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Paracrine interactions are imperative for the maintenance of adipose tissue intercellular homeostasis, and intracellular organelle dys-
function results in local and systemic alterations in metabolic homeostasis. It is currently accepted that mitochondrial proteotoxic 
stress activates the mitochondrial unfolded protein response (UPRmt) in vitro and in vivo. The induction of mitochondrial chaperones 
and proteases during the UPRmt is a key cell-autonomous mechanism of mitochondrial quality control. The UPRmt also affects sys-
temic metabolism through the secretion of cell non-autonomous peptides and cytokines (hereafter, metabokines). Mitochondrial 
function in adipose tissue plays a pivotal role in whole-body metabolism and human diseases. Despite continuing interest in the role 
of the UPRmt and quality control pathways of mitochondria in energy metabolism, studies on the roles of the UPRmt and metabokines 
in white adipose tissue are relatively sparse. Here, we describe the role of the UPRmt in adipose tissue, including adipocytes and resi-
dent macrophages, and the interactive roles of cell non-autonomous metabokines, particularly growth differentiation factor 15, in lo-
cal adipose cellular homeostasis and systemic energy metabolism.

Keywords: Adipocytes; Mitochondria; Macrophages; Energy metabolism; Unfolded protein response 

The Namgok Award is the highest scientific award of the Korean En-
docrine Society, and is given to honor an individual who has made ex-
cellent contributions to progress in the field of endocrinology and me-
tabolism. The Namgok Award is named after the pen name of Professor 
Hun Ki Min, who founded the Korean Endocrine Society in 1982. Pro-
fessor Minho Shong received the Namgok Award at the The 17th Asia-
Oceania Congress of Endocrinology and the 8th Seoul International 
Congress of Endocrinology and Metabolism of the Korean Endocrine 
Society in October 2020.

INTRODUCTION 

Adipocyte mitochondria are essential organelles for maintaining 
whole-body metabolism in rodents and humans. Mitochondrial 
dysfunction in adipocytes has been reported in patients with 
obesity, insulin resistance, and type 2 diabetes [1]. Although 
compromised mitochondrial function in adipose tissue may 
arise from obesity and diabetes, it remains uncertain whether 
this is a consequence of, or a primary contributor to, the devel-
opment of insulin resistance. Furthermore, we have a limited 
understanding of the impact of primary mitochondrial stress in 
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adipose tissue, and its possible effects on systemic energy ho-
meostasis. Mitochondrial proteins are comprised of mitochon-
drial DNA (mtDNA)-encoded and nucleus-encoded proteins, 
and around 99% of mitochondrial proteins are encoded by the 
nucleus [2]. Thus, the maintenance of mitonuclear protein bal-
ance is important for normal cellular function. Defective mito-
chondria communicate with the nucleus through retrograde sig-
naling, known as mitonuclear communication, to maintain 
proper mitochondrial function and organismal homeostasis [3]. 
Past and recent studies have shown that mitochondrial stress ac-
tivates the mitochondrial unfolded protein response (UPRmt), 
which is mediated by cell autonomous and cell non-autonomous 
pathways [4,5]. 

Mitochondrial protein homeostasis (proteostasis), which is 
regulated by chaperones and intrinsic proteases, acts as a key 
mechanism of mitochondrial quality control [6]. In terms of me-
tabolism, key proteases related to the UPRmt, such as caseinolyt-
ic peptidase P (ClpP) and LON protease (LONP1), have been 
reported to affect systemic insulin sensitivity and glucose me-
tabolism, respectively [7,8]. In addition to the effects of mito-
chondrial proteases, knockout (KO) models studying the effects 
of mitochondrial ribosomal defects have also shown compro-
mised proteostasis and altered systemic metabolism. 

Crif1 is a component of the large mitochondrial ribosomal 
subunit, and its deficiency results in abnormal proteostasis in 
the mitochondrial matrix of mouse embryonic fibroblasts [9]. In 
skeletal muscle-specific Crif1 KO mice, oxidative phosphoryla-
tion (OxPhos) function and the oxygen consumption rate de-
creased, but systemic energy homeostasis was maintained by 
UPRmt induction and metabokine production [10]. However, de-
spite studies showing that adipocyte mitochondrial function and 
quality control are closely related to systemic energy metabo-
lism, there are not many studies on causes of adipocyte-specific 
OxPhos dysfunction and the effects of metabokines on whole-
body metabolism.

Adipose tissue inflammation is considered a major contribu-
tor to systemic insulin resistance by inducing pro-inflammatory 
cytokines secreted from macrophages and cytotoxic T cells [11]. 
Adipose tissue macrophages (ATMs) can be classified into two 
groups: classically (M1-like) and alternatively (M2-like)–acti-
vated macrophages. Increased macrophage number is character-
istic of obese mice and humans [12]. In particular, M1 macro-
phages, which produce pro-inflammatory cytokines, were found 
to be elevated in obese individuals. M1 macrophages are char-
acterized by high levels of glycolysis and inducible nitric oxide 
synthase expression, and secrete tumor necrosis factor alpha 

and interferon gamma (IFNγ) [13]. By contrast, lean individuals 
had elevated levels of M2 macrophages, which are character-
ized by high levels of OxPhos, fatty acid oxidation, arginase 1 
expression, and secretion of the anti-inflammatory cytokine in-
terleukin 10 (IL-10) [14]. The intact mitochondrial oxidative 
metabolism of M2 macrophages is a prerequisite for this anti-
inflammatory phenotype [15]. Therefore, inhibition of oxidative 
metabolism impairs polarization to the M2-like phenotype, but 
shifts macrophages towards the M1-like state and leads to obe-
sity, inflammation, and insulin resistance [16]. However, it is 
unknown whether treatments that can improve the oxidative 
function of macrophages can reverse insulin resistance and adi-
pose inflammation. In this review, we discuss whether the UP-
Rmt and metabokine production caused by lower OxPhos in adi-
pocytes and ATMs regulate systemic energy metabolism and 
glucose homeostasis.

THE MITOCHONDRIAL UNFOLDED 
PROTEIN RESPONSE IN ADIPOCYTES IS 
LINKED TO INCREASED ENERGY 
EXPENDITURE AND PROTECTION 
AGAINST DIET-INDUCED OBESITY

The mitochondria are essential for adipose tissue function, in-
cluding adipogenesis [17], lipolysis [18], and fatty acid re-ester-
ification [19], which ultimately balances whole body homeosta-
sis. Metabolic challenges such as nutrient excess, aging, and ex-
cess free fatty acids lead to mitochondrial dysfunction through 
the production of mitochondrial reactive oxygen species (ROS) 
[20]. These lead to reduced mitochondrial biogenesis [21], ag-
gravated inflammation [22], and subsequently promote changes 
in energy homeostasis and insulin sensitivity [23]. 

Studies in ob/ob and diabetic mice have shown compromised 
mitochondrial function in white adipose tissue (WAT), includ-
ing decreased mitochondrial number, mtDNA quantity, and 
electron transport chain enzymatic activity [24,25]. This is mir-
rored in human patients presenting with obesity, insulin resis-
tance, and type 2 diabetes, in whom mitochondrial function-re-
lated genes, adenosine triphosphate production, and oxygen 
consumption are decreased in adipose tissue [26]. A commonal-
ity in these mitochondrial stress environments is increased pro-
duction of ROS, which alters adipogenesis and lipolysis in adi-
pocytes in both mice and humans [27,28]. Furthermore, pro-
found adipose tissue mitochondrial dysfunction can lead to lipo-
dystrophy with insulin resistance and hepatic fat accumulation 
in mice [29]. These studies reveal that adipocyte mitochondrial 
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dysfunction is intricately involved in the onset of systemic insu-
lin resistance. 

Nonetheless, several studies have questioned the linear rela-
tionship between mitochondrial and metabolic dysfunction. A 
study in adipocyte-specific Pgc1β-deficient mice demonstrated 
that decreased mitochondrial oxidative capacity in adipocytes 
was not sufficient for insulin resistance [30]. In addition, Verno-
chet et al. [31] reported that despite a lower mtDNA quantity in 
the adipocytes of mitochondrial transcription factor A KO mice, 
the KO mice had higher energy expenditure (EE) and were pro-
tected from high fat diet (HFD)-induced obesity and insulin re-
sistance. Further, Bhaskaran et al. [7] demonstrated that the loss 
of ClpP, which is a mitochondrial quality control protease, pro-
tected mice from diet-induced obesity with increased EE and 
insulin sensitivity. Although a number of investigations have in-
vestigated the association between mitochondrial function and 
systemic insulin sensitivity (Table 1) [30-34], the causes or ef-
fects of mitochondrial function in adipocyte and systemic me-
tabolism remain controversial. 

Several past and recent studies have discovered that mito-
chondrial dysfunction causes cellular stress and subsequent 
metabokine secretion in various species [5,10,35-37]. The UP-
Rmt, which is conserved from worms to mammals [38], has ben-
eficial effects on whole-body metabolism through cell autono-
mous and cell non-autonomous pathways [7,10,39]. The cell 
non-autonomous component of the UPRmt is mediated by secre-
tory proteins including metabokines, which affect distal organs 
and requires further mechanistic insight [5]. However, most 

studies of this phenomenon have used lower organisms [40,41], 
global KO mouse models [42], or transgenic mouse models 
[43,44]; thus, the effects of this response in specific tissues re-
main incompletely understood. 

In particular, adipose tissue is a pivotal organ that plays a role 
in maintaining whole-body homeostasis through energy storage 
and adipokine secretion [45]. We demonstrated that adipocyte-
specific activation of the local UPRmt was protective against the 
metabolic defects of diet-induced obesity in mice with adipo-
cyte-specific deletion of the Crif1 gene (AdKO) [32]. AdKO 
mice fed an HFD showed improved metabolic phenotype, in-
cluding decreased fat mass and fatty liver, and increased EE 
with uncoupling protein 1 (UCP1) induction. The UPRmt was 
induced in adipocytes, and through RNA sequencing analysis, 
growth differentiation factor 15 (GDF15) was observed to in-
crease dramatically in AdKO mice. Double KO of GDF15 and 
adipose-specific Crif1 abrogated the beneficial metabolic ef-
fects seen in AdKO mice, with increased weight gain and de-
creased EE and UCP1 expression (Fig. 1). This indicates that 
GDF15 modulates body weight and energy homeostasis in 
AdKO mice. Studies on global Gdf15 KO have confirmed that 
GDF15 has a protective effect on obesity [42], but further stud-
ies on the mechanisms of UPRmt and metabokine secretion are 
needed. While the evidence is only suggestive for the role of 
UPRmt in metabolic disease in mammals, metabokines such as 
GDF15 will serve as a useful diagnostic biomarker for human 
mitochondrial disease, as well as a potential therapeutic modali-
ty for metabolic diseases.

Table 1. Metabolic Phenotypes in Adipocyte-Specific Mitochondrial Dysfunction Models

Gene Name Phenotype Reference

Tfam (KO) F-TFKO Decreased mtDNA copy quantity and complex I activity
Higher EE and protection from DIO
Improved insulin resistance and hepatosteatosis

[31]

Crif1 (KO) AdKO Decreased OxPhos complex subunits 
Increased UPRmt

Higher EE and protected from DIO
Improved glucose tolerance and insulin sensitivity 

[32]

Pgc1b (KO) PGC1b-FAT-KO Lower mitochondrial oxidative capacity
No difference in glucose homeostasis 

[30]

Pgc1a (KO) FKO Reduced OxPhos, FAO, and TCA gene expression
Glucose intolerance, insulin resistance on HFD

[33]

Ferritin (O/E) FtMT-Adip Leaner, glucose intolerance, low adiponectin, increased ROS, increased GDF15 and 
FGF21, local oxidative stress on DIO 

[34]

KO, knockout; mtDNA, mitochondrial DNA; EE, energy expenditure; DIO, diet-induced obesity; OxPhos, oxidative phosphorylation; UPRmt, mito-
chondrial unfolded protein response; FAO, fatty acid oxidation; TCA, tricarboxylic acid; HFD, high fat diet; O/E, overexpression; ROS, reactive oxygen 
species; GDF15, growth differentiation factor 15; FGF21, fibroblast growth factor 21.
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IMPAIRED MITOCHONDRIAL OXIDATIVE 
FUNCTION IN ADIPOSE TISSUE 
MACROPHAGES RESULTS IN ADIPOSE 
TISSUE INFLAMMATION AND INSULIN 
RESISTANCE

Recent investigations have demonstrated that immune cells re-
siding in adipose tissue are involved in the regulation of system-
ic metabolic homeostasis [46]. Inflammation induced by im-
mune cell infiltration in adipose tissue is a feature of adipose tis-
sue dysfunction. Among the various immune cells, ATMs play a 
critical role in the adipose tissue microenvironment by deter-
mining anti- and pro-inflammatory responses. In obese mice 
and humans, macrophage infiltration is increased, particularly 
of M1-polarized macrophages, which are known to secrete pro-
inflammatory cytokines and induce inflammation and systemic 
insulin resistance [47-49]. Mitochondrial function has been 
shown to play an important role in macrophage polarization. 

Several studies on macrophage mitochondria have been con-
ducted in vitro and in vivo. M1-polarized macrophages induced 
by lipopolysaccharide and IFNγ have low mitochondrial respi-
ration with decreased dependence on the Krebs cycle [50]. On 
the contrary, M2-polarized macrophages have an intact Krebs 
cycle, OxPhos, and increased fatty acid oxidation, which is re-
quired for the anti-inflammatory response [51]. Studies on the 
M1-to-M2 macrophage shift have suggested that it is possible to 

halt the progression of chronic inflammation in adipose tissue 
[52,53]. Although the impaired oxidative function of pro-in-
flammatory M1 macrophages affecting adipose tissue inflam-
mation and systemic insulin resistance has been extensively 
studied, it remains unclear whether primary OxPhos deficiency 
in macrophages causes insulin resistance associated with adi-
pose tissue inflammation. 

We demonstrated that a myeloid cell-specific mitoribosomal 
defect in LysM-Cre mice presented an increased M1-polarized 
macrophage state in adipose tissue, and the expression of com-
mon M2 macrophage genes such as Arg1, Ym1, and GDF15 
expression were reduced [54]. Additionally, we showed that re-
duced mitochondrial oxidative function in macrophages precipi-
tated adipose inflammation, including increased M1 macro-
phages, and systemic insulin resistance in HFD-fed mice (Fig. 
2). It is known that peroxisome proliferator-activated receptor 
gamma (PPARγ) and signal transducer and activator of tran-
scription 6 activate M2 macrophages by increasing oxidative 
metabolism and mitochondrial biogenesis [55,56]. M2 macro-
phages have been linked to an anti-inflammatory response and 
results in secretion of IL-10, transforming growth factor-β1, 
Ym1, and Fizz1. These proteins are paracrine factors that regu-
late the adipose tissue environment, and are involved in the de-
termination of the polarization of ATMs. We observed that 
GDF15 was increased by the Th2 cytokine IL-4 and PPARγ ag-
onist rosiglitazone. 

Fig. 1. Impaired mitoribosomal function in adipocytes is linked to increased energy expenditure and protection against diet-induced obesity 
and associated with the metabokine growth differentiation factor 15 (GDF15). Adipocyte-specific mitoribosomal defect mice (AdKO), 
caused by Crif1 deficiency, showed altered mitochondrial matrix proteostasis, which resulted in increased levels of chaperones and proteas-
es. AdKO mice showed weight loss and were protected from obesity and insulin resistance. This phenomenon was attributed to increased 
GDF15 levels in serum and adipose tissue. Thus, GDF15 controlled energy homeostasis and protected from diet-induced obesity in AdKO 
mice. UPRmt, mitochondrial unfolded protein response.
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Fig. 2. Impaired mitochondrial oxidative function in adipose tissue macrophages resulting in adipose tissue inflammation and insulin resis-
tance. Mice with a myeloid-specific mitoribosomal defect (MacHO) caused by Crif1 deficiency have higher M1 macrophage populations in 
adipose tissue. This leads to adipose inflammation and insulin resistance in high fat diet-fed mice. The macrophages from MacHO mice 
showed low growth differentiation factor 15 (GDF15) responses to a peroxisome proliferator-activated receptor gamma (PPARγ) agonist 
and T-helper 2 cytokines. Administration of GDF15 in ob/ob and MacHO mice reversed insulin resistance and inflammation, suggesting 
that GDF15 has an important role in improving the oxidative function of macrophages. WAT, white adipose tissue.

In macrophages, GDF15 treatment results in increased mito-
chondrial respiration and increased expression of genes related 
with fatty acid oxidation. By observing the increase in respira-
tion, palmitate oxidation, and fatty acid oxidation-related gene 
expression in macrophages treated with GDF15, it can be seen 
that GDF15 induces the shift of the macrophage phenotype by 
improving oxidative function. Furthermore, it was observed that 
M2 polarization was not induced in macrophages from GDF15 
KO mice, even with IL-4 treatment, and glucose tolerance was 
impaired by adoptive transfer of bone marrow-derived macro-
phages from GDF15 KO mice. These results support the role of 
GDF15 as a regulator of M2 macrophage polarization, indicat-
ing that GDF15 is a protein that protects against WAT inflam-
mation. The beneficial effects of GDF15 were further demon-
strated by several studies. Upregulated GDF15 has a protective 
role in advanced atherosclerosis, macrophage accumulation, 
and apolipoprotein E-deficient mice [57,58]. Moreover, GDF15 
transgenic mice showed resistance to diet-induced obesity and 
increased insulin sensitivity with lower NLR family pyrin do-
main containing 3 (NLRP3) inflammasome activity in adipose 
tissue [59], verifying the role of GDF15 in controlling macro-
phage-mediated adipose inflammation. 

Collectively, GDF15 can modulate the adipose tissue immune 
environment by increasing the oxidative function of macro-
phages and shifting the polarization to M2-like macrophages. 
Thus, it can be concluded that GDF15 has both an autocrine and 

paracrine effect, which can improve systemic metabolic homeo-
stasis. 

THE METABOKINE GDF15 COORDINATES 
CELLULAR AND INTERCELLULAR 
HOMEOSTASIS IN ADIPOSE TISSUE

The concept of a mitokine was initially suggested in a Cae-
norhabditis elegans model, where mitochondrial dysfunction in 
the brain triggered UPRmt activation non-autonomously in gut 
cells, and was mediated by an unknown factor that was termed 
a mitokine [5]. It is known that mitokines are secreted from tis-
sues with primary mitochondrial dysfunction, but in the com-
plex mammalian system, a mitokine can be defined as a 
metabokine capable of controlling systemic metabolism by pe-
ripheral and central nervous system pathways [60,61]. 

While FGF21 is also considered as a major metabokine, it has 
already been discussed extensively by Geng et al. [60], and the 
present article will focus on the metabokine GDF15. GDF15 
has been studied for its role in models of cancer [62], aging [63], 
longevity [64], and mitochondrial dysfunction [65]. The expres-
sion of GDF15 was observed in mouse and human adipose tis-
sue, and was found to be secreted from adipocytes, suggesting a 
paracrine role in the modulation of adipose tissue function and 
body fat mass [66]. We screened possible metabokine candi-
dates in the adipose tissue of AdKO mice, and showed that 
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metabokines play an important role in the phenotype associated 
with OxPhos dysfunction in AdKO mouse adipocytes [32]. The 
anti-inflammatory effect of GDF15 was extensively studied and 
discussed in the previous section [67,68]. However, the mecha-
nism by which metabokines regulate systemic metabolism in 
tissue-specific mitochondrial dysfunction models is not fully 
understood. 

We recently demonstrated that AdKO mice with whole-body 
GDF15 deletion have increased M1 macrophage proportions 
and reduced M2 macrophage expression in adipose tissue. Fur-
thermore, we observed that myeloid-specific mitoribosomal de-
fects induced M1 macrophage polarization and decreased M2 
macrophages in adipose tissue [54]. It was also observed that 
M2 macrophage polarization by IL-4 treatment did not occur in 
macrophages of GDF15 KO mice, suggesting that GDF15 is a 
regulator of anti-inflammatory macrophage polarization, while 
also acting as a protective metabokine against WAT inflamma-
tion [54]. Adipose tissue inflammation is associated with dys-
regulated immune cell function and a high M1/M2 macrophage 
ratio, and is involved in systemic insulin resistance [69,70]. M2 
macrophages are associated with Th2 cytokines, which are se-

creted from eosinophils [71]. Th2 cells in adipose tissue sup-
press inflammatory responses by secreting the anti-inflammato-
ry cytokine IL-10 [72]. IL-4 and IL-13, secreted from eosino-
phils in adipose tissue, are associated with macrophage recon-
stitution and are involved in improved glucose tolerance and in-
sulin sensitivity [71]. We observed that GDF15 was required for 
IL-13-induced M2 macrophage polarization via the Janus ki-
nase (JAK)-signal transducer and activator of transcription 6 
(STAT6) pathway. It was shown that administration of IL-13 to 
wild-type mice fed an HFD improved glucose tolerance, which 
was not observed in GDF15 KO mice. These findings suggest 
that the improvement of systemic metabolism by IL-13, a Th2 
cytokine, is mediated by GDF15 and acts as a regulator of anti-
inflammation and systemic glucose homeostasis (Fig. 3) [73].

The metabolic action of GDF15 was shown to regulate food 
intake and body weight through binding with GDNF family re-
ceptor alpha like (GFRAL), which is localized in the area pos-
trema and the nucleus tractus solitarius region of the hindbrain 
[74-76]. Weight loss and food intake reduction were eliminated 
in GFRAL KO mice, suggesting that GDF15 has a central role 
in appetite regulation [74-76]. However, other studies suggested 

Fig. 3. Lessons from mitochondrial proteostasis in adipose tissue. Growth differentiation factor 15 (GDF15) is induced by cellular stress, in-
cluding aging, inflammation, cancer, as well as mitochondrial dysfunction. Adipocyte mitoribosomal stress perturbs mitochondrial proteos-
tasis, which upregulates the metabokine GDF15. GDF15 regulates macrophage polarization toward the M2-like state. M2-like macrophages 
are also induced by the Th2 cytokines, interleukin 4 (IL-4) and IL-13, which signal through the Janus kinase (JAK)-signal transducer and 
activator of transcription 6 (STAT6) pathway and lead to improvement of glucose homeostasis and insulin sensitivity. GDF15-deficient 
macrophages are prone to a M1-like phenotype, which is associated with adipose inflammation and systemic insulin resistance. Therefore, 
GDF15 has a beneficial effect on regulating macrophage polarization in adipose tissue, which is further associated with improvement of 
systemic metabolism. ATF, activating transcription factor; UPRmt, mitochondrial unfolded protein response.



Adipose Tissue Homeostasis and Mitochondria 

Copyright © 2021 Korean Endocrine Society www.e-enm.org  7

that GDF15 may have a peripheral action [77,78]. Thus, further 
studies of the peripheral receptor of GDF15 are necessary to 
identify its peripheral metabolic activity. Collectively, GDF15, 
is a metabokine that is increased by the mitochondrial stress re-
sponse, and possibly plays a peripheral role in regulating inter-
cellular homeostasis through not only central nervous system-
mediated action via GFRAL, but also through immune and met-
abolic reprogramming through undiscovered receptors (Fig. 4).

CONCLUSIONS

GDF15 is highly increased in various pathologies including 
obesity, cancer, and mitochondrial stress. Whole-body KO of 
Gdf15 in mice showed increased weight gain due to higher food 
intake. An adipocyte-specific mitoribosomal defect mouse 
model (AdKO) showed dual activation of cell-autonomous 
(chaperones and proteases) and cell non-autonomous metabo-
kine mechanisms in WAT. This finding implies a novel role for 
the UPRmt and metabokine secretion in adipose tissue homeo-
stasis, which can regulate both systemic glucose homeostasis 
and EE as part of an organismal adaptation to local mitochon-
drial stress. We have shown that adipose OxPhos function from 
WAT can influence systemic glucose homeostasis and EE in 
pathologic states such as diet-induced obesity via the metabo-
kine GDF15. Several studies have discovered that GDF15 plays 

a role in appetite regulation and body weight gain through its 
binding with GFRAL, but it is not known which receptors and 
mechanisms are involved to exert the peripheral effects of 
GDF15. Thus, further research is needed to discover the mode 
of action of GDF15 in peripheral tissues.
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induces growth differentiation factor 15 (GDF15), which binds to GDNF family receptor alpha like (GFRAL) in the area postrema (AP) and 
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sue has not yet been discovered. Therefore, further research is needed to confirm the mechanism of peripheral GDF15 action. PVH, para-
ventricular nucleus of the hypothalamus.
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