
I. Introduction

Cancer refers to the uncontrollable multiplication and 
growth of cells that are either localized (carcinoma in situ 
[CIS]) or have spread to other parts of the body. Cervical 
cancer, although treatable when detected early, is the most 
common form of cancer in women aged 35 and younger 
[1]. The prevalence of cervical cancer is disproportionately 
high in individuals who have sexual relationships at early 
ages, who have sexually transmitted infections, and who use 
tobacco [1,2]. Therefore, cervical screening is highly rec-
ommended for women aged between 21 and 65 years once 
every 3 years [3,4]. However, as many people have skipped 
screening appointments and avoided visiting healthcare 
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facilities due to infection-related fears amid the recent coro-
navirus disease 2019 pandemic [5], concerns have grown 
regarding the possible demand for healthcare resources once 
the pandemic is over [6]. 
	 There is a gradual progression leading to cervical cancer, 
from normal squamous (NS), to dysplasia (or precancerous 
cells), and finally to invasive disease. Cytological screening 
for cervical cell abnormalities using the Papanicolaou (Pap) 
smear is an effective method to detect precancerous cells. 
These precancerous stages (or cervical intraepithelial neo-
plasia [CIN]) are classified as (1) CIN I or low-grade dys-
plasia (LGD), (2) CIN II or high-grade dysplasia (HGD), or 
(3) CIN III or CIS, depending on the extent to which squa-
mous cells fail to mature as they migrate to the surface of 
the epithelium [7]. Dysplastic cells have nuclei that occupy a 
large fraction of the intracellular compartment and display 
nuclear membrane irregularities. There is also an increase in 
the nuclear-to-cytoplasmic ratio (NCR) from 1:7 in normal 
squamous cells to 1:1.5 in the CIN III group [8]. Therefore, 
the cell features used by cyto-technicians in the diagnosis 
include aspects of cell appearance such as size, color (after 
staining), textures and shapes, NCR, and the distribution of 
nuclei [9]. However, not only is this approach subjective and 
prone to inter- and intra-observer variability, it requires ex-
perience and a trained eye, and is time-consuming.
	 As internet-accessible databases continue to grow, accom-
panied by advances in computing techniques (e.g., parallel 
programming and edge computing), these resources have 
contributed to major milestones in artificial intelligence re-
search. At present, most of the computer-aided diagnostic 
(CAD) systems used for cervical cancer detection require 
the extraction of engineered features, such as shape-based 
features [10,11], morphological features [11], and statistical 
features [12], used by a classifier in its diagnosis. Classifiers 
such as decision forests, artificial neural networks, K-nearest 
neighbor models, and support vector machines (SVM) have 
been used with considerable success for binary or multiclass 
problems in various domains. Among these classifiers, SVM 
has received relatively more research attention and has been 
adopted in various areas [13-15]. This model has also been 
tested for its superiority in cervical cell recognition [16,17]. 
This superiority is attributed to its robustness to noise and 
outliers, its high susceptibility to overfitting, and its capabil-
ity to handle nonlinearly separable data.
	 There is growing progress in the use of pretrained deep 
networks such as LeNet [18], Inception-ResNet [19], Visual 
Geometry Group network (VGGNet) [20], ShallowNet [21], 
and deep ConvNet [22], which can be applied to cervical cell 

grading through transfer learning. These models were re-
ported to provide a higher classification accuracy than train-
ing a neural network from scratch [23,24]. At present, most 
research has studied only two-class problems: normal and 
abnormal [18,21,22]. Those studies have reported accuracies 
nearing 100% using a hybrid of deep learning and handcraft-
ed features. A major effort that is worth mentioning is the 
fusion technique highlighted by Jia et al. [18]. Their study 
demonstrated that a combination of features from various 
layers of a convolutional neural network (CNN) and strong 
features (textural, morphological, and chromatic) extracted 
from cervical cell images enhanced prediction accuracy (up 
to 99%) using an SVM-based model. A similar approach 
was adopted in another study [25] that observed a lower 
average accuracy of approximately 80% using whole slide 
images. This method of feature fusion can be a tedious and 
time-consuming process, as it involves the laborious task of 
manual optimization and iterative feature engineering. 
	 Since different treatment regimens should be used for le-
sions of different dysplasia categories [26,27], a CAD system 
able to diagnose multiple lesion types would enable clini-
cians to establish the most appropriate therapeutic strategies 
and prevent the risk of progression to advanced stages. For 
this reason, researchers [24] extended early efforts [17,19,23] 
and studied up to four-class problems with NS, LGD, HGD, 
and CIS. We sought to expand this line of research by in-
cluding cervical columnar cell types as an additional condi-
tion. This type of cell has borderline risk (i.e., it is neither 
normal nor with evidence of dysplasia [28]), so it is placed in 
a separate class of problems. The main contributions of this 
paper include: (1) a simplification of earlier attempts using 
binary partitions of extracted deep features for the classifi-
cation task, (2) a five-class cervical cell image classification 
using joint CNNs and an error-correcting SVM method, and 
(3) a discussion of key factors affecting the performance of 
classification systems and future improvement opportuni-
ties. This work was carried out using MATLAB 2020a.

II. Methods

Below are presented brief descriptions of the images used 
and the image processing steps carried out in this study. Sec-
tions II-2 and II-3 deal with the methodologies used in our 
work.

1. Data Handling and Processing
We carried out our research on a benchmark dataset con-
taining 917 single cervical-cell images downloaded from 
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Herlev University (http://mde-lab.aegean.gr). This is, to 
our best knowledge, the only public database that contains 
a comprehensive number of cervical cell types. This data 
source allowed us to assess the performance of our models 
relative to the task requirements and facilitated comparison 
with previous research that used the same dataset [16,18-
22]. This dataset comprises seven labeled classes of cervical 
cells with clinical outcomes commonly examined in cervical 
cancer research: normal (i.e., superficial, intermediate, and 
columnar squamous) and abnormal (i.e., mild, moderate, 
and severe dysplasia, and CIS). These images are grouped, in 
our paper, into the following five classes, as discussed above: 
NS, columnar squamous (CS), LGD, HGD, and CIS (Figure 
1). Polygonal-shaped superficial and intermediate cells rep-
resent normal cervical epithelial cells (NS) [19]. They are 
found in abundance in the superficial and intermediate lay-
ers of the squamous epithelium, and their relative numbers 
vary depending on the stage of the ovulation cycle. Cases of 
mild dysplasia are classified as LGD, while cases of moderate 

and severe dysplasia are grouped under HGD in accordance 
with the Bethesda system. These classes had an imbalanced 
data distribution, as shown in Table 1. They were randomly 
split using a random seed number of 1 and a data partition 
ratio of 0.6:0.15:0.25 for training, validation, and model 
testing, as shown in Figure 2. The training data size was en-
larged using an augmentation strategy to prevent overfitting. 
This was done by rotating the original training images by 
10°, –10°, 20°, –20° angles and vertically flipping the images. 
These color images were resized to 227 × 227 × 3 and 224 × 
224 × 3 according to the acceptable input size for the differ-
ent network models used in this work.

2. Convolutional Neural Network Models
The deep CNN models used in our experiment for super-
vised learning were AlexNet, VGG19, and ResNet50 due to 
the simplicity (in the case of AlexNet) and uniformity (i.e., 
VGGNet) of their architecture. ResNet is a stack of residual 
blocks that solves the vanishing gradient problems with skip-

A B C

D E F

Figure 1. ‌�Cervical cell classes: (A) nor
mal squamous, (B) normal 
columnar, and (C) low-
grade dysplasia; (D) high-
grade dysplasia (HGD) with 
moderate dysplasia, (E) HGD 
with severe dysplasia, and 
(F) carcinoma in situ.

Table 1. Cervical cell dataset sizes and partitioning

No. Class name Number of images Training Validation Testing

1 Normal squamous 144 86 (516) 23 35
2 Normal columnar 98 59 (354) 15 24
3 Low grade dysplasia 182 109 (654) 28 45
4 High grade dysplasia 343 206 (1,236) 52 85
5 Carcinoma in situ 150 90 (540) 23 37
Total - 917 550 (3,300) 141 226

Numbers in parentheses denote training set including augmentation.
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ping connections (dashed lines) for better training.
	 We first trained the pretrained CNN models with all layers 
frozen for the cervical cell classification task with the train-
ing dataset (including augmented images) in Table 1. The 
softmax loss function was used as the activation function in 
this end-to-end training process (as shown at the center of 
Figure 2). These models were tested and fine-tuned using a 
validation set that was not part of the training set to provide 
evidence of over- or under-fitting of the data during each 
training session. The final training was performed with the 
sdgm optimizer, 30 training epochs (N), a mini batch size (β) 
of 32, and a gradient threshold (ψ) and initial learning rate 
(η) of 0.01 and 0.008, respectively. This was the best hyper-
parameter set determined from a fixed grid search space. 
In the experiment, 35 iterations were performed to test dif-
ferent parameter sets randomly combined from: optimizer: 
{adam, sgdm}, N = {10, 20, 30}, β = {20, 32, 64}, ψ = {0.01, 
0.1, 1}, and η = {0.001, 0.005, 0.008, 0.01, 0.05, 0.1}. We then 
extracted the learned features from the first fully connected 
(fc) layer in each trained model for further training using the 
SVM classifier system to enhance the model’s classification 
performance. The code was run on an Intel Xeon E52680. 
Each model was consecutively trained three times and the 

average run time was recorded.

3. Joint CNN-SVM Method
The SVM method is based on the construction of single 
or multiple hyperplanes to solve nonlinear problems via 
matching attributes of observations to a class label. The 
SVM technique used in this research was combined with the 
error-correcting output codes (ECOC) model (using the fit-
cecoc function in MATLAB) to decompose a multiclass clas-
sification problem into several binary ones. Although some 
of the algorithm’s parameters can be configured by users to 
optimize the classification performance, the default settings 
were used in this study. The ECOC method uses (k(k–1))/2 
learners for k classes. Each binary learner is trained on fea-
ture vectors of the training data of two class labels, as shown 
in Table 2, using SVM. For example, in the case of learner 1, 
all observations in the CIS class were grouped into a positive 
class (+1), observations of HGD into a negative class (–1), 
and those that belonged to other classes were ignored before 
this learner is trained on them. This is repeated for the re-
maining learners. During the classification of a new (unseen) 
observation, the outputs of the classifiers are combined to 
form an output code. This code was compared to the 10-bit 
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codes in Table 2. The difference was optimized using the ag-
gregated losses of the quadratic function, L, given in Equa-
tion (1) [29]. The class with the nearest code to the output 
code was assigned as the class label.

 

� � ���� �� � ��𝑓𝑓�𝑋𝑋���
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���
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where n is the sample size, wj is the weight for observation 
j, yj is the corresponding class label and f(Xj) is the classi-
fication score for observation j of the predictor data X. We 
used this multi-learner classifier to complement the softmax 
function in the original network, which was reported to be 
ineffective at minimizing intra-subject variation [30], and 
to enhance the decision regarding the diagnosis. This classi-
fier system used the features (from fc6 in AlexNet and VGG, 
and from fc in ResNet) in this second-stage training of the 

CNNs. The results of our experiment showed a higher mean 
prediction accuracy (approximately 4%) using this tech-
nique than using softmax alone. The largest increases were 
recorded as 2%, 4%, and 9%, respectively, using the trained 
AlexNet, ResNet-50 and VGG19, and SVM jointly. In this 
paper, only results from the SVM classifier are reported in 
detail.

III. Results

The classification performance of CNN-SVM models used in 
this work was compared using the mean accuracy, specific-
ity, and recall or sensitivity measures given in Equations (2)–
(4). While accuracy describes the closeness of the prediction 
to the ground truth, both specificity and sensitivity quantify 
the efficiency of a model in differentiating the classes of cer-
vical cells. Table 3 shows our models’ performance evaluated 

Table 2. One versus one binary coding scheme

Class
Binary learner

1 2 3 4 5 6 7 8 9 10

CIS 1 1 1 1 0 0 0 0 0 0
HGD –1 0 0 0 1 1 1 0 0 0
LGD 0 –1 0 0 –1 0 0 1 1 0
NC 0 0 –1 0 0 –1 0 –1 0 1
NS 0 0 0 –1 0 0 –1 0 –1 –1

CIS: carcinoma, HGD: high grade, LGD: low grade dysplasia, NC: normal columnar, NS: normal squamous.

Table 3. Performance of CNN-SVM models for cervical cell classification

Model
Experimental runs (%) Performance  

(%)

Training time  

(min)Run 1 Run 2 Run 3

AlexNet-SVM 11
   Accuracy 79.20 80.53 80.97 80.20 ± 0.92
   Specificity 95.13 94.91 95.24 95.04 ± 0.16
   Sensitivity 79.40 80.12 80.60 80.04 ± 0.60
VGG19-SVM 133
   Accuracy 78.76 82.74 80.53 80.68 ± 2.00
   Specificity 94.69 95.68 95.13 95.17 ± 0.49 
   Sensitivity 80.40 80.90 81.30 80.86 ± 0.45
ResNet50-SVM 82
   Accuracy 78.32 75.22 76.11 76.55 ± 1.60
   Specificity 94.58 93.80 93.58 93.98 ± 0.52
   Sensitivity 77.62 74.76 75.38 75.92 ± 1.50

The bold font indicates the best performance in each test.
CNN: convolutional neural network, SVM: support vector machine.
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on the testing dataset and average simulation run time for 
three consecutive training sessions. 
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where M denotes the total class labels (M = 5). A true posi-
tive (TPi) is a class member correctly predicted as a specific 
class label, i. A false positive (FP) is a nonclass member in-
correctly predicted as a class member, a false negative (FN) 
is a class member misclassified as a nonclass member, and a 
true negative (TN) is a nonclass member correctly classified 
as a nonclass member. 
	 Before moving on to present the results from each model 
in Table 3, it is worth mentioning that we noticed cases of 
false negatives (testing images of other classes were being 
misclassified as NS) by VGG19-SVM and ResNet50-SVM in 
every run (i.e., a non-repeated image from the 226 images 
in each run), but no such cases were seen using AlexNet-
SVM. Highly similar values of the evaluated performance 
metrics between the models can also be observed from this 

table. Therefore, the best-performing models (shown in bold 
in Table 3) were further investigated and discussed. Their 
confusion matrix and receiving operating characteristic 
(ROC) curves (i.e., performance graphs) from a one versus 
all analysis are plotted in Figure 3. The performance com-
parison based on sensitivity and specificity measures in Fig-
ure 4 showed the same adequacy of the models in detecting 

Figure 4. �Classification sensitivity and sensitivity and area under 
the curve (AUC) values by cervical cell class of the best-
performing AlexNet-SVM, VGG19-SVM, and ResNet50-
SVM models. CIS: carcinoma, HGD: high grade, LGD: 
low grade dysplasia, NC: normal columnar, NS: normal 
squamous, SVM: support vector machine.
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the NS class label, while the poorest performance was seen 
in the HGD categories. The area under the curve (AUC) for 
each diagnosis class showed values ranging from 0.85 to 1, 
as shown in Figure 4, indicating the overall high reliability 
of our diagnostic system in differentiating normal from ab-
normal cells and in the grading of dysplastic images. A com-
parison of the performance of our method with that of other 
recently reported approaches is shown in Table 4.

IV. Discussion

In this study, we adopted different transfer-learned CNNs 
combined with an SVM classifier system for the classifica-
tion of cervical Pap smear images. Our findings, shown in 
Table 3, suggest good consistency in both intra- and inter-
model comparisons of classification performance. The 
ResNet slightly underperformed as compared to the more 
complex VGGNet, suggesting that the recovery of the lost 
information (in ResNet) in the training phase may not sig-
nificantly improve the accuracy. 
	 Even though all the models used in the present study ac-
curately identified normal cervical cases (with excellent 
specificity and sensitivity of 100%, and an AUC of 1), the 
VGGNet and ResNet models exhibited some cases where 
cervical cell images of other classes were misclassified as 
normal. An investigation of these images showed that they 
had overlapping cells, poor contrast, and cropped cells at 
image borders. These FN results are a matter of concern, 
as the patient would miss the optimum time for treatment 

that would maximize therapeutic outcomes. Meanwhile, the 
AlexNet-SVM model demonstrated good estimation per-
formance, in terms of high sensitivity and specificity, good 
reproducibility, and fast training speed, as shown in Table 3. 
We observed a similar classification performance between 
AlexNet-SVM and VGG19-SVM (overall accuracy >80%; 
mean AUC = 0.95), with the former requiring only a fraction 
of the computational time in the training (by an order of 
magnitude) than other models. Both models demonstrated 
good performance in the classification of CIS and HGD 
(i.e., specificity and sensitivity ≥80%), as shown in Figure 4, 
but they had considerably inferior sensitivity performance 
(approximately 60%–70%) in the NC and LGD classes. 
Our results showed that several NC images (approximately 
25%) were misclassified as HGD, as shown in Figure 3. This 
resulted in high FP rates (about 20%) in HGD and lower 
AUC values (0.86–0.89) than with other class labels. Simi-
larly, about one-third of LGD images were misclassified as 
NC and HGD. This likely occurred because of gradual and 
minute changes in the characteristics of these cervical cell 
images (e.g., nuclei size, NCR) as the lesion progressed, as 
shown in Figure 1. Some features important for the diagno-
sis may not have been sufficiently and consistently captured 
in the employed dataset. For example, some missing cell bor-
ders and variability in the nuclei size ranges (possibly due to 
inconsistent cropping) were identified in most of the images 
used. The cell characteristics in the current dataset exhibit 
subtle and complex differences, which can be difficult to 
discern using the current architectures. Instead, irrelevant 

Table 4. Performance comparison of classification methods

Method Experimental design
Average performance (%)

Accuracy Specificity Sensitivity

Fusion LeNet – SVM [18] Single cell. Two-class problem 99.30 99.40 98.90
Inception-ResNet + snapshot ensemble [19] Single cell. Seven-class problem 65.56 - -
ConvNet + adaptive extraction [22] Single cell. Two-class problem 98.6 ± 0.3 99.0 ± 1.0 98.3 ± 0.7
VGGNet + Mask R-CNN [20] Single cell. Two-class and seven-class 

problem
95.9 / 98.1 98.6 / 99.3 96.0

Fusion ConvNet models – SVM [25] Whole image. Four-class problem 80.72 - -
Ensemble classifier (ResNet + 

 GoogleNet) + majority voting [24]
Single cell. Four-class problem 98 99 90

AlexNet-SVM [16] Single cell. Two-class problem 99 97 99
Current study
      AlexNet-SVM Single cell. Five-class problem 80.38 95.04 80.04
      VGG-SVM Single cell. Five-class problem 80.68 95.17 80.86
      ResNet-SVM Single cell. Five-class problem 77.00 93.98 75.92
R-CNN: region-based convolutional neural network, SVM: support vector machine.
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information may have passed through the networks. This 
was aggravated by the increased number of considered class 
labels, which reduced the overall classification performance, 
as has also been reported in previous research [20,25]. This 
may prompt a search for an enhanced network architecture, 
such as the use of extra convolutional or pooling blocks to 
preserve more relevant features from primary feature maps 
in the near future. The classification performance may also 
be enhanced by using a dataset with consistent imaging con-
ditions (e.g. brightness, exposure/illumination, and viewing 
conditions) and fine-tuning of hyperparameters, which can 
make the process less laborious, while also covering a larger 
search space using an optimization algorithm. 
	 Most of the recently reported studies in Table 4 have rec-
ommended introducing either adaptive feature selection or 
fusion into deep neural network models to enhance classi-
fication performance. However, this strategy can be experi-
mentally exhaustive and time-consuming. Our research sim-
plifies the earlier designs and focuses on using deep features 
of trained CNNs and the SVM model for classification tasks. 
The comparison between methods in Table 4 shows that the 
architecture and use of CNNs have a significant influence 
on classification performance. From this table, we identified 
the experimental group and design as the two key factors af-
fecting prediction accuracy. The closest work to ours, which 
considered up to four-class problems [24], observed a higher 
accuracy (>90%), which can be attributed to the use of a 
larger and independent dataset. 
	 In conclusion, based on our analyses, AlexNet-SVM is pref-
erable for this task. This model can be easily and convenient-
ly extrapolated to clinical practice to support the diagnoses 
made by professionals. Our system has comparable efficacy 
to that of state-of-the-art systems in identifying normal cells, 
thereby eliminating unnecessary biopsies to confirm the 
diagnosis. Meanwhile, more precise dysplasia grading may 
be achieved with the use of a meticulously designed network 
and by including a larger dataset with consistent imaging 
conditions in the training process. 
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