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Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are 
susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabol-
ic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. 
Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of met-
abolic diseases including insulin resistance and type 2 diabetes mellitus. Mitochondrial transcription factor A (Tfam) may regu-
late Ca2+ flux via changing the mitochondrial membrane potential and signals to other organelles such as the nucleus and ER. 
Since Tfam is involved in metabolic function in the mitochondria, here, we discuss the contribution of Tfam in coordinating mi-
tochondria-ER activities for Ca2+ flux and describe the mechanisms by which Tfam affects mitochondrial Ca2+ flux in response to 
metabolic challenges. 
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INTRODUCTION

Tissues that are very active in energy metabolism are more 
likely to face metabolic challenges from the bioenergetic sub-
strate and are susceptible to mitochondrial diseases [1]. Several 
genes from both the nucleus and mitochondria are required 
for mitochondrial formation and maturity. Thus, intercommu-
nication between the mitochondria and nucleus is critical for 
highly metabolic tissues such as skeletal muscle, heart, liver, 
and adipose tissue. 

The mitochondria are heavily involved in diabetes, insulin 
resistance, complications derived from diabetes [2], and cellu-
lar calcium (Ca2+) flux, an important process for mitochondrial 

function and metabolic diseases since Ca2+ signaling regulates 
various events related to cell death and energy metabolism [3-
7]. Mitochondrial metabolic dysfunctions induced by insulin 
resistance are linked to abnormal Ca2+ flux and high reactive 
oxygen species (ROS) levels. The metabolic functions that reg-
ulate Ca2+ flux are also associated with glucose uptake and me-
tabolism [4]. The nucleus responds to Ca2+ signals, yet the en-
doplasmic reticulum (ER) dynamically interacts with the mi-
tochondria and regulates Ca2+ signaling. This process is essen-
tial for several metabolic processes and physiological functions 
[8], and is important for regulating normal mitochondrial bio-
genesis [5,9] and glucose metabolism [4].

The nucleus encodes the mitochondrial transcription factor 
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A (TFAM), which activates transcription in the mitochondria 
and transmits a signal to the nucleus based on the mitochon-
drial state by regulating Ca2+ levels. It has been shown that it 
also prevents high-fat diet-induced insulin resistance [10]. 
Tfam-mutant mice developed diabetes and exhibited mito-
chondrial deoxyribonucleic acid (mtDNA) depletion, deficient 
oxidative phosphorylation, and abnormal mitochondrial 
structure [9]. This suggests that TFAM is involved in cellular 
metabolic function, possibly involving Ca2+ signaling. 

This review focuses on how mitochondrial TFAM regulates 
Ca2+ signaling and how dysregulation of Ca2+ by the mitochon-
dria leads to metabolic disease in type 2 diabetes mellitus 
(T2DM). 

MITOCHONDRIA AND TFAM

Mitochondria play a key role in cellular physiology, and are re-
sponsible for producing cellular energy and essential metabo-
lites, along with regulating apoptosis [11]. These functions are 
dependent on gene expression in both the mitochondria and 

nucleus and are regulated by communication between mito-
chondria and other organelles.

Biosynthesis of each electron transport chain (ETC) com-
plex in the mitochondria is jointly regulated by the nucleus 
and mtDNA. Since several genes are required for mitochon-
drial biogenesis (Fig. 1), TFAM is an important regulator be-
tween the mitochondria and nucleus, since Tfam is expressed 
from the nucleus but acts on the mitochondria. TFAM regu-
lates transcription of the 13 genes for ETC protein, 22 for trans-
fer RNAs, and two for ribosomal RNAs encoded by mtDNA 
[12,13]. TFAM binds to mtDNA and enhances transcription in 
association with mitochondrial RNA polymerase and either mi-
tochondrial transcription factor B1 (TFB1M) or B2 (TFB2M) 
[14]. In addition to binding to the specific region of the pro-
moter, TFAM binds nonspecifically to random sites on mtD-
NA [15,16] which enhances the stabilization and maintenance 
of the mitochondrial chromosome [15-17] as well as regula-
tion of mtDNA copy number [18]. Interestingly, since TFAM 
overexpression has been shown to increase mtDNA without 
alteration of respiratory capacity and mitochondrial biogenesis 

Fig. 1. Schematic illustration of the mechanism underlying the mitochondrial membrane potential (ΔΨm) and electron transport 
chain (ETC) as well as a summary of subunits of the four-ETCs and adenosine triphosphate (ATP) synthase (complex V) encod-
ed by nuclear and mitochondrial genes. The five complexes are embedded in the inner mitochondrial membrane. ΔΨm is gener-
ated via a proton pump comprising complex I, III, and IV, and the electron is sequentially transferred from complex I to IV, re-
ferred to as the ETC. The proton pump-induced proton gradient between the intermembrane space and matrix generates ΔΨm. 
The flow of protons through ATP synthase from the intermembrane space to the matrix is coupled with ATP synthesis. Indicated 
below each complex is the number of protein subunits encoded by nuclear (nDNA) and mitochondrial genomes (mtDNA). 
OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane; NAD(H), nicotinamide adenine dinucleotide; 
CoQ, coenzyme Q; FAD(H), flavin adenine dinucleotide; Cyt C, cytochrome C; ADP, adenosine diphosphate .
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[10], it seems that the mechanisms underlying mitochondrial 
biogenesis and maintenance of mtDNA by TFAM are sepa-
rately regulated. Moreover, TFAM overexpression increases 
the nuclear expression of various factors associated with Ca2+ 
signaling and glucose metabolism in mouse skeletal muscle 
[10]. TFAM is also involved in mitochondrial function includ-
ing lower ROS via enhancing antioxidants, 5’ adenosine mo-
nophosphate-activated protein kinase (AMPK) activation, and 
mitochondrial uncoupling as well as regulation of membrane 
potential [10]. Therefore, intercommunication between the 
mitochondria and nucleus is closely regulated to cope with a 
sudden change in cellular energy challenges, with TFAM pos-
sibly playing an important role in this interaction. 

NUCLEUS DISPATCHES TFAM TO THE 
MITOCHONDRIA

Signaling from the nucleus can regulate mitochondrial gene 
expression or mtDNA replication in response to cellular meta-
bolic challenges or environmental signals [19], via TFAM. Nu-
clear respiratory factor 1 (NRF-1) can bind specific promoters 
of various nuclear genes required for mitochondrial respirato-
ry function [20], which coordinates the expression of respira-
tory subunits with the mitochondrial transcriptional system 
[13]. NRF-1 also binds and activates the Tfam promoters [21], 
thereby inducing a cellular signaling cascade in skeletal muscle 
in response to exercise training [22,23]. In this context, Ca2+ 
treatment in muscle cell increases TFAM and NRF-1 protein 
levels as well as mitochondrial biogenesis [5,9], suggesting Ca2+ 
as a signaling molecule between cellular organelles. Redox re-
actions are activated in the mitochondria during exercise-in-
duced oxidative phosphorylation and the incidence of NRF-1 
binding to the TFAM promoter is increased under pro-oxidant 
conditions. However, Tfam expression is inhibited by deacti-
vated NRF-1 [24], suggesting that Tfam expression mediated 
by NRF-1 is regulated under activated redox conditions. Inter-
estingly, mtDNA depletion induces an increase in both along 
with oxidative stress [25]. NRF-1 and Tfam mRNAs are also 
increased in response to mitochondrial lipopolysaccharide-in-
duced oxidative damage [26], suggesting that TFAM is in-
creased to mitigate these cellular conditions, which, along with 
NRF-1, have been shown to decrease ROS via enhanced anti-
oxidant and mitochondrial uncoupling [10].

Taken together, when the cellular environment undergoes 
metabolic challenge, including exercise or metabolic alteration, 

NRF-1 and TFAM are upregulated in the nucleus followed by 
TFAM translocation into the mitochondria to mitigate this 
change by regulating mitochondrial oxidative phosphorylation 
and redox valence. 

Intercommunication between mitochondria and ER for 
intracellular Ca2+ flux
Ca2+ signaling and flux regulate numerous cellular physiologi-
cal processes, including neuronal excitability, muscle contrac-
tion, nuclear gene expression, and mitochondrial integrity, 
function, and dynamics [27]. Accumulated data have shown 
that mitochondrial Ca2+ content is low under basal conditions, 
while increases in cytosolic free Ca2+ in response to various 
agents (nutrients, hormones, neurotransmitters, etc.) elevates 
mitochondrial Ca2+ levels [28,29]. This enhances the activity of 
tricarboxylic acid (TCA) cycle dehydrogenase (pyruvate-, iso-
citrate-, and α-ketoglutarate dehydrogenase) required for oxi-
dative phosphorylation [30]. Thus, activation of oxidative me-
tabolism via enhanced Ca2+ flux can increase the supply of re-
dox cofactors, such as a reduced form of nicotinamide adenine 
dinucleotide (NAD) and flavin adenine dinucleotide (FAD) to 
drive ETC and adenosine triphosphate (ATP) synthesis (Fig. 2). 

TFAM regulates the mitochondrial membrane potential 
(ΔΨm) and increases calcium/calmodulin-dependent protein 
kinase kinase β (CaMKKβ) [10]. In turn, ΔΨm can regulate 
cellular Ca2+ flux [31], while CaMKKβ is activated in a calci-
um-dependent manner [32]. Thus, TFAM-driven ΔΨm con-
trols Ca2+ flux in the cell via various Ca2+ channels. Perturba-
tion of TFAM expression cannot protect mtDNA [18], while 
damaged mtDNA has been reported to increase ER stress [33]. 
This suggests that TFAM may be involved in the mitochon-
dria-ER interactions. 

The lumen of the ER is the main storage site of Ca2+ and is 
constantly refilled via the sarco/endoplasmic reticulum Ca2+ 
ATPase (SERCA) pump [34,35]. When skeletal muscle con-
traction is initiated, cytosolic Ca2+ concentration is rapidly in-
creased by 3 to 4-fold, with the sarcoplasmic reticulum (SR), 
an ER in skeletal muscle, optimizing the coupling of excitation 
and contraction of muscle fibers. SR has channels for efflux of 
Ca2+ into the cytosol in response to depolarization, while SER-
CA transports cytosolic Ca2+ in an ATP-dependent manner 
into the ER lumen, thereby terminating the contraction. The 
close link between the mitochondria and SR/ER allows for 
rapid and potent local Ca2+ signaling (Fig. 2) [6,36]. 

Mitochondrial and endoplasmic reticulum contacts (MERC) 
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orchestrate cellular physiological functions such as mitochon-
drial Ca2+ signaling and dynamics. Under physiological stimu-
lation requiring intercommunication between mitochondria 
and ER, mitofusin 2 (MFN2) tethers to stabilize both organelles 
[31,37,38]. Meanwhile, inositol 1,4,5-trisphosphate (IP3) binds 
to the IP3 receptor (IP3R), triggering Ca2+ release from the ER 
through IP3R, which can directly release Ca2+ into the cytosol 
or mitochondria [36]. Released Ca2+ from the ER enters the 
mitochondrial intermembrane space by first passing through 
the outer mitochondrial membrane via the voltage-dependent 
anion channel (VDAC) [39], then the mitochondrial calcium 
uniporter (MCU) transporter across the inner mitochondrial 
membrane [40,41]. TFAM is linked to Ca2+ regulation via 
MFN2 [42]. Ca2+ flux is essential for mitochondrial bioenerget-
ic processes, which is linked to the ΔΨm (Figs. 1 and 2). 

TFAM regulates the mitochondrial and ER Ca2+ signaling 
to nucleus via ΔΨm
Mitochondria are key organelles in Ca2+ flux regulation in cells. 
While Ca2+ flux in mitochondria is one of the most significant 

processes in regulating energy production and communica-
tion with other organelles, it mediates various pathologies as-
sociated with metabolic disease.

Mitochondrial Ca2+ uptake is directly linked to mitochon-
drial bioenergetics, where depletion of mitochondrial ΔΨm 
abrogates mitochondrial Ca2+ uptake, and defects in the respi-
ratory chain have been linked to the decreased ability of mito-
chondria to pump Ca2+. Energetic substrates derived by the 
TCA cycle are serially reduced to equivalents by ETC, and 
these redox reactions are coupled with protons pumping from 
the matrix into the intermembrane space [43]. The proton 
electrochemical gradient induced by ΔΨm and pH gradient is 
necessary to produce ATP (Fig. 1). Thus, ΔΨm can maintain 
mitochondrial Ca2+ uptake and physiological functions (Figs. 1 
and 2) [44,45]. 

Lack of TFAM decreases Serca2a expression from the nucle-
us [46], indicating that TFAM in the mitochondria signals to 
the nucleus to transcribe Serca2a and coordinate with ER to 
maintain Ca2+ homeostasis. The ER can regulate the Ca2+ efflux 
channels [36], which could affect cytosolic Ca2+ and force dur-

Fig. 2. Mitochondria contacts endoplasmic reticulum (ER) and regulates cellular calcium (Ca2+) flux. Na+/Ca2+ exchanger 
(NCLX) regulates Ca2+ efflux from the mitochondria to the cytosol. The sarco/endoplasmic reticulum Ca2+ ATPase (Serca) in the 
ER membrane can take up Ca2+ into the ER lumen. Inositol triphosphate (IP3) binds to its own receptor (IP3R) leading to ER Ca2+ 
efflux in the cytosol or the mitochondria via a voltage-dependent anion channel (VDAC) at the outer mitochondrial membrane 
(OMM); in turn, the mitochondrial calcium uniporter (MCU) transfers it across the inner mitochondrial membrane (IMM). 
Ca2+ is necessary for the activation of pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and α-ketoglutarate 
(KGDH); thus, Ca2+ flux in the mitochondria is a key process for the tricarboxylic acid (TCA) cycle to provide nicotinamide ade-
nine dinucleotide (NADH) and flavin adenine dinucleotide (FADH) for the electron transport chain (ETC). Mitofusin (MFN) 
induces mitochondria-ER physical tethering to provide a stable association.
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ing contraction; hence, a reduced ER Ca2+ level in TFAM 
knockout muscle results in a decrease in cytosolic Ca2+ [47], 
which leads to a lower force in single fibers during contraction 
[47]. In TFAM knockout mice, an increase in mitochondrial 
Ca2+ occurs during repeated contraction [47], which may in-
duce Ca2+ overload in the mitochondria and oxidative stress. 
In contrast with TFAM knockouts, Serca2 gene can enhance 
contractile function and restore electrical stability in a heart 
failure model caused by ER(SR) Ca2+ leak [48]. Watanabe et al. 
[46] have shown that TFAM regulates Serca2 gene transcrip-
tion; however, it is not clear how TFAM in mitochondria regu-
lates nuclear Serca2a transcription (Fig. 3).

As mentioned above, mice with muscle-specific deletion of 
TFAM exhibit Ca2+ overload in the mitochondria, which might 
be caused by the low Ca2+ efflux into the cytosol by the mito-
chondria. MCU is the main channel transporting Ca2+ from 
the cytosol, and Na+/Ca2+ exchanger (NCLX) regulates efflux 
of Ca2+ from mitochondria, both of which are located at the in-
ner mitochondrial membrane where they coordinate to regu-
late mitochondrial Ca2+ homeostasis. Mice with cardiac-specif-

ic deletion of TFAM showed how a failure in the coordination 
between MCU and NCLX in mitochondria can lead to cardio-
myopathy [49]. TFAM deletion in cardiac muscle decrease 
Ca2+ efflux from mitochondria due to low NCLX gene and 
protein levels, with the reduced efflux potentially inducing mi-
tochondrial Ca2+ overload [49]. Ca2+ flux through the MCU 
can be regulated by the voltage gradient across the inner mito-
chondrial membrane, while the opening probability of MCU is 
decreased based on ΔΨm depolarization [50]. Moreover, pro-
tonophore-induced depolarization of ΔΨm almost fully sup-
presses Ca2+ influx into the mitochondria [51]. These findings 
indicate that the large electrical driving force that arises from 
the negative potential across the inner ΔΨm is a major factor 
in regulating the influx of Ca2+ through MCU (Fig. 3). 

Depolarization of ΔΨm or lack of mtDNA prevents mito-
chondrial Ca2+ uptake, elevating the cytoplasmic Ca2+ level and 
leading to mitochondrial retrograde signaling into the nucleus 
to activate Ca2+-mediated transcription mechanisms involved 
in calcineurin and Ca2+/calmodulin-dependent protein kinase 
(CaMK) [44,45]. Human TFAM (hTFAM) transgenic mice ex-

Fig. 3. A schematic illustration of the hypothesized role of mitochondrial transcription factor A (Tfam). Mechanism by which 
Tfam sends calcium (Ca2+) signals to the nucleus. Na+/Ca2+ exchanger (NCLX) and mitochondrial calcium uniporter (MCU) are 
embedded at the inner mitochondrial membrane (IMM). The activity of these channels can be affected by ΔΨm flux, which can be 
regulated by Tfam. Thus, Tfam-driven ΔΨm can transmit Ca2+ signals via NCLX/voltage-dependent anion channel (VDAC) to the 
nucleus. Tfam can regulate the transcription of NCLX and sarco/endoplasmic reticulum Ca2+ ATPase (Serca); however, the specific 
mechanism is not clear in metabolic cells. Tfam increases calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ), 5’ 
adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1), and peroxisome proliferator-activated receptor delta 
(PPARδ). The Tfam-induced increase in these proteins seems to be regulated by Ca2+ signaling. ER, endoplasmic reticulum.
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hibit mild ΔΨm uncoupling when fatty acids are used as a sub-
strate for skeletal muscle mitochondria, despite mtDNA in 
skeletal muscle being increased by hTfam [10]. These altera-
tions by hTfam result in an increase in mild uncoupling in 
ΔΨm, leading to an increase in CaMKKβ expression from the 
nucleus [10]. Therefore, TFAM regulates ΔΨm and mediates 
retrograde signaling to the nucleus by Ca2+ transmission. Inter-
estingly, mild uncoupling of ΔΨm by hTFAM decreased ROS 
[10]. Since a lack of TFAM can mediate Ca2+ overload in the 
cytoplasm, it not only induces retrograde signaling to the nu-
cleus but also increases ROS and apoptosis [45]. ROS pro-
duced by lack of TFAM in cells may be induced by an overload 
of Ca2+ [45]; however, hTFAM overexpression can decrease 
ROS and oxidative stress in tissue with mild uncoupling of 
ΔΨm [10]. Therefore, TFAM may mediate mild uncoupling of 
ΔΨm that regulates Ca2+ retrograde signaling to tightly control 
cellular ROS (Fig. 3). 

The nuclear genome encodes approximately 1,500 proteins 
that are necessary for mitochondrial function and integrity 
[52,53]. Intercommunication between mtDNA and the nuclear 
genome is necessary for mitochondrial biogenesis and normal 
function. To facilitate the interplay between the organelles, 
TFAM functions signaling transmitter to the mitochondria 
from the nucleus, and sends signals back to the nucleus accord-
ing to the state of the mitochondria by regulating Ca2+. This 
signaling pathway is important for the regulation of normal 
mitochondrial biogenesis via peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC-1α), which orches-
trates various transcription factors including NRF-1 and per-
oxisome proliferator-activated receptor delta (PPARδ) (Fig. 3). 

Intracellular Ca2+ binds CaM, thereby mediating various cel-
lular functions [3,54]. In skeletal muscle, this Ca2+/CaM com-
plex contract the muscle fiber [55]. The activation of Ca2+/
CaMKKβ enhances AMPK activation [32], which facilitates 
mitochondrial biogenesis via enhanced expression of PGC-1α 
[56]. Muscle-specific hTFAM transgenic mice exhibit higher 
levels of CaMKKβ and activated AMPK [10]. To maintain and 
manage mtDNA as well as to regulate mitochondrial function, 
it is also necessary to increase the amount of TFAM as the mi-
tochondrial number increases. It has been shown that TFAM 
overexpression in skeletal muscle enhances the expression of 
NRF-1, which is an upstream transcription factor for itself [10] 
and PPARδ expression. PPARδ regulates glucose transporter 
type 4 (GLUT4) expression and glucose uptake in muscle tis-
sue [57]. A higher level of PGC-1α and PPARδ in tissue is ben-

eficial in improving metabolic diseases such as insulin resis-
tance and T2DM (Figs. 3 and 4).

Ca2+ flux in metabolic disease 
Skeletal muscle, liver, and adipose are metabolic and insulin-
sensitive tissues. Mitochondrial dysfunction in those tissues is 
associated with lower levels of TFAM in various metabolic dis-
eases such as obesity, insulin resistance, and T2DM, which 
mediate abnormal Ca2+ flux.

Role of MERC in diabetes 
Tethering between mitochondria and ER plays a key role in 
Ca2+ homeostasis, which regulates energy metabolism, trans-
portation of lipids, and apoptosis [58]. The influx of Ca2+ medi-
ates insulin-stimulated glucose uptake in skeletal muscle [4]. 
The authors reported that a decrease in Ca2+ influx by IP3R in-
hibition improved insulin-stimulated glucose uptake in skele-
tal muscle without AKT signaling [4]. In adipocytes, cytosolic 
Ca2+ levels were increased by insulin stimulation [59]. The in-
hibition of Ca2+ signaling in adipocytes [59] and lack of IP3R 
in primary rat cardiomyocytes [60] decreased GLUT4 translo-
cation and glucose uptake upon insulin stimulation, respec-
tively. Moreover, mitochondrial dysfunction [61], dysregula-
tion of lipid and Ca2+ homeostasis [62], and ER stress [63] have 
been reported to be closely linked to insulin resistance in the 
liver. Palmitate is known to reduce insulin sensitivity; it has 
been shown that disruption of the interaction between mito-
chondria and ER by palmitate induces insulin resistance in hu-
man’s and mice’s hepatocytes. However, an increase in these 
associations between organelles can prevent palmitate-in-
duced insulin resistance [64]. Loss of IP3R1 decreases MERC 
formation and induces mitochondrial dysfunction and insulin 
resistance; however, restoration of MERC has been shown to 
improve palmitate-induced insulin resistance in hepatocytes 
[64]. It has been reported that AKT phosphorylates the IP3R 
channel, resulting in decreased Ca2+ release capacity through 
IP3R [65,66]. Moreover, loss of IP3R activity has been shown 
to change the integrity of MERC [64]. Although defects in 
MERC have been suggested to play a role in insulin resistance 
and T2DM [37,38,42], MERC-mediated Ca2+ flux for glucose 
homeostasis is complicated and tightly regulated; hence, other 
specific mechanisms might be involved in this process. Thus, 
further studies are required to demonstrate the relationship 
between insulin resistance and MERC, as well as the mecha-
nisms involved in this process. ER-associated mitochondrial 
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division sites are spatially linked to mitochondrial nucleoids, 
which suggests a specific role for mitochondria-ER contacts in 
mtDNA maintenance [67]. ER-mitochondria contacts coordi-
nate mtDNA synthesis with division to distribute newly repli-
cated nucleoids into daughter mitochondria [68]. MFNs, pro-
teins acting between mitochondria and ER [69], are also in-
volved in metabolic diseases. Mitochondrial dysfunction is re-
portedly caused by depletion and point mutations of mtDNA 
in mice with muscle-specific deletion of MFN1 and MFN2 
[69], while MFN2 expression in skeletal muscle is lower in pa-
tients with obesity or T2DM [37]. In contrast, overexpression 
of MFN2 has been shown to improve diet-induced insulin re-
sistance [70], and MFN2 is necessary for normal glucose ho-
meostasis [38]. Whether TFAM is directly involved in the pro-
cess of forming or maintaining ER-mitochondria contacts re-

mains to be determined, however, the loss of MFN1 and 
MFN2 decreases mtDNA that is maintained by TFAM [69], 
while PGC-1α, a transcription factor for Tfam, can increase 
the MFN2 expression levels via estrogen-related receptor-α 
(ERRα) [71]. Moreover, TFAM is involved in packaging mtD-
NA into a nucleoid [72-74]; hence, it is possible that TFAM in-
directly participates in this process of MERC-mediated glucose 
homeostasis. hTFAM overexpression in skeletal muscle has 
been reported to prevent high-fat diet-induced insulin resis-
tance along with preserving higher levels of mtDNA [10]. 

SERCA tightly regulates cytosolic Ca2+, leading to glucose 
oxidation [75]. An increase in SERCA has been reported to 
improve diabetic cardiomyopathy [7,76]. A high-fat diet de-
creases Serca2a expression due to a lack of TFAM; however, 
overexpression of TFAM inhibits hydrogen peroxide-induced 

Fig. 4. A schematic illustration of the summary of the dysregulation of mitochondrial calcium (Ca2+) flux in type 2 diabetes melli-
tus (T2DM). Lower mitochondrial transcription factor A (Tfam) levels in T2DM may serially induce mitochondrial Ca2+ dysreg-
ulation through ΔΨm/Ca2+ channels. (1) Lower Tfam levels in mitochondria clearly reduce the mitochondrial complex that regu-
lates proton pumps, (2) leading to dysregulation of ΔΨm that controls the Na+/Ca2+ exchanger (NCLX) channel. (3) Overload of 
Ca2+ induced by NCLX decreases tricarboxylic acid (TCA) cycle activity, resulting in reduced supply of nicotinamide adenine di-
nucleotide (NADH) and flavin adenine dinucleotide (FADH) for the electron transport chain (ETC) proton pump; especially, 
overloaded Ca2+ increases inner mitochondrial membrane (IMM) depolarization and decreases ΔΨm for NCLX activity. Over-
loaded Ca2+ in (3) matrix and (4) intermembrane space may trigger apoptosis. (5) Dysregulation of Ca2+ by inositol triphosphate 
receptor (IP3R) and sarco/endoplasmic reticulum Ca2+ ATPase (Serca) is clearly linked to mitochondrial dysfunction and meta-
bolic disease. (6) Loss of mitofusin (MFN) downregulates stable contact of the mitochondria and endoplasmic reticulum (ER), 
leading to T2DM. (7) Overloaded Ca2+ in cytosol also increases the incidence of T2DM. (8) Loss of Ca2+ signaling into the nucleus 
from the mitochondria may inhibit the transcription of NCLX, Serca, peroxisome proliferator-activated receptor gamma coacti-
vator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor delta (PPARδ), (9) glucose transporter type 4 (GLUT4) 
expression is regulated by PPARδ. This can be a caused by a metabolic disease. MCU, mitochondrial calcium uniporter; VDAC, 
voltage-dependent anion channel.
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decrease of Serca2a mRNA [46]. An increase in SERCA2a by 
TFAM can reduce levels of cytoplasmic Ca2+ and calpain and 
mitochondrial apoptosis factor, thereby improving glucose up-
take in cardiac muscle [77]. Increased expression of Serca im-
proves metabolic syndrome [78].

Role of mitochondrial Ca2+ regulation in T2DM 
The MCU complex consists of a pore-forming MCU subunit, a 
regulatory subunit, and mitochondrial Ca2+ uptake proteins 
1-3 (MICU1-3), which regulate the channel activity [79-82]. 
Indeed, a splicing variant of muscle-specific MICU1 with 
higher Ca2+ affinity facilitates mitochondrial Ca2+ uptake and 
ATP production, which is required for muscle contraction 
[83], whereas a deletion of MCU in skeletal muscle in mice de-
creases muscle force, indicating that through regulating Ca2+ 
uptake, MCU plays a vital role in energy production for con-
traction [84]. Deletion of the muscle-specific MCU induced 
lower activity of pyruvate dehydrogenase (PDH), which is suf-
ficient to shift the preference of the substrate toward fatty acids 
from carbohydrates [85] since PDH converts pyruvate to ace-
tyl-CoA. In addition, loss of MCU causes defects in Ca2+-sensi-
tive TCA cycle enzymes such as isocitrate and α-ketoglutarate 
dehydrogenases. Therefore, MCU-deleted mitochondria in 
skeletal muscle cannot sustain respiration without TCA cycle 
support, although MCU-deleted muscle mostly relies on fatty 
acids as substrate for mitochondrial respiration [85]. Thus, fat-
ty acids do not completely oxidize and accumulate in muscle, 
leading to insulin resistance in skeletal muscle [86]. MCU is on 
the mitochondrial inner membrane that is dependent on 
ΔΨm, and hTFAM overexpression in skeletal muscle induces 
mild uncoupling of ΔΨm, which may change mitochondrial 
Ca2+ flux. This alteration shifts the preferred substrate for mito-
chondrial respiration from glucose to fatty acids [10]. Howev-
er, the hTFAM transgenic model is different from the MCU 
deletion since muscle-specific hTFAM overexpression increas-
es glucose uptake and prevents high-fat diet-induced insulin 
resistance (Figs. 3 and 4) [10]. 

The NCLX plays a vital role in mitochondrial efflux into the 
cytosol [87]. A decrease in NCLX function leads to the accu-
mulation of Ca2+ in mitochondria, while impaired NCLX func-
tion has been reported in diabetic rat hearts [87,88]. A previous 
study has shown that deletion of TFAM in mouse cardiomyo-
cytes decreases NCLX transcription [49], and TFAM regulates 
ΔΨm in skeletal muscle; therefore, TFAM seems to clearly link 
to mitochondrial Ca2+ efflux via ΔΨm (Figs. 3 and 4).

Overloaded Ca2+ levels have been reported in adipocytes 
from patients with obesity with insulin resistance [89] and from 
T2DM rats [90], which may link to the abnormal functions of 
mitochondria and ER which are unable to maintain Ca2+ ho-
meostasis in cells. ΔΨm depolarization enhances ROS produc-
tion [91-93]; however, hTFAM overexpression prevents fatty 
acid-induced ΔΨm depolarization in muscle cells and blocks 
ROS production in mouse skeletal muscle [10]. Moreover, mild 
ΔΨm uncoupling induced by hTFAM increases glucose uptake 
in skeletal muscle and improves high-fat diet-induced insulin 
resistance [10]. Further studies are required to determine how 
hTFAM regulates Ca2+ flux in mitochondria via ΔΨm. 

CONCLUSIONS

This review has provided an overview of how mitochondria sig-
naling to the nucleus and interact with the ER to regulate Ca2+ 
as well as the role of mitochondrial dysregulation via cellular 
Ca2+ homeostasis in the pathogenesis of metabolic diseases, in-
cluding insulin resistance and T2DM. Although further investi-
gation is required to determine mechanisms by which TFAM 
controls ΔΨm to regulate Ca2+ flux in the cell, accumulated data 
indicate that TFAM-driven ΔΨm regulates mitochondrial and 
ER’s Ca2+ flux. This leads to Ca2+ signaling into the nucleus, 
thereby inducing the expression of various genes such as flux 
channels and signaling co-factors for Ca2+. TFAM-mediated 
regulation of ΔΨm prevents high-fat diet-induced oxidative 
stress and insulin resistance via enhanced expression of GLUT4, 
PGC-1α, and PPARδ from the nucleus. Moreover, the mito-
chondria interact with the ER and regulate cellular Ca2+ flux. 
This process clearly influences mitochondrial TCA cycle and 
oxidative phosphorylation, whereas dysregulation of this pro-
cess could increase metabolic diseases such as T2DM. Several 
fundamental cellular processes are governed by this crosstalk 
among the mitochondria, ER, and nucleus, which plays an es-
sential role in the regulation of the cellular metabolic response 
to environmental cues. The blockage of this communication re-
duces mitochondrial activity [94,95] and increases the inci-
dence rate of metabolic disease. Thus, the mitochondria govern 
intercommunication between cellular organelles, including ER 
and nucleus, via Ca2+ signaling to regulate metabolism.

Taken together, here, we propose that TFAM is involved in 
the regulation of Ca2+ flux via the mitochondria-ER interaction 
that can signal to the nucleus, which ultimately mitigates meta-
bolic disorders. 
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