
I. Introduction

Cardiovascular disease is a leading cause of death worldwide. 
According to a report from the World Health Organization, 
17.9 million people (32% of all deaths) died from cardiovas-
cular disease in 2019 [1]. A report on non-communicable 
diseases in Thailand described cardiovascular disease as the 
second most common cause of death, with a crude number 
of 32.84 deaths per 100,000 population [2]. These reports 
also revealed increased cardiovascular deaths in the past 
decades, impacting the healthcare system. Acute coronary 
syndrome (ACS) is one of the most common cardiovascular 
diseases, but the associated mortality rate remains high even 
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with the use of advanced therapies, particularly percutane-
ous coronary intervention (PCI). A mortality rate of 5% has 
been documented in the Thai ACS Registry [3].
	 One effective strategy to prevent death in patients with ACS 
is close monitoring and prompt treatment. Hence, identify-
ing patients at high risk for mortality and observing them in 
the intensive care unit (ICU) or coronary care unit can miti-
gate the risk of death. However, due to the high workloads of 
healthcare professionals, correctly classifying patients can be 
challenging. Patients classified as low risk may be admitted 
to a regular ward, with less monitoring and delayed proper 
management. Thus, the misclassification of patient risk can 
lead to death. In each inpatient, vital signs are routinely 
recorded. A change in vital signs resulting from pathophysi-
ological alteration can precede a patient’s deterioration. 
Therefore, many early warning systems using vital signs have 
been developed to help physicians classify patients accord-
ing to their risk [4-6]. Nevertheless, the application of these 
warning systems in clinical practice may be unreliable in im-
proving clinical outcomes, perhaps due to the incorporation 
of few variables and infrequent recording of vital signs. In a 
regular ward, vital signs may be measured only twice daily. 
Thus, some patients must be admitted to the ICU or coro-
nary care unit for more frequent vital sign measurements. In 
this context, considerable data can be retrieved for analysis, 
and data models have been introduced to identify patients 
with high risk and predict mortality. Despite the high perfor-
mance of these models, deploying them in clinical practice 
has limitations due to issues such as the understandability 
of the data and metric evaluation [7]. Hence, research is re-
quired on data mining with physician guidance and model 
evaluation from physicians’ perspectives. In this study, we 
compared model performance between expert assessment 
and machine learning techniques for feature selection.

1. Related Works
The use of vital signs as features for predictive models has 
been of great interest in medicine over the past decade. 
Bloch et al. [8] obtained electronic medical records from 
patients with sepsis who had been admitted to the ICU of 
Rabin Medical Center. Vital signs, including blood pressure, 
heart rate, respiratory rate, and body temperature, were re-
corded every 10 minutes. Using these features, the research-
ers developed models of the probability of sepsis within the 
subsequent 4 hours and compared predictive performance. 
A support vector machine (SVM) with a radial basis func-
tion model showed the best performance, with an area un-
der the curve (AUC) of 88.83%. Other data mining studies 

incorporated factors in addition to vital signs. Kim et al. [9] 
included patient age and body weight in models for various 
machine learning algorithms to predict all-cause mortality 
in pediatric ICU patients. Their convolutional neural net-
work model yielded the highest AUC (0.89–0.97) for mortal-
ity prediction between 6 and 60 hours before death. Rojas et 
al. [10] added patient laboratory results and treatment data 
to models for predicting ICU readmission. In that study, 
the gradient-boosting algorithm demonstrated the highest 
performance. The model had AUCs of 0.73 and 0.72 in the 
prediction of ICU readmission within 72 hours and after 
72 hours, respectively. Another advanced machine learning 
technique was tested by Kwon et al. [11], who developed a 
deep learning-based early warning system using time-series 
data inputs. Their design consisted of three recurrent neural 
network layers with a long short-term memory unit. This 
model had a high sensitivity (24.3%) and a low false alarm 
rate (41.6%) for detecting patients with in-hospital cardiac 
arrest. Furthermore, many researchers have introduced 
models for predicting in-hospital mortality in patients with 
acute heart failure. Radhachandran et al. [12] developed sev-
eral machine learning models for predicting 7-day mortality 
in these patients, employing features including age, sex, vital 
signs, and laboratory results. Their best-performing model 
had an area under the receiver operating characteristic curve 
(AUROC) of 0.84. In summary, machine learning models 
have been used in many healthcare contexts to optimize pa-
tient care. However, no model has been constructed to clas-
sify patients with ACS based on risk of in-hospital mortality.

II. Methods

The data mining processes in this study are summarized in 
Figure 1.

1. Data Collection
The Institutional Review Board of the Royal Thai Army 
Medical Department approved this study protocol on March 
26, 2022 (No. IRBRTA 0409/2022). This cross-sectional 
study initially incorporated data from all patients who un-
derwent vessel intervention in Pharmongkutklao Hospital 
between August 2014 and August 2021. That dataset includ-
ed 3,109 patients. For the present study, 1,986 patients were 
excluded. The reasons for exclusion were scheduled elective 
coronary intervention in 1,817 patients, data loss from the 
procedure in 154 patients, and non-coronary artery inter-
vention in 15 patients. Hence, we analyzed data from 1,123 
patients with ACS who underwent PCI. Patient enrollment 
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is summarized in Figure 2.

2. Data Description
The data included a total of 34 features and one label. The 
features comprised the patients’ clinical profile, creatinine 
level as an indicator of renal function, inotropic agent or 
vasopressor use, and vital signs. Patient characteristics in-
cluded the diagnostic type of ACS (ST-elevation or non-ST-
elevation), sex, age, and comorbidities (diabetes mellitus, hy-
pertension, dyslipidemia, and atrial fibrillation). Vital signs 
included systolic blood pressure, diastolic blood pressure, 
pulse rate, respiratory rate, and oxygen saturation, each with 
five measurement periods: before starting the procedure and 
between minutes 0–15, 15–30, 30–45, and 45–60. The class 
label was binary (in-hospital death or discharge).

3. Libraries for Data Mining
All data mining processes and statistical analyses were ex-
ecuted using Google Colaboratory with Python code in the 
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Figure 1. ‌�Summary of data mining processes. RFE: recursive feature elimination, SVM: support vector machine, ANN: artificial neural 
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Figure 2. ‌Patient enrollment in the dataset.
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browser. Data management was done using the Scikit-learn 
version 1.0.2, Pandas version 1.3.5, and NumPy version 
1.21.6 libraries. Statistical analysis was performed using the 
SciPy version 1.7.3 library. The imbalanced-learn version 
0.8.1 library was employed to handle the imbalanced labels 
of the dataset. The Scikit-learn library provided recursive 
feature elimination with cross-validation and trained con-
ventional models. The artificial neural network model was 
trained using the TensorFlow version 2.9.2 library. The Mat-
plotlib version 3.22 library was utilized to plot data visualiza-
tion. Finally, the Scikit-learn library was used to evaluate the 
performance of all models. All hyperparameter settings were 
default values without tuning.

4. Data Exploration
1) Missing values
We detected and imputed the missing values in each in-
stance. If the missing value was a patient characteristic, we 
replaced it with the value documented in the medical re-
cords. If the missing value was a vital sign, we assigned it the 
average of the values from the other measurement periods.

2) Outliers
Human error can impact data from medical records. In 
this study, outliers were defined as vital sign measurements 
that were clinically impossible. Systolic and diastolic blood 
pressures outside the range of 30 to 300 mmHg, pulse rates 
outside the range of 10 to 300 beats per minute (bpm), respi-
ratory rates outside the range of 3 to 60 breaths per minute, 
and oxygen saturation levels outside the range of 60% to 
100% were corrected and replaced with the values docu-
mented in the medical records.

5. Data Preparation
1) Data transformation
In machine learning, all values must be transformed into 
numbers before training the data. In our dataset, some fea-
tures were recorded as Boolean values. For these features, we 
assigned a value of 1 if true and 0 if false. The transformed 
value of sex was 1 for male and 0 for female participants.

2) Data splitting into training and test sets
We randomly split the dataset into a training set (comprising 
80% of all patients) and a test set (containing the remain-
ing 20%). The training set was used in the model training 
processes, while the test set was prepared for final validation. 
The similarity between the training and test sets was ana-
lyzed with the Mann-Whitney U test and the chi-square test 

for continuous and categorical features, respectively. Table 1 
details the comparison between the training set and test set.

3) Feature scaling
Feature scaling, or the calculation of distances separating 
data, is crucial in machine learning algorithms. To avoid 
any feature disproportionately influencing the model due 
to its large magnitude, we needed to adjust the values of all 
features to exist on the same scale. The medical dataset con-
tained inherent differences in unit measurement and a wide 
range of values for each feature. Due to the non-normal dis-
tribution, we used the standardization method to scale the 
values.

4) Imbalanced dataset handling
Since a minority of patients had in-hospital mortality, our 
dataset was imbalanced. Model training with an imbalanced 
dataset can lead to unreliable performance, particularly for 
predicting the minority class. Thus, we utilized a combi-
nation of the synthetic minority over-sampling technique 
(SMOTE) and the Tomek link method to avoid poor predic-
tive performance of the models.

5) Feature selection
We compared two methods of feature selection. In one meth-
od, features were selected based on the consensus of two 
interventional cardiologists specializing in ACS and PCI. 
The other method was recursive feature elimination with 
10-fold cross-validation (RFECV). The SVM algorithm was 
employed in the RFECV process. This estimator was trained, 
and features were selected via the coefficients. The least im-
portant features were removed. This process was repeated re-
cursively until the optimal number of features was obtained 
to achieve maximal recall.

6. Data Modeling
We compared the performance of five simple models: SVM, 
decision tree, logistic regression, random forest, and artifi-
cial neural network.

7. Performance Evaluation
We assessed three performance metrics for each model: 
accuracy, recall, and false-negative rate. Because we were 
focused on classifying patients with in-hospital mortality, 
the priority was recall, representing the ratio of patients pre-
dicted to have in-hospital mortality to the actual number of 
patients who died in-hospital. For the training set, 10-fold 
cross-validation was also applied to calculate the average of 
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Table 1. Comparison of features between the training and test sets

Feature Training set Test set p-valuea

Age (yr) 66.28 ± 12.94 65.99 ± 12.65 0.61
Sex, male 623 (69.3) 147 (65.33) 0.29
STE-ACS 603 (67.07) 143 (63.56) 0.36
Diabetes 533 (59.29) 126 (56.0) 0.41
Hypertension 654 (72.75) 155 (68.89) 0.28
Dyslipidemia 651 (72.41) 153 (68.0) 0.22
Atrial fibrillation 767 (85.32) 202 (89.78) 0.10
Inotropic agent or vasopressor use 720 (80.09) 183 (81.33) 0.74
Creatinine level 1.77 ± 1.97 1.76 ± 2.1 0.52
Vital signs at starting procedure
   SBP 149.96 ± 32.3 152.37 ± 32.22 0.58
   DBP 80.59 ± 17.83 82.58 ± 17.2 0.31
   PR 78.22 ± 18.7 78.89 ± 17.24 0.49
   RR 17.41 ± 4.44 17.65 ± 4.07 0.40
   Oxygen saturation 98.48 ± 2.76 98.58 ± 2.36 0.97
Vital signs between 0–15 min of procedure
   SBP 135.30 ± 30.22 138.00 ± 32.1 0.37
   DBP 68.56 ± 15.99 68.77 ± 15.85 0.92
   PR 78.32 ± 18.57 78.28 ± 16.3 0.77
   RR 17.61 ± 4.15 17.77 ± 4.09 0.66
   Oxygen saturation 98.41 ± 2.74 98.47 ± 2.87 0.54
Vital signs between 15–30 min of procedure
   SBP 132.22 ± 28.83 133.77 ± 30.36 0.70
   DBP 67.74 ± 15.59 70.34 ± 16.16 0.05
   PR 78.70 ± 18.72 77.26 ± 16.45 0.65
   RR 17.55 ± 4.08 17.53 ± 4.24 0.91
   Oxygen saturation 98.43 ± 2.63 98.54 ± 2.47 0.93
Vital signs between 30–45 min of procedure
   SBP 128.46 ± 28.55 130.79 ± 31.12 0.54
   DBP 67.02 ± 15.48 69.28 ± 15.75 0.06
   PR 78.83 ± 18.11 77.94 ± 17.44 0.66
   RR 17.74 ± 3.95 17.72 ± 4.27 0.92
   Oxygen saturation 98.57 ± 2.39 98.56 ± 2.82 0.76
Vital signs between 45–30 min of procedure
   SBP 128.64 ± 27.54 131.11 ± 28.0 0.39
   DBP 67.54 ± 15.3 68.76 ± 14.31 0.30
   PR 79.14 ± 18.65 78.48 ± 16.28 1.00
   RR 17.81 ± 4.08 17.86 ± 4.05 0.85
   Oxygen saturation 98.63 ± 2.20 98.38 ± 3.79 0.60
Values are presented as mean ± standard deviation or number (%).
STE-ACS: ST-elevation acute coronary syndrome, DBP: diastolic blood pressure, PR: pulse rate, RR: respiratory rate, SBP: systolic 
blood pressure.
aUsing the Mann-Whitney U test for continuous data and the chi-square test for categorical features.
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these metrics. Cross-validation is a common model valida-
tion technique that is used to estimate a model’s performance 
on unseen data. It is a resampling procedure used to evaluate 
models with a limited data sample. As our study involved 10-
fold cross-validation, the data were split into 10 groups. One 
group was considered the test set, and the remaining groups 
were defined as the training set. Then, a model was fit on the 
training set and evaluated on the test set. Finally, the test set 
was rotated until all 10 groups had been used as the test set.

III. Results

1. Baseline Characteristics
The baseline characteristics of the patients with ACS who 
underwent PCI are summarized in Table 2. Most patients 
were men (68.51%), and the average patient age was 66.22 ± 
12.88 years. The sample included 378 patients (33.63%) with 
ST-elevation ACS. Overall, 465 (41.37%), 809 (71.98%), 804 
(71.53%), and 155 (71.53%) patients had diabetes, hyperten-
sion, dyslipidemia, and atrial fibrillation, respectively. The 
average creatinine level (indicating renal function) was 1.77 ± 
2.0 mg/dL. Inotropic agents or vasopressors were adminis-
tered to 221 patients (19.66%). The total mortality among all 
patients was 10.4%.

2. Feature Selection
1) Features selected by experts
The experts selected 11 features, including ACS type, dia-
betes, atrial fibrillation, creatinine level, each systolic blood 
pressure level throughout the procedure, the pulse rate 
before the procedure, and oxygen saturation before the pro-
cedure. The selected features were ranked as summarized in 
Table 3.

2) Features selected by RFECV
The SVM model with 15 features demonstrated the high-
est average recall in the RFECV process. The first-ranked 
features were the most important and had the maximum 
influence on the prediction model, while the other ranked 
features were less important. The 15 important features were 
derived from this technique. The features related to clini-
cal characteristics were age, diabetes mellitus, hypertension, 
dyslipidemia, the use of inotropic agents or vasopressors, 
and creatinine level. Among the vital signs, the important 
features included systolic blood pressure before the proce-
dure; pulse rate and respiratory rate within 0–15 minutes of 
the procedure; systolic blood pressure, diastolic blood pres-

Table 2. Baseline characteristics (n = 1,123)

Characteristic Value

Age (yr) 66.22 ± 12.88
Sex, male 770 (68.51)
STE-ACS 378 (33.63)
Diabetes 465 (41.37)
Hypertension 809 (71.98)
Dyslipidemia 804 (71.53)
Atrial fibrillation 155 (71.53)
Inotropic or vasopressor use 221 (19.66)
Creatinine (mg/dL) 1.77 ± 2.0
Values are presented as mean ± standard deviation or number (%).
STE-ACS: ST segment elevation acute coronary syndrome.

Table 3. Selection and ranking of features by the RFECV method 
and expert assessment

Rank

RFECV 1 PR during 0–15 min of procedure
SBP during 15–30 min of procedure
DBP during 15–30 min of procedure
PR during 15–30 min of procedure
RR during 15–30 min of procedure
SBP during 30–45 min of procedure
DBP during 30–45 min of procedure
SBP at the start of procedure
Creatinine level
Inotropic agent or vasopressor use
Dyslipidemia
Hypertension
Diabetes
Age
RR during 0–15 min of procedure

Experts 1 Type of ACS
2 SBP at the start of procedure

SBP during 0–15 min of procedure
SBP during 15–30 min of procedure
SBP during 30–45 min of procedure
SBP during 45–60 min of procedure

3 Oxygen saturation at the start of procedure
4 PR at the start of procedure
5 Creatinine level
6 Diabetes
7 Atrial fibrillation

RFECV: recursive feature elimination with cross-validation, PR: 
pulse rate, RR: respiratory rate, SBP: systolic blood pressure, 
DBP: diastolic blood pressure, ACS: acute coronary syndrome.
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sure, pulse rate, and respiratory rate within 15–30 minutes 
of the procedure; and systolic blood pressure and diastolic 
blood pressure within 30–45 minutes of the procedure.
	 Figure 3 demonstrates the recall of the model with various 
selected features in each iteration of 10-fold cross-validation. 
Table 3 lists selected features and their ranking using the 
RFECV algorithm and expert selection.

3. Model Performance: Training Set
Table 4 shows the performance metrics for each model 
for the training set. The models with features selected by 
RFECV had higher accuracy and recall than the models with 
features selected by experts. The random forest model with 
features selected by RFECV had the highest accuracy (0.96 ± 
0.01) and recall (0.97 ± 0.02). Figure 4 shows a comparison 
of the performance metrics among models for the training 
set.

4. Model Performance: Test Set
Table 5 shows the performance metrics for each model for 
the test set. The models with features selected by the RFECV 
technique also demonstrated higher accuracy than those 
with features selected by experts. Only the SVM and logistic 
regression algorithms had recall values of more than 0.5. 
However, the SVM algorithm yielded the highest accuracy 
(0.81) and a recall of 0.61. Even the logistic regression algo-
rithm showed high accuracy, although this accuracy was at 
most 0.80 with the lasso, ridge, or elastic net penalties for 
regularization. Figure 5 shows a comparison of the perfor-
mance metrics among models for the test set.

IV. Discussion

This study was the first implementation of basic machine 
learning models for classifying the risk of in-hospital mor-
tality of patients with ACS who underwent PCI. Two factors 
were important in this effort: the selection of the features for 
optimal model performance and the assessment of algorithm 
performance for patient classification.
	 Feature selection is a crucial process of data mining. Fea-
ture selection by a machine learning algorithm primarily 
differs from hand-picking by experts in how features are pri-
oritized. While experts use their knowledge and experience 
to suggest clinically important features, the recursive feature 
elimination technique involves training a model repeat-
edly on a smaller subset of features and removing the least 
important one from the dataset. Cross-validation combined 
with this process can be used to assess the model's perfor-
mance with different subsets of features. In general, RFECV 
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Figure 3. ‌�Recall values in recursive feature elimination with 10-
fold cross-validation. Each line represents each iteration 
of the 10-fold cross-validation.

Table 4. Model performance metrics for the training set with 10-fold cross-validation

Model Feature selection Accuracy Recall FNR

SVM RFECV 0.81 ± 0.02 0.81 ± 0.02 0.19 ± 0.02
Expert selection 0.74 ± 0.04 0.74 ± 0.04 0.26 ± 0.04

Random forest RFECV 0.96 ± 0.01 0.97 ± 0.02 0.04 ± 0.03
Expert selection 0.94 ± 0.01 0.95 ± 0.03 0.04 ± 0.03

Decision tree RFECV 0.91 ± 0.03 0.93 ± 0.05 0.07 ± 0.05
Expert selection 0.88 ± 0.02 0.91 ± 0.03 0.26 ± 0.05

Logistic regression RFECV 0.81 ± 0.03 0.81 ± 0.03 0.19 ± 0.03
Expert selection 0.75 ± 0.04 0.74 ± 0.05 0.26 ± 0.05

ANN RFECV 0.92 ± 0.02 0.96 ± 0.03 0.04 ± 0.03
Expert Selection 0.85 ± 0.04 0.88 ± 0.05 0.12 ± 0.05

Values are presented as mean ± standard deviation.
FNR: false negative rate, SVM: support vector machine, ANN: artificial neural network, RFECV: recursive feature elimination with 
cross-validation.
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is a powerful technique for identifying the most informative 
subset of features. In contrast, features selected based on the 
experience and clinical knowledge of experts may vary to a 
greater extent due to background differences.
	 Many features have not been explicitly studied in clinical 
trials. Therefore, experts might assume that these features 

could affect in-hospital mortality based on similar clinical 
studies. However, most of the selected features are inde-
pendent predictors of in-hospital mortality. Systolic blood 
pressure of less than 100 mmHg was reported to be a cru-
cial predictor for elderly patients with ACS in a developing 
country, with a hazard ratio of 2.75 [13]. A decrease in sys-
tolic blood pressure by less than 20 mmHg from baseline has 
also been associated with in-hospital mortality [14]. In the 
present study, the experts selected systolic blood pressure in 
all periods from the beginning through the first hour of the 
procedure. Systolic blood pressure was also selected with 
the RFECV method, but for only certain time periods. The 
results align with the reasoning that systolic blood pressure 
in the first 15 minutes of the procedure can be influenced 
by multiple factors, especially the patient’s initial stress 
level. After 45 minutes, coronary revascularization will have 
been performed successfully in almost all patients. In addi-
tion, sedation medication may have taken effect. Therefore, 
systolic blood pressures during these two intervals are less 
relevant and were not selected by the RFECV method. The 
diastolic blood pressures between minutes 15 and 30 and 
between minutes 30 and 45 of the procedure were selected 
as important features by the RFECV method. However, no 
clinical study has demonstrated a correlation between dia-

Table 5. Model performance metrics for the test set

Model Feature selection Accuracy Recall FNR

SVM RFECV 0.81 0.61 0.39
Expert selection 0.76 0.65 0.35

Random  
forest

RFECV 0.88 0.30 0.70
Expert selection 0.86 0.39 0.61

Decision  
tree

RFECV 0.85 0.35 0.65
Expert selection 0.77 0.39 0.61

Logistic  
regression

RFECV 0.80 0.61 0.39
Expert selection 0.77 0.65 0.35

ANN RFECV 0.86 0.30 0.69
Expert Selection 0.81 0.47 0.52

FNR: false negative rate, SVM: support vector machine, ANN: 
artificial neural network, RFECV: recursive feature elimination 
with cross-validation.
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Figure 4. ‌�Model evaluation in the training set: (A) accuracy, (B) 
recall, and (C) false negative rate. RFECV: recursive fea-
ture elimination with cross-validation, SVM: support 
vector machine, ANN: artificial neural network.
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stolic blood pressure and mortality in patients with ACS. A 
larger dataset of patients is needed to confirm the clinical 
importance of diastolic blood pressure in predicting mortal-
ity with machine learning. For pulse rate, experts selected 
the rate at the beginning of the procedure as important. In 
contrast, the RFECV method categorized pulse rates within 
the first 15 minutes and during minutes 15–30 of the pro-
cedure as important features. An increase in pulse rate is a 
crucial predictor of in-hospital mortality [14], but the exact 
time period and details of the dynamic change must be clini-
cally evaluated. Furthermore, pulse rate is the most sensitive 
of the vital signs and can change rapidly depending on the 
patient's status. Respiratory rate is the vital sign that is most 
frequently ignored due to the lack of evidence of clinical 
outcomes. However, this study indicated that the respiratory 
rates during the first 0–15 minutes and 15–30 minutes of the 
procedure were important features in predicting in-hospital 
mortality.
	 Likewise, additional interpretable clinical machine learning 
studies should be conducted. Interestingly, oxygen saturation 
at the beginning of the procedure was selected by experts 
but not by the RFECV method. Heart failure is one of the 
most common complications in patients with ACS, and low 
oxygen saturation can be detected in patients with heart fail-

ure. Therefore, experts might assume that oxygen saturation 
could predict in-hospital mortality in patients with ACS. 
However, the fact that the RFECV method did not identify 
this feature may not necessarily imply that oxygen saturation 
level is not associated with patient severity, but rather that it 
is less relevant than other features.
	 In addition to vital signs, certain patient characteristics are 
important predictors of in-hospital mortality in patients with 
ACS. Both the experts and the RFECV algorithm selected di-
abetes comorbidity and renal function as important features. 
Multiple studies have demonstrated that impaired renal 
function is associated with in-hospital mortality and major 
bleeding [14-16], while diabetes is a traditional cardiovascu-
lar risk factor [14]. Diabetes not only causes ACS, but also 
increases the risk of PCI-related complications [17]. Regard-
ing ACS type, in one large cohort of patients admitted with 
ACS, the mortality rate was lower among patients with ST-
elevation ACS than among those with non-ST-elevation ACS 
[18]. Experts are generally familiar with this result. There-
fore, the experts in this study selected ACS type as an impor-
tant feature. Interestingly, the type of ACS was considered 
less relevant in the RFECV feature selection method. Again, 
this does not necessarily undermine the importance of the 
ACS type, but rather suggests that other features were more 
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relevant in our dataset. Patients with atrial fibrillation who 
are hospitalized for ACS have significantly increased risk of 
in-hospital mortality [19]. This explains why the experts in-
cluded atrial fibrillation as an important feature, although it 
was unexpectedly not listed by the RFECV method. Patient 
age, hypertension, dyslipidemia, and use of inotropic agents 
or vasopressors were selected as important features by the 
RFECV method. However, these features were not chosen by 
the experts, perhaps due to the lack of a known impact on 
clinical outcomes. Moreover, the use of an inotropic agent 
or vasopressor can imply low systolic blood pressure, which 
the experts could have viewed as redundant with the systolic 
blood pressure measurements.
	 Based on the performance of the models, our study showed 
that feature selection by a machine learning algorithm using 
RFECV was more accurate for classification than expert as-
sessment and was even comparable in recall when validated 
with the test set. The superior performance achieved with 
feature selection using the RFECV technique may be driven 
by its selection of the most important variables and eradi-
cation of the redundant and irrelevant ones, which could 
improve the predictive performance. This represents a slight 
increment in accuracy compared to models with expert-
selected features but is consistent with previously developed 
models. Seib et al. [20] applied the super learner algorithm, 
which included ensemble-forward stepwise feature selec-
tion, to predict complications following thyroidectomy. This 
provided a modest improvement in outcome prediction as 
well. Another study, by Alam et al. [21], involved the use of 
feature-ranking-based ensemble classifiers to predict sur-
vivability among ICU patients. The implications of feature 
ranking can improve model performance in all datasets as 
well as all algorithms. Hence, we confirm that feature selec-
tion can boost classification model performance. However, 
the optimal method for feature selection depends on the 
characteristics of the dataset.
	 In this study, the SVM algorithm was the classification 
model with the highest accuracy (0.81). Furthermore, the 
SVM model showed slightly higher accuracy than logistic 
regression. A few factors may explain why an SVM classifi-
cation model might perform better than a logistic regression 
model on this dataset. First, overfitting was not an issue 
for the training dataset because it was already handled by 
preprocessing or feature engineering methods. Therefore, 
regularization would not make a significant difference in 
performance. Moreover, our data may be sparse or include 
some noise, which might not affect the performance of the 
SVM algorithm. Lastly, logistic regression assumes a linear 

decision boundary and independence of features, which may 
not be true for some datasets. SVM does not rely on these 
assumptions and captures the complex boundary between 
classes. Logistic regression is focused on maximizing likeli-
hood, while SVM is focused on maximizing the margin 
between the classes. In the present study, even basic models 
could produce high accuracy for classification. Neverthe-
less, the recall rates (the highest of which was 0.61) should 
be considered, as they illustrate that even that model could 
misclassify patients as low risk in 4 out of 10 instances. This 
would be a relatively high rate if the model were applied to 
clinical practice; nearly half of the patients at high risk for 
in-hospital mortality could be transferred to the regular 
ward, which has less intensive monitoring than the ICU. In 
the binary classification task of machine learning, recall is 
synonymous with sensitivity in diagnostic tests in clinical 
research. In the context of classification models for mortal-
ity prediction in critical patients, our models yielded slightly 
lower recall values than some previous studies. In an in-
hospital cardiac arrest prediction model by Kwon et al. [11], 
the highest sensitivity (0.76) was obtained with the logistic 
regression model. Liu et al. [22] examined another predic-
tive model for mortality in critical patients with acute kidney 
injury. They utilized the least absolute shrinkage and selec-
tion operator regression method for feature selection, ob-
taining a recall of 99.4% with the XGBoost model. The high 
granularity of data—including vital signs, care plans, nurse 
charting, disease severity, laboratory results, diagnosis, and 
treatment information—in their dataset likely also enhanced 
their model performance. Thus, extensive granularity of fea-
tures, hyperparameter tuning, and more complex algorithms 
should be applied to each step of data mining to improve the 
recall associated with classification models.
	 In conclusion, we implemented simple machine learning 
algorithms with feature selection by the RFECV technique, 
which yielded higher accuracy than algorithms with feature 
selection by experts. Despite lower recall due to limitations 
in feature dimensionality and non-complex algorithms, 
further studies should be conducted, incorporating more 
clinical features and more complex algorithms to develop an 
optimal model for classifying patients with ACS.
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