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Background: We previously, reported that granulocyte-colony stimulating factor (G-CSF) reduces cardiomyocyte apoptosis in 
diabetic cardiomyopathy. However, the underlying mechanisms are not yet fully understood. Therefore, we investigated whether 
the mechanisms underlying of the anti-apoptotic effects of G-CSF were associated with autophagy using a rat model of diabetic 
cardiomyopathy.
Methods: Diabetic cardiomyopathy was induced in rats through a high-fat diet combined with low-dose streptozotocin and the 
rats were then treated with G-CSF for 5 days. Rat H9c2 cardiac cells were cultured under high glucose conditions as an in vitro 
model of diabetic cardiomyopathy. The extent of apoptosis and protein levels related to autophagy (Beclin-1, microtubule-binding 
protein light chain 3 [LC3]-II/LC3-I ratio, and P62) were determined for both models. Autophagy determination was performed 
using an Autophagy Detection kit.
Results: G-CSF significantly reduced cardiomyocyte apoptosis in the diabetic myocardium in vivo and led to an increase in Be-
clin-1 level and the LC3-II/LC3-I ratio, and decreased P62 level. Similarly, G-CSF suppressed apoptosis, increased Beclin-1 level 
and LC3-II/LC3-I ratio, and decreased P62 level in high glucose-induced H9c2 cardiac cells in vitro. These effects of G-CSF were 
abrogated by 3-methyladenine, an autophagy inhibitor. In addition, G-CSF significantly increased autophagic flux in vitro.
Conclusion: Our results suggest that the anti-apoptotic effect of G-CSF might be significantly associated with the up-regulation 
of autophagy in diabetic cardiomyopathy.
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INTRODUCTION

Diabetes mellitus increases the risk of developing diabetic car-
diomyopathy, a specific cardiomyopathy first described by 
Rubler et al. [1]. Diabetic cardiomyopathy leads to heart failure 
in patients with diabetes that is independent of hypertension 
and coronary artery disease, and is characterized by diastolic 

dysfunction, ventricular hypertrophy, myocardial fibrosis, and 
cardiomyocyte apoptosis [1,2]. Although the mechanisms are 
not fully understood, overwhelming evidence indicates that 
cardiomyocyte apoptosis plays an important role in the devel-
opment of diabetic cardiomyopathy [3,4]. 

Autophagy is a self-degradative process that removes protein 
aggregates and damaged organelles, and is important for bal-
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ancing the sources of energy in development as well as in re-
sponse to nutrient stress [5]. The majority of studies have indi-
cated that autophagy is the most important regulatory target of 
cell survival, and it plays an important role in the development 
and prognosis of heart disease [6,7]. Zou and Xie [8] demon-
strated that diabetes induces cardiomyocyte apoptosis and 
suppresses cardiac autophagy in diabetic mice. Moreover, re-
cent studies have demonstrated, in experimental and clinical 
settings, that cardiomyocyte apoptosis is correlated with the 
inhibition of autophagy induced by hyperglycemia [9,10]. 

Granulocyte-colony stimulating factor (G-CSF) is a growth 
factor that mediates the proliferation, differentiation, and sur-
vival of hematopoietic progenitor cells as well as the mobiliza-
tion of bone marrow cells [11]. Recent studies indicated that 
G-CSF improves cardiac function both after myocardial in-
farction and in dilated cardiomyopathy [12,13]. We previously 
reported that G-CSF treatment of diabetic rats improved car-
diac diastolic dysfunction and attenuated cardiomyocyte apop-
tosis [14,15]. Therefore, in this study, we explored whether the 
mechanisms underlying the anti-apoptotic effects of G-CSF 
were associated with autophagy using a rat model of diabetic 
cardiomyopathy.

 
METHODS

Animals
Male Sprague-Dawley rats (Koatech, Pyeongtaek, Korea), aged 

7 weeks and weighing 210 to 230 g, were used in this study. A 
combination of a high-fat diet (HFD, 60.3% of total calories 
come from fat, D12492; Research Diets Inc., New Brunswick, 
NJ, USA) and a low-dose of streptozotocin (STZ; Sigma-Al-
drich, St. Louis, MO, USA) was effectively used to induce a rat 
model of diabetic cardiomyopathy [16]. The rats were main-
tained in a specific pathogen-free facility at the Hanyang Uni-
versity Medical School Animal Experiment Center under con-
trolled conditions: temperature, 23°C±2°C; humidity, 55%± 
5%; and with an alternating 12-hour light/dark cycle. The ex-
periments were performed in compliance with the animal re-
search: reporting of in vivo experiments (ARRIVE) guidelines 
on animal research [17], and the research protocol was ap-
proved by the Hanyang University Institutional Animal Care 
and Use Committee (HY-IACUC-16-0107). 

In vivo experimental design and drug treatment
The experimental design is outlined in Fig. 1. Seven-week-old 
rats were randomly assigned to one of two dietary regimens, 
either normal chow diet (n=6) or HFD (n=16) for an initial 
period of 7 weeks. After 6 weeks (at 13 weeks of age), the HFD 
group received a single intraperitoneal injection of STZ 30 mg/
kg in 0.1 mmol/L citrate buffer, and the normal chow group 
received an injection of an equivalent volume of citrate buffer 
vehicle. One week later (at 14 weeks of age), fasting blood glu-
cose (FBG) was measured, and rats with blood glucose level 
≥200 mg/dL (11.1 mmol/L) were considered to have diabetes 

Fig. 1. Scheme of the animal experiment. Diabetes was induced in rats by feeding for 7 weeks with a high-fat diet and low-dose 
streptozotocin (30 mg/kg) injection. Rat were then randomized for treatment with granulocyte-colony stimulating factor (G-CSF) 
or saline administrated intraperitoneally, for 5 days. Body weight, biochemical analysis, and echocardiography were performed 
both pre- and post-treatment. At 18 weeks of age, all rats were euthanized for histology and protein analysis. SD, Sprague-Dawley.

SD rat
(n=6)

Saline treatment
(n=6)

Normal chow diet
(n=6)

SD rat
(n=16)

Saline treatment
(n=8)

G-CSF treatment
(n=8)

At 14 weeks of ageAt 7 weeks of age At 18 weeks of age

Analysis

High fat diet & Low dose streptozotocin
(n=16)



Shen GY, et al.

596 Diabetes Metab J 2021;45:594-605  https://e-dmj.org

mellitus [18]. At 15 weeks of age, the diabetic group rats were 
randomly divided into two subgroups: diabetic rats treated 
with saline (n=8) and diabetic rats treated with G-CSF (n=8). 
Rats in the G-CSF treatment group were injected intraperito-
neally with recombinant human G-CSF (200 μg/kg/day, Leu-
costim; Dong-A Pharmacological, Seoul, Korea) for 5 days. 
Rats in the normal chow group and the diabetic group treated 
with saline were injected intraperitoneally with an equivalent 
volume of saline for 5 days. At 18 weeks of age, all rats were eu-
thanized for laboratory analysis.

Body weight and biochemical analysis
Body weight, FBG, total cholesterol (TC), triglyceride (TG), 
and fasting insulin levels were measured. Blood samples were 
collected from tail veins after 8 hours of fasting. Serum glucose, 
TC, and TG were measured using an Olympus AU400 auto 
analyzer (Olympus GmbH, Hamburg, Germany). Fasting in-
sulin was measured using an EZRMI 13K kit (Millipore, St. 
Charles, Mo, USA) according to the manufacturer’s instruc-
tions. Insulin resistance was estimated by the homeostasis 
model assessment of insulin resistance (HOMA-IR), using the 
following formula: HOMA-IR=fasting insulin (μU/mL)× 
fasting plasma glucose (mmol/L)/22.5 [19]. 

Echocardiography
Echocardiography was performed pre- and post-treatment. The 
rats were anesthetized by intramuscular injection of a mixture 
of zoletil 50 (30 mg/kg; Virbac SA, Carros, France) and rompun 
(10 mg/kg; Bayer Korea, Seoul, Korea) [20]. Serial echocardio-
graphic examinations (VIVID E9; GE Healthcare with a 12 
probe, Chicago, IL, USA) were performed by a single sonogra-
pher, with the rats in the left lateral decubitus position; the left 
side of the chest was shaved in order to obtain a clear image. 
The measurements included left ventricular ejection fraction 
(LVEF), early peak velocity of the early diastolic filling wave (E), 
and early mitral annulus velocity during the diastolic phase (E´) 
[14]. All measurements were based on the mean of five consec-
utive cardiac cycles; mean values were used in analyses. 

Detection of myocardial apoptosis by TUNEL assay
Apoptotic cells in the myocardium were detected by the termi-
nal deoxynucleotidyl transferase (TDT)–mediated dUTP–bio-
tin nick end–labeling (TUNEL) assay in paraffin sections using 
an In situ Cell Death Detection kit (Roche, Mannheim, Ger-
many). The stained sections were photographed using a light 

microscope (Leica DM 4000B; Leica Microsystems, Wetzlar, 
Germany). Five regions from each digitized image were select-
ed at random, and the numbers of healthy and TUNEL-posi-
tive (apoptotic) nuclei were quantified. The apoptotic index 
was calculated as the number of TUNEL-positive nuclei/total 
number of nuclei [15]. All data were evaluated by an indepen-
dent blinded investigator.

Cell culture
H9c2 cardiac cells (ATCC, Manassas, VA, USA) were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM; Life Tech-
nologies, New York, NY, USA) containing 5.5 mM glucose, 1% 
fetal bovine serum (Life Technologies), and 1% penicillin and 
streptomycin (Life Technologies) at 37°C in a humidified incu-
bator containing 5% CO2 [21]. When cells reached 60% con-
fluence they were divided into six treatment groups: (1) incu-
bation with DMEM containing 5.5 mM glucose (normal); (2) 
incubation with DMEM containing 45 mM glucose (high glu-
cose [HG]); (3) incubation with HG DMEM supplemented 
with 3 μg/mL G-CSF; (4) incubation with HG DMEM supple-
mented with 3 μg/mL G-CSF and 5 mM 3-methyladenine (3-
MA; an autophagy inhibitor; Sigma-Aldrich, St. Louis, MO, 
USA); (5) incubation with HG DMEM supplemented with 5 
mM 3-MA; (6) incubation with HG DMEM supplemented 
with 50 nM rapamycin (Sigma-Aldrich), an autophagy activa-
tor. After 36 hours, cells were harvested for flow cytometry and 
Western blot analysis of autophagy-related proteins. All tests 
were repeated at least three times. 

Western blot analysis 
The halves of the hearts were homogenized, and total protein 
was extracted using protein lysis buffer (Pro-prep; iNtRON, 
Seongnam, Korea). Cardiac tissue samples containing 60 μg to-
tal protein and H9c2 cell extracts containing 10 μg total pro-
teins were boiled for 10 minutes and loaded onto sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
gels (8% stacking and 10%, 15% separating gels). Separated pro-
teins were transferred to nitrocellulose membranes (NC, 0.45 
μm pore size; Bio-Rad, Hercules, CA, USA) or Iimmobilon-P 
transfer membrane (PVDF, 0.45 μm pore size; Millipore, Biller-
ica, MD, USA). After blocking in 5% bovine serum albumin so-
lution (Sigma-Aldrich) or 5% skim milk solution (BD Biosci-
ences, San Diego, CA, USA) for 60 minutes, the membranes 
were incubated with primary antibody overnight at 4°C. The 
primary antibodies used are specified in Supplementary Table 1. 
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Blots were incubated with horseradish peroxidase-conjugated 
anti-rabbit antibody (1:2,000; Jackson Immunoresearch, West 
Grove, IA, USA) or anti-mouse antibody (1:2,000; Jackson Im-
munoresearch) for 1 hour at room temperature. Glyceralde-
hyde-3-phosphate dehydrogenase was used as a protein loading 
control. Positive protein bands were visualized using an ECL kit 
(GenDEPOT, Barker, NY, USA), and results were quantified 
with an image analyzer (Image lab 3.0; Bio-Rad).

Flow cytometry
H9c2 cardiac cells were cultured in 6-well plates and incubated 
with the appropriate drugs. Cells were resuspended in 500 μL 
of 1×binding buffer with 2 μL of Annexin V fluorescein iso-
thiocyanate (FITC) and 2 μL of propidium iodide (FITC An-
nexin V Apoptosis Detection Kit I; BD Biosciences), and incu-
bated at room temperature for 15 minutes in the dark. Cells 
stained with Annexin V-FITC and/or propidium iodide were 
analyzed by flow cytometry [22]. Three independent experi-
ments were conducted for each condition investigated, with 
1×104 cells analyzed per experiment.

Autophagic flux detection assay
Autophagy determination was performed using an Autophagy 
Detection kit (ab139484; Abcam, Cambridge, UK) according 
to the manufacturer’s protocol [23-25]. Autophagy Assay Kit 
ab139484 measures autophagic vacuoles and monitors au-
tophagic flux in live cells using a dye that selectively labels au-
tophagic vacuoles. The green dye accumulates in autophagy 
vacuoles based on the pH present in the vacuole. Moreover, it 
is pH clamed for pre-autophagosomes, autophagosomes, and 
autophagolysosomes. The quantity of stained vesicles reflects 
the degree of autophagy in the cell population. For flow cytom-
etry, after treatment, cells underwent trypsinization and were 
pelleted. Cells were centrifuged at 125 rcf for 7 minutes to pel-
let the cells, then washed with 1x Assay buffer, and thereafter 
incubated with 250 μL of the diluted green stain solution for 
30 minutes at 37°C in the dark. For fluorescence microscopy, 
cells were on 24-well plates on coverslips. After treatment, the 
medium was removed, and cells washed with 1x Assay buffer, 
following incubation with 100 μL microscopy dual detection 
reagent for 30 minutes at 37°C in the dark.

Statistical analyses
SPSS version 22.0 software (IBM Co., Armonk, NY, USA) was 
used for statistical analyses. All data are expressed as mean± 

standard deviation, except for histological and echocardiology 
data, which are expressed as mean±standard error. Data were 
analyzed using one-way analysis of variance (ANOVA) analy-
sis (for multiple comparisons), and post hoc multiple compari-
sons were made with Tukey’s test (equal variances assumed) or 
Dunnett’s T3 test (equal variances not assumed). P values less 
than 0.05 were considered significant.

RESULTS

Body weight and biochemical analysis 
At the end of the experiment, there were no significant differ-
ences in body weight between the diabetic and normal rats. 
The diabetic rats showed significantly higher FBG, TC, and TG 
levels compared with normal rats. The diabetic rats treated 
with saline also showed significantly higher HOMA-IR levels 
than normal rats, but there was no significant difference in the 
HOMA-IR level between the diabetic rats treated with G-CSF 
and normal rats (Supplementary Table 2). These results con-
firmed the successful development of a diabetic rat model us-
ing a combination of HFD and low-dose STZ. 

Effect of G-CSF on cardiac diastolic dysfunction
Echocardiography was performed to assess cardiac function, 
pre- and post-treatment. At pre-treatment, LVEF was pre-
served, but the E’ velocity was significantly lower and the E/E’ 
ratio was significantly higher in diabetic rats than in normal 
rats, suggesting that the diabetic rats developed diastolic dys-
function. At post-treatment, echocardiography revealed that 
the E’ velocity was significantly higher and the E/E’ ratio was 
significantly lower in diabetic rats treated with G-CSF than in 
diabetic rats treated with saline, whereas LVEF and E velocity 
did not differ significantly between groups. In addition, there 
was a significant increase in E’ velocity (2.53±0.51 cm/sec vs. 
4.00±0.55 cm/sec, P<0.05) and decrease in E/E’ ratio (27.35± 
5.01 vs. 17.19±2.13, P<0.05) in diabetic rats treated with G-
CSF compared with pre-treatment (Supplementary Table 3). 
G-CSF significantly reduced the extent of fibrosis in the myo-
cardium in diabetic rats, as observed in our previous study 
(Supplementary Fig. 1) [14,17]. Taken together, these results 
demonstrated that G-CSF has an ameliorative effect on dia-
stolic dysfunction in a rat model of diabetic cardiomyopathy. 

Effect of G-CSF on cardiomyocyte apoptosis in cardiac tissue 
The apoptotic index was significantly lower in diabetic rats 
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treated with G-CSF than in diabetic rats treated with saline 
(25.12%±4.24% vs. 34.51%±3.93%, P<0.05). However, there 
was no significant difference in the apoptotic index between 
diabetic rats treated with G-CSF and normal rats (Fig. 2A and 
B). To understand the molecular basis of increased apoptosis 
in the myocardium of diabetic rats, we measured the level of 
anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2). The Bcl-2 
protein level was significantly higher in diabetic rats treated 
with G-CSF than in diabetic rats treated with saline (82.86%± 
14.76% vs. 52.99%±19.58%, P<0.05) (Fig. 2C and D). These 

results suggested that G-CSF has an anti-apoptotic effect on 
the diabetic myocardium. 

Effect of G-CSF on autophagy in cardiac tissue 
To clarify the effect of G-CSF on autophagy, we measured the 
cardiac Beclin-1 level, microtubule-binding protein light chain 
3 (LC3)-II/LC3-I ratio, and P62 level, which are used as molec-
ular markers of autophagy. Beclin-1 level was significantly 
higher in diabetic rats treated with G-CSF than in diabetic rats 
treated with saline (134.55%±25.46% vs. 70.08%±21.84%, 

Fig. 2. Effect of granulocyte-colony stimulating factor (G-CSF) on myocardial apoptosis in the diabetic myocardium. (A) Repre-
sentative images of terminal deoxynucleotidyl transferase (TDT)–mediated dUTP–biotin nick end–labeling (TUNEL) assay 
staining of myocardium for each group 4 weeks after treatment (magnification ×400). Apoptotic nuclei are stained brown and 
non-apoptotic nuclei are stained blue on TUNEL assay staining. (B) Quantitative analysis of apoptotic cells in the myocardium of 
each group. (C) Level of B-cell lymphoma 2 (Bcl-2) protein in cardiac tissue was detected by Western blotting. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as a loading control. (D) Quantitative Western blot analysis of Bcl-2. The expres-
sion level was normalized by comparison with GAPDH expression. Protein levels are expressed as mean±standard deviation. 
Histology data are expressed as mean±standard error. aP<0.05 vs. normal group, bP<0.05 vs. saline group (n=6–8 per group).
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P<0.05) (Fig. 3A and B). Moreover, the LC3-II/LC3-I ratio was 
also significantly higher (134.57±26.21 vs. 64.48±11.59, 
P<0.05) (Fig. 3A and C), whereas the P62 level was signifi-
cantly lower (110.97%±13.85% vs. 169.56%±18.14%, P<0.05) 
(Fig. 3A and D), in diabetic rats treated with G-CSF than in di-
abetic rats treated with saline. These results suggest that the an-
ti-apoptotic effect of G-CSF is significantly associated with up-
regulation of autophagy in the diabetic myocardium. 

	
Effect of G-CSF on apoptosis in H9c2 cardiac cells 
To clarify the effect of G-CSF on HG-induced apoptosis in 
H9c2 cardiac cells, we cultured H9c2 cardiac cells in HG me-
dia and measured the apoptosis rate by flow cytometry. HG 
media significantly increased the apoptosis rate of H9c2 cardi-
ac cells compared with low glucose media (29.50%±3.90% vs. 
16.50%±2.30%, P<0.05) (Fig. 4). Treatment with G-CSF sig-
nificantly decreased the HG-induced apoptosis rate to 17.7% 
(Fig. 4). This effect was reversed to 33.1% by the autophagy in-
hibitor 3-MA (Fig. 4). 

Effect of G-CSF on up-regulation of autophagic flux in 
H9c2 cardiac cells
To investigate the effect of G-CSF on autophagy, we measured 
the Beclin-1 protein level, the LC3-II/LC3-I ratio, and P62 lev-
el. Treatment with G-CSF significantly increased Beclin-1 level 
(75.00%±5.37% vs. 50.41%±7.86%, P<0.05) and the LC3-II/
LC3-I ratio (119.36%±14.37% vs. 75.07%±5.41%, P<0.05) in 
H9c2 cardiac cells cultured in HG media (Fig. 5A-C); these in-
creases were reduced upon treatment with 3-MA (36.99%± 
3.06% vs. 75.00%±5.37%, P<0.05; and 51.01%±7.41% vs. 
119.36%±14.37%, P<0.05) (Fig. 5A-C). The levels of P62 in 
H9c2 cardiac cells was significantly lower in HG media supple-
mented with G-CSF alone (68.57%±5.31% vs. 134.46%± 
19.55%, P<0.05) (Fig. 5A and D), but was increased by 3-MA 
(68.57%±5.31% vs. 144.35%±5.40%, P<0.05) (Fig. 5A and D).

Furthermore, the apoptosis rate increased to 37.6% in H9c2 
cardiac cells cultured in HG media supplemented with 3-MA, 
but decreased to 18.1% in cells cultured in HG media supple-
mented with rapamycin (Supplementary Fig. 2); this observa-

Fig. 3. Effect of granulocyte-colony stimulating factor (G-CSF) on autophagy in the diabetic myocardium. (A) Representative im-
ages showing the levels of autophagy-related proteins Beclin-1, the microtubule-binding protein light chain 3 (LC3)-II/LC3-I ra-
tio, and P62 in the diabetic myocardium measured by Western blot at 18 weeks of age (4 weeks after G-CSF and saline treatment). 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control. (B, C, D) Quantitative Western blot analy-
sis of Beclin-1, the LC3-II/LC3-I ratio, and P62. Protein levels were normalized by comparison with GAPDH expression. All data 
are expressed as mean±standard deviation. aP<0.05 vs. normal group, bP<0.05 vs. saline group (n=6–8 per group).
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Fig. 5. Effect of granulocyte-colony stimulating factor (G-CSF) on autophagy in high glucose-induced H9c2 cardiac cells. (A) Rep-
resentative images of levels of autophagy-related proteins Beclin-1, the microtubule-binding protein light chain 3 (LC3)-II/LC3-I 
ratio, and P62 in H9c2 cardiac cells measured by Western blot. (B, C, D) Quantitative Western blot analysis of Beclin-1, the LC3-II/
LC3-I ratio, and P62. Protein levels were normalized by comparison with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
expression. GAPDH was used as a loading control. All data are expressed as mean±standard deviation. 3-MA, 3-methyladenine. 
aP<0.05 vs. H9c2 cardiac cells cultured in low glucose media, bP<0.05 vs. H9c2 cardiac cells cultured in high glucose media, 
cP<0.05 vs. H9c2 cardiac cells cultured in high glucose media containing G-CSF (n=5 per group).
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Fig. 4. Effect of granulocyte-colony stimulating factor (G-CSF) on apoptosis in high glucose-induced H9c2 cardiac cells. (A) Dot 
plots displaying the stages of apoptotic death of H9c2 cardiac cells: Annexin−/PI− (Q3), viable cells; Annexin+/PI− (Q4), cells under-
going apoptosis; Annexin+/PI+ (Q2), cells in end-stage apoptosis or that are already dead; Annexin−/PI+ (Q1), cells that are in ne-
crosis. (a) H9c2 cardiac cells cultured in low glucose media; (b) H9c2 cardiac cells cultured in high glucose media; (c) H9c2 cardiac 
cells cultured in high glucose media containing G-CSF (3 μg/mL); (d) H9c2 cardiac cells cultured in high glucose media containing 
G-CSF (3 μg/mL) and 3-methyladenine (3-MA; 5 mM). (B) Quantitative analysis of apoptotic cells (Q2+Q4). All data are expressed 
as mean±standard deviation. FITC, fluorescein isothiocyanate. aP<0.05 vs. H9c2 cardiac cells cultured in low glucose media, 
bP<0.05 vs. H9c2 cardiac cells cultured in high glucose media, cP<0.05 vs. H9c2 cardiac cells cultured in high glucose media contain-
ing G-CSF (n=5 per group).
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tion was consistent with the reduction in apoptosis in H9c2 
cardiac cells induced by G-CSF under HG condition. In addi-
tion, the effect of G-CSF on autophagic flux in H9c2 cardiac 
cells was investigated using an Autophagy Detection kit. Using 
flow cytometry, we confirmed that treatment with G-CSF sig-
nificantly increased autophagic flux (11.68% ±1.92% vs. 
9.40%±0.45%, P<0.05) in H9c2 cardiac cells cultured in HG 

media (Fig. 6A and B). Additionally, using fluorescence mi-
croscopy, we showed that treatment with G-CSF increased the 
fluorescent signal, thus indicating enhanced autophagic flux in 
H9c2 cardiac cells cultured in HG media (Fig. 6C).

Taken together, these results also suggest that the anti-apop-
totic effect of G-CSF in H9c2 cardiac cells under diabetic con-
ditions is linked to the up-regulation of autophagy. 

 

Fig. 6. Effect of granulocyte-colony stimulating factor (G-CSF) on autophagic flux in high glucose-induced H9c2 cardiac cells. Au-
tophagic flux evaluated high glucose-induced H9c2 cardiac cells by flow cytometry and fluorescence microscopy. Representative 
histogram (A) and bar graph (B), where fluorescence increase of autophagy green indicates autophagic flux increase. (C) Autopha-
gic flux evaluated by fluorescence microscopy (magnification ×400), photos are representative of four to five independent experi-
ments. Arrows indicate autophagic vesicles. The inserts in (C) show higher magnification. Rapamycin was used as a positive control 
of autophagy. All data are expressed as mean±standard deviation. Normal, normal condition group. aP<0.05 vs. H9c2 cardiac cells 
cultured in normal condition, bP<0.05 vs. H9c2 cardiac cells cultured in high glucose media containing G-CSF (n=4–5 per group).
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DISCUSSION

The present study demonstrated that G-CSF reduced cardio-
myocyte apoptosis and up-regulated autophagy in the diabetic 
myocardium. In addition, the anti-apoptotic effect of G-CSF in 
H9c2 cardiac cells under diabetic conditions was counteracted 
by treatment with an autophagy inhibitor. Moreover, we con-
firmed that G-CSF increased autophagic flux in vitro. These 
data indicated that the anti-apoptotic effects of G-CSF in a rat 
model of diabetic cardiomyopathy may be mediated by up-
regulation of autophagy.

Cardiomyocyte apoptosis is an important mechanism in the 
development of diabetic cardiomyopathy, which is closely as-
sociated with cardiac dysfunction, hypertrophy, and fibrosis 
[26,27]. In addition, several studies revealed that the reduction 
of cardiomyocyte apoptosis prevents diabetic cardiomyopathy 
both in animal models and in vitro experiments [28,29]. In 
previous experimental studies, G-CSF treatment reduced car-
diomyocyte apoptosis by modulating apoptosis-related pro-
teins [15]; however, the mechanisms underlying this anti-
apoptotic effect of G-CSF in diabetic cardiomyopathy remain 
unclear. 

Autophagy is an important mechanism for cell survival, as it 
maintains the quality of proteins and organelles [30]. Studies 
have suggested that down-regulation of autophagy and the re-
sulting accumulation of abnormal proteins and organelles, 
leads to apoptosis and cardiac dysfunction in various cardiac 
diseases, such as ischemic heart disease, cardiac hypertrophy, 
and heart failure [31,32]. Sishi et al. [33] and Wang et al. [34] 
demonstrated that up-regulation of autophagy prevented car-
diomyocyte apoptosis in doxorubicin-induced cardiomyopa-
thy and hypertensive heart disease, respectively. Moreover, 
overwhelming evidence indicates that cardiomyocyte apopto-
sis, which plays an important role in the development of dia-
betic cardiomyopathy, is induced by the impairment of au-
tophagy [35-37]. 

The major finding in this study was that G-CSF increased 
Beclin-1level and the LC3-II/LC3-I ratio and decreased P62 
level in the diabetic myocardium. Beclin-1 is an essential in-
ductor of autophagy activity that binds to class III phosphati-
dylinositol 3-kinase to form a kinase complex in mammals 
[38]. LC3 is the major regulatory protein that promotes the in-
duction of the autophagosome membrane [39]. When autoph-
agy is initiated, LC3-I is conjugated to phosphatidylethanol-
amine to form LC3-II, which is required for the formation of 

the autophagosome [40]. P62 is another major factor that tar-
gets specific cargo for autophagy; P62 accumulates when au-
tophagy is inhibited, and its levels decrease when autophagy is 
induced [41]. Consistent with our data, Zhao et al. [42] report-
ed that heme oxygenase-1 up-regulated the expression of Be-
clin-1 and LC3-II in diabetic mice and suggesting that heme 
oxygenase-1 prevents diabetic cardiomyopathy by up-regula-
tion autophagy. Moreover, activation of AMP-activated protein 
kinase was shown to protect cardiac structure and function by 
up-regulation of Beclin-1 and LC3-II expression, suggesting 
that increasing cardiac autophagy protect would protect cardiac 
structure and function in the diabetic myocardium [43]. In this 
study we showed that G-CSF up-regulated cardiac autophagy, 
as indicated by the increase in Beclin-1 level and LC3-II/LC3-I 
ratio and decrease in P62 level in the diabetic myocardium. 

In this study, to confirm the effect of G-CSF on HG-induced 
apoptosis in cardiac cells, we cultured H9c2 cardiac cells with 
HG media, to create a diabetic cardiomyopathy model [44], 
and measured the rate of apoptosis using these cells. H9c2 car-
diac cells are a commercially available myogenic cell line de-
rived from embryonic rat ventricular tissue [45], which show 
cardiac-specific characteristics, such as morphological, bio-
chemical, and electrophysiological characterization [46]. H9c2 
cardiac cells offer a unique in vitro model to study the meta-
bolic activity of the heart [47]. Moreover, we used 3-MA (an 
autophagy inhibitor) and rapamycin (an autophagy inducer) 
to further confirm that apoptosis of H9c2 cardiac cells was re-
lated to autophagy under diabetic conditions. We found that 
G-CSF reduced apoptosis of H9c2 cardiac cells, concurrent 
with the up-regulation of autophagy; these effects were abro-
gated by 3-MA. We also confirmed that inhibition of autopha-
gy by 3-MA increased H9c2 cardiac cell apoptosis under dia-
betic conditions, whereas up-regulation of autophagy by ra-
pamycin reduced H9c2 cardiac cell apoptosis, under diabetic 
conditions. Jia et al. [48] previously showed that safflower ex-
tract reduced apoptosis of H9c2 cardiac cells treated with an-
giotensin II, by increasing LC3-II expression. They also report-
ed that the anti-apoptotic effect of safflower was reversed by 
3-MA and that rapamycin reduced apoptosis, suggesting that 
safflower inhibits apoptosis via the up-regulation of autophagy. 
Gao et al. [49] similarly reported that 3-MA abrogated the an-
ti-apoptotic effect of fasudil, suggesting that fasudil protects 
H9c2 cardiac cells from apoptosis via increasing Beclin-1 level 
and LC3-II/LC3-I ratio and decreasing P62 level under diabet-
ic conditions. Guo et al. [50] also demonstrated that G-CSF 
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promoted autophagy and reduced neural tissue damage after 
spinal cord injury in mice. Inhibition of autophagy by 3-MA 
partially blocked the neuroprotective effect induced by G-CSF, 
suggesting that G-CSF reduced neural tissue damage through 
up-regulation of autophagy. Moreover, we confirmed that G-
CSF reduced the up-regulated autophagic flux under diabetic 
conditions. Considering our data and previous studies, we sug-
gest that the anti-apoptotic effect of G-CSF is potentially medi-
ated by the up-regulation of autophagy in H9c2 cardiac cells, 
under diabetic condition.

This study does, however, have several limitations. First, we 
demonstrated the effects of 3-MA and rapamycin in in vitro 
diabetic condition experiments, but we did not confirm the 
systemic effects of 3-MA and rapamycin in diabetic rats. In ad-
dition, we did not perform genetic knockdown or gain-of-au-
tophagy methods that are necessary to determine the func-
tional role of autophagy in the anti-apoptotic effects of G-CSF 
and to rule out the potential nonspecific effects of 3-MA and 
rapamycin that are unrelated to autophagy. Second, we were 
unable to investigate the down-stream signaling of autophagy-
related proteins such as Beclin-1, LC3, and P62. Additional 
studies are required to further elucidate the detailed mecha-
nisms regarding effect of G-CSF on apoptosis linked to up-reg-
ulation of autophagy. Third, we cannot rule out the possibility 
that the anti-apoptotic effect of G-CSF is associated with any 
other previously postulated mechanism such as the action of 
G-CSF directly or through the G-CSF receptor-mediated sig-
naling pathway, a systemic effect, mobilization or homing of 
bone marrow stem cells, or other paracrine effects; such as fi-
brosis, vascularization, oxidative stress, or endoplasmic reticu-
lum stress. Further studies regarding the precise mechanism of 
the anti-apoptotic effect of G-CSF are also worth exploring.

In conclusion, the results of our study indicate that the anti-
apoptotic effect of G-CSF may be significantly associated with 
the up-regulation of autophagy in diabetic cardiomyopathy. 
These findings suggest that G-CSF could potentially be used a 
novel therapeutic drug for the treatment of patients with dia-
betic cardiomyopathy.
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