ergy in the form of heat [5].

It was previously considered that all UCP1-positive thermo-
genic adipocytes could be categorised as brown adipocytes. 
However, later evidence demonstrated that there are two types 
of UCP1 positive thermogenic adipocytes, which arise from 
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distinct developmental lineages [10]. “Classical brown adipo-
cytes” arise from engrailed-1 (En1)-expressing cells of the cen-
tral dermomyotome [11] and myogenic factor 5 (Myf5)-positive 
progenitor cells [12], while “brown-like” adipocytes originate 
from Myf5-negative progenitor cells [12,13]. Classical brown 
adipocytes are similar to skeletal muscle in terms of their devel-
opmental origin [14] and mitochondrial proteomic signature 
[15], while brown-like adipocytes are closer to white adipocytes 
[14]. These brown-like adipocytes have been interchangeably 
termed as “brite” [16], “beige” [13], or “recruitable brown” [17] 
due to their occurrence within white adipose tissue, histologi-
cally manifesting in the form of clusters of small islands [18], 
and reversible white-to-brown transdifferentiation [19]. Since 
classical brown adipocytes and beige/brite adipocytes express 
unique markers of gene expressions reflecting their develop-
mental origin [20], the evidence from genetic analysis suggests 
that in adult humans, brown fat depots (e.g., supraclavicular fat 
depots) mainly consist of beige/brite adipocytes [21], while 
classical brown adipocytes are usually found in rodents and hu-
man infants (e.g., interscapular fat depots) [22]. Additionally, 
the total amount of UCP1 protein in beige/brite adipocytes is 
approximately 10% of that in classical brown adipocytes; there-
fore, the overall UCP1-dependent thermogenic capacity of 
beige/brite adipocytes may be lower than that of classical brown 
adipocytes [23]. 

ROLE OF BROWN ADIPOSE TISSUE IN 
NON-SHIVERING THERMOGENESIS

In human neonates and infants, BAT has been reported to be an-
atomically present in the intrascapular, supraclavicular, axillary, 
neck, and suprarenal areas [24]. Human neonates have a higher 
body surface-to-volume ratio and less muscle mass than adults; 
therefore, maintaining the body temperature is challenging and 
requires non-shivering means of heat generation. Brown fat in 
neonates constitutes approximately 5% of the body weight. As 
neonates get older, much of the BAT depots disappear, while 
some remain into adult life [25]. In human adults, the major 
sites of BAT (beige/brite) include fat depots between neck mus-
cles; supraclavicular fat depots; depots in the axillae, the hilum 
of the lungs, and the area around cardiac muscles; supra- and 
peri-renal and adrenal depots; depots around blood vessels (e.g., 
the aorta) [25]; and small fat depots along the vertebral column 
(Fig. 1) [26]. The reported mass of brown fat in adult humans 
according to positron emission tomography/computed tomogra-
phy (PET-CT) imaging studies is highly variable. However, the 

amount usually ranges from 0.02 to 300 g [27-32], which con-
stitutes less than 0.5% of the total human body mass (75 kg). 
However, estimations of brown fat mass in adult humans with 
PET-CT are limited by the low sensitivity and spatial resolution 
of PET and the non-availability of brown fat-specific PET ra-
diotracers. The traditionally used 18-F-fluorodeoxyglucose 
([18F]FDG) radiotracer merely highlights the areas in the body 
with comparatively higher glucose metabolism; therefore, utilis-
ing the [18F]FDG radiotracer to estimate the amount and preva-
lence of BAT likely leads to a gross underestimation. Whilst a 
few studies have estimated BAT mass in humans utilising the 
fatty acid radiotracer 18-F-fluoro-6-thia-heptadecanoic acid 
([18F]FTHA) [31], or multiple sequentially administered [18F]
FDG, [18F]FTHA, and [11C]acetate (a marker of oxidative me-
tabolism) radiotracers [33], the total BAT mass estimated from 
these approaches likewise appears to be less than 300 g. 

ANATOMICAL DISTRIBUTION OF BROWN 
ADIPOSE TISSUE

The eccentric distribution of brown fat in the adult human body 
(Fig. 1) is likely to be of physiological importance; however, 
our current understanding regarding the functional relevance of 
human BAT location is largely speculative and/or based on ro-
dent studies. Perivascular brown fat likely acts as an active met-
abolic heater for blood flowing to and from the cooler periphery 
[34]. Cervical BAT has been suggested to maintain the tempera-
ture of extracranial arterial blood owing to its proximity to the 
common carotid and vertebral arteries [26]. BAT located in the 
axillary and supraclavicular region likely warms the venous 
blood from the subclavian and jugular veins [26], and thus pos-
sibly protects against cardiac arrhythmias, since the myocardi-
um is sensitive to lower coronary blood temperatures [35]. 
Likewise, the closer proximity of supraclavicular BAT to the 
brachial plexus, and paravertebral BAT to the spinal cord, sug-
gests that these depots might protect against hypothermia to 
maintain optimal function and nerve conduction in the central 
and autonomic nervous system [26]. 

BROWN ADIPOSE TISSUE AND DIET-
INDUCED THERMOGENESIS

In addition to the role of brown fat as a protector against hypo-
thermia, brown fat tissue has been speculated to play a contribu-
tory role in diet-induced thermogenesis [36], and it has also 
been considered as an energy sink that helps maintain the ener-



Hachemi I, et al.

216  www.e-enm.org Copyright © 2023 Korean Endocrine Society

gy balance [37]. These speculations are based on rodent studies, 
and the concept of “diet-induced thermogenesis” as a mecha-
nism of maintaining energy balance in humans is controversial 
[38]. Nevertheless, recent evidence from a human study sug-
gested that the extent of diet-induced thermogenesis in human 
supraclavicular brown fat is comparable to its cold-induced 
thermogenic potential [39].

The metabolic stimulation of brown fat for non-shivering 
thermogenesis in response to a cold stimulus is via a norepi-
nephrine (NE)-dependent signal transduction pathway due to 
the activation of the sympathetic nervous system (SNS) [40]. 

However, the cold-activated increase in NE acts in a non-dis-
criminatory fashion, exerting an effect on multiple tissues. In a 
quest for “selective” BAT activation, which is speculated to cre-
ate a negative energy balance for weight loss without any nega-
tive effects on cardiovascular [41,42] and cognitive systems 
[43], a few studies have identified agents that act along with the 
SNS pathway or independently to stimulate BAT thermogenesis 
(Fig. 2) [44]. Nevertheless, studies examining the comparative 
contribution of brown fat in adult humans using a direct oxygen 
consumption PET technique have shown that supraclavicular 
BAT may merely contribute up to 10 to 15 kcal of energy per 

Fig. 1. Typical anatomical locations of brown fat in human adults, the stimulator/activators of brown fat thermogenesis in human adults, and 
the characteristic hallmarks of brown (beige/brite) adipocyte biology. BAT, brown adipose tissue; NE, norepinephrine; TRPA1, transient re-
ceptor potential ankyrin 1; TRPM8, transient receptor potential cation channel subfamily M member 8; SNS, sympathetic nervous system; 
DIO2, iodothyronine deiodinase 2; GLP-1, glucagon-like peptide-1; FGF21, fibroblast growth factor 21; PET-CT, positron emission tomog-
raphy/computed tomography; UCP1, uncoupling protein-1.
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100 g of available tissue when activated by a cold stimulus 
[31,39,45]; thus, the idea of selectively activating BAT to create 
a huge negative energy balance for weight loss may need to be 
revisited.

ASSESSMENT OF THE PRESENCE OF 
BROWN ADIPOSE TISSUE WITH [18F]FDG 
PET

Several studies have classified individuals as “BAT-positive” or 
“BAT-negative” on the basis of [18F]FDG PET accumulation in 
the supraclavicular fat depot of humans [46-48]. These studies 
speculated that the differences between these two groups are 
largely due to the presence or absence of BAT. However, the 
current “gold-standard” method for assessing the presence of 
BAT in humans possesses some inherent limitations. The as-
sessment of BAT glucose metabolism is merely indicative of 
BAT insulin sensitivity [49]; thus, the evaluation of the presence 
of BAT using this method and considering BAT glucose uptake 
as a marker of thermogenic activity has the tendency to result in 
over-speculative conclusions regarding the role of BAT in meal-
induced thermogenesis. Dynamic PET imaging can also be used 
to measure the rates of glucose utilisation by BAT; however, this 

approach has been utilised by only a few research groups. 
Whole-body dynamic PET imaging with [18F]FDG has demon-
strated that BAT accounts for approximately 1% of the total 
glucose utilisation in the body, while the skeletal muscles ac-
count for approximately 50% of the total glucose utilisation 
[50].

Additionally, it has been demonstrated that a major portion of 
the taken-up glucose does not contribute to BAT oxidative me-
tabolism; rather, it is used for glyceroneogenesis or de novo li-
pogenesis [51]. Furthermore, Weir et al. [52] showed using the 
microdialysis technique that in response to acute cold stimula-
tion, the greater fraction of taken-up glucose in the human su-
praclavicular region is released as lactate. Hence, the use of 
[18F]FDG PET imaging as a marker of the presence of BAT and 
an indicator of thermogenic activity is not optimal.

ACTIVATION AND HYPER-METABOLISM 
IN BROWN ADIPOSE TISSUE

The substantial uptake of glucose in the supraclavicular fat de-
pots has been conventionally regarded as activation of BAT 
[53]. Hypermetabolism in BAT occurs in response to hormonal 
stimulation. For example, during cold stress, the activation of 

Fig. 2. Diagrammatic representation of the mechanisms of the activation of brown adipose tissue (BAT) that has been shown in humans. 
NEFA, non-esterified fatty acids; LPL, lipoprotein lipase; GLUT1, glucose transporter 1; GLUT4, glucose transporter 4; NA, noradrenaline; 
UCP1, uncoupling protein-1; TAG, triacylglycerol; IR, insulin receptor; SNS, sympathetic nervous system; TRPA1, transient receptor po-
tential cation channel, subfamily A, member 1; TRPV1, transient receptor potential cation channel subfamily V member 1.
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the SNS results in the release of NE, which acts on BAT via G 
protein-coupled β3-adrenergic receptors [40]. This results in a 
cascade of events [54] that increase mitochondrial respiration in 
these adipocytes. In addition to NE, other agents can stimulate 
brown adipocytes to enhance the thermogenic oxidative metab-
olism. These agents act along the NE-induced signal transduc-
tion pathway or independently. The gut hormone secretin, se-
creted in response to the ingestion of a meal, has been shown to 
stimulate BAT glucose uptake and thermogenesis via the pres-
ence of secretin receptors in human brown adipose tissue 
[55,56]. Furthermore, humans with hyperthyroidism also mani-
fest hyper-metabolism of BAT [57]; however, the precise mech-
anism underlying this phenomenon still needs to be elucidated. 
Insulin has been shown to influence BAT metabolism [58,59]. 
Orava et al. [28] reported that BAT exhibited increased glucose 
uptake under conditions of a hyperinsulinemic euglycemic 
clamp. 

Additionally, Vosselman et al. [60] found that BAT had com-
parable glucose uptake after the ingestion of a high-caloric car-
bohydrate-rich meal. Despite this evidence, it is not known in 
humans whether insulin stimulation leads to increased respira-
tory activity in BAT or merely increased glucose uptake. The 
data published by U Din et al. [39] showed that oxidative me-
tabolism in BAT increased after the consumption of a carbohy-
drate-dominant mixed meal, with a magnitude equivalent to that 
observed in cold stress. The ingestion of a carbohydrate-rich 
meal raises blood glucose levels, which consequently stimulates 
insulin production. Insulin has been suggested to enhance the 
expression of glucose transporter 4 (GLUT4) in BAT [61]; thus, 
GLUT4 stimulates glucose uptake into BAT [58,62,63]. None-
theless, it is unclear whether insulin has a direct effect on stimu-
lating BAT mitochondrial respiration. Insulin may induce in-
creased thermogenesis in BAT by inhibiting the warm-sensitive 
neurons in the hypothalamus [64,65]. 

The increased thermogenic metabolism via food nutrients acts 
along these pathways to stimulate BAT. Human studies have 
shown that certain food agents can stimulate BAT along the 
SNS or insulin-stimulatory pathway to enhance BAT metabo-
lism. The diagrammatic representation in Fig. 2 shows these 
mechanisms of BAT activation demonstrated in human studies. 
This review will thus discuss these nutrients briefly. 

Capsaicin and capsinoids 
Capsaicin is the pungent compound present in chilli peppers, 
while capsinoids are capsaicin-like compounds present in non-
pungent chilli peppers. Both capsaicin and capsinoids have been 

documented to increase catecholamine secretion via the activa-
tion of the SNS, consequently increasing whole-body energy 
expenditure in humans. Several reports have stated that the oral 
administration of capsaicin and capsinoids in humans can en-
hance whole-body energy expenditure in subjects with detect-
able BAT. In the study by Yoneshiro et al. [66], subjects with 
undetectable BAT, based on [18F]FDG standardised uptake val-
ue (SUVs), did not show increased whole-body energy expendi-
ture after the oral ingestion of capsinoids. This finding was con-
firmed by Sun et al. [67]; however, the acute activation of BAT 
after capsinoid ingestion was not observed. Capsaicin has been 
documented to activate transient receptor potential cation chan-
nel subfamily V member 1 (TRPV1), thereby increasing sym-
pathetic nerve activity. The increase in SNS activity increases 
the whole-body energy expenditure and fat oxidation, compara-
ble to the response in cold conditions. 

Repeated cold stimulation in humans, or cold acclimation, 
has been reported to increase BAT activity and cold-induced 
thermogenesis (CIT) [68-71]. Similarly, Yoneshiro et al. [72] 
showed that repeated daily ingestion of capsinoids for 6 weeks 
increased CIT. However, a direct effect of the repeated ingestion 
of capsinoids on BAT activity based on PET imaging was not 
shown. Although CIT has been speculated to represent BAT ac-
tivity, more recent reports have found that CIT is in fact due to 
the contribution of both BAT and deep muscles [31]; thus, it can 
be reasonably speculated that repeated BAT activation may 
have the capacity to improve overall metabolic health in terms 
of energy expenditure and the reduction of stored fat due to the 
release on brown adipokines (BATokines), in a similar fashion 
to how the repeated stimulation of muscles (e.g., strength train-
ing) releases myokines [73].

Catechin and caffeine
Catechin is a bioactive compound found in tea, and the health-
promoting effects associated with the consumption of tea are at-
tributed to catechin [74]. Human studies have revealed that cat-
echin consumption demonstrates several health benefits, includ-
ing increased whole-body energy expenditure, fat oxidation 
[75], elevated non-shivering thermogenesis potential [76] and 
reduction in body fat [77]. A few human studies have also eval-
uated the effect of long-term catechin ingestion in relation to 
BAT metabolism. Yoneshiro et al. [48] found that humans with 
detectable BAT, using [18F]FDG, demonstrated an increase in 
whole-body energy expenditure shortly after the ingestion of 
catechin-containing beverages. This effect was not found in in-
dividuals who did not demonstrate detectable BAT on PET im-
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aging. They also found that the chronic consumption of cate-
chins beverages increased cold-induced thermogenic capacity. 
However, that study did not evaluate the chronic effects of cate-
chin on BAT metabolism. Nirengi et al. [78] found using near-
infrared spectroscopy that the density of BAT increased after the 
daily ingestion of catechin-rich beverages after 12 weeks; they 
additionally found using MR spectroscopy that extramyocellu-
lar lipid levels decreased after this intervention. 

Grains of paradise
Grains of paradise (Aframomum melegueta [Rosco] K. Schum.) 
are a type of chilli pepper found commonly in Western African 
countries. This plant is also known as Guinea pepper or alligator 
pepper. It is used as a spice and also as a remedy for stomach-
ache, diarrhoea, and snake bite [79]. Like capsaicin, this plant is 
also known to activate TRPV1 channels in humans [80], there-
by stimulating SNS activity [81]. Sugita et al. [47] demonstrated 
in humans that the oral ingestion of grains of paradise leads to 
an increase in whole-body energy expenditure in individuals 
with detectable BAT, based on [18F]FDG PET imaging.

CONCLUSIONS

Although BAT in adult humans can be stimulated via several 
nutrients found in foods, the known mechanism of BAT activa-
tion remains SNS activation and stimulation with insulin and 
secretin. The measurement of SUVs with [18F]FDG PET imag-
ing does not provide a clear indication of thermogenic BAT ac-
tivity; thus, [18F]FDG PET imaging findings should be extrapo-
lated with caution. Additionally, the activation of BAT as a ther-
mogenic agent might not be enough to overcome obesity in hu-
mans; thus, along with the activation of BAT, the influence of 
BAT activation on metabolism in muscle or other organs should 
also be simultaneously explored.
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