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The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the 
nuclear receptor family. It is well known that PPARs function as regulators of lipid and lipoprotein metabolism and 
glucose homeostasis, as well as influence cellular proliferation, differentiation and apoptosis. However, the role of the 
PPARs with regard to embryonic stem (ES) cells remains unknown. We will review the function of the PPARδ, one 
of the three PPAR isoforms, α, δ (also called β/δ), and γ, in ES cells and its role in embryo development. In 
addition, pluripotent mouse ES cells can be expanded in large numbers in vitro due to the process of symmetrical 
self-renewal. Here we describe how PPARδ sustains ES cell proliferation.
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Introduction 

  Peroxisome proliferator-activated receptors (PPARs) are 
ligand-activated transcription factors that belong to the 
nuclear receptor superfamily (1). They have been identi-
fied in a variety of different species including the xenopus, 
mouse, rat, and humans (2). After the isolation of PPARα 
(NR1C1), as the receptor mediating peroxisome pro-
liferation in rodent hepatocytes in 1990 (3), two related 
isotypes, PPAR δ(NR1C2; also called PPARβ/δ) and 
PPARδ (NR1C3) located on chromosomes 15, 17 and 6 
in the mouse and chromosomes 22, 6 and 3 in human, 
were identified (4, 5). Once activated by their respective 
ligands, the PPARs control the transcription rate of a 
large panel of genes implicated in various physiological 
functions, including adipogenesis, lipid and glucose ho-
meostasis, inflammation, cell proliferation, differentiation, 

and carcinogenesis (2, 6-8). PPARs heterodimerize with 
the retinoid X receptors and modulate gene expression of 
target genes containing peroxisome proliferators-respon-
sive elements in response to ligand activation (9, 10). 
  The three isoforms of PPARs display distinct physio-
logical and pharmacological activity that is dependent on 
their target genes and their tissue distribution (11, 12). 
PPARα, activated by polyunsaturated fatty acids and leu-
kotriene B4, is expressed in tissues with high fatty acid 
catabolism such as the liver, heart, brown adipose tissues, 
kidney, and intestine. PPARγ, mainly expressed in adipo-
cytes, macrophages, placenta, and other tissues, is acti-
vated by specific fatty acid metabolites, such as 15-deoxy- 
prostaglandin J2 (15d-PGJ2), and by thiazolidinediones. 
Both PPARα and PPARγ response genes are involved in 
lipid homeostasis. Therefore, it is not surprising that the 
main functions of PPARα and PPARγ are related to glu-
cose and lipid homeostasis (13-15). On the other hand, the 
ubiquitous distribution of PPARδ, (although gut, kidney, 
and heart express higher levels than other tissues) makes 
it difficult to associate PPARδ with a specific biological 
function (14). Although PPARδ is the least studied 
PPAR, it has been reported that PPARδ is associated 
with a diverse range of functions. Indeed, PPARδ partic-
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ipates in many biological processes, including lipid and 
glucose metabolism (16-19), epidermal maturation and 
wound healing (20-22), muscle development and function 
(23-25), tumorigenesis (26-30), inflammation (31, 32), and 
cytoprotection (33). In addition, combining multiple re-
search approaches, PPARδ has been implicated in em-
bryo development including stem/progenitor cell pro-
liferation (34, 35), embryo implantation (13, 36, 37), em-
bryo organogenesis, and diabetic embryopathy (38, 39). 
Therefore, this review will focus on the role of PPARδ 
in the ES cells. 

Physiological functions of PPARδ

  PPARδ has been the most elusive among the three 
PPAR subtypes. Due to its broad tissue distribution, it is 
difficult to identify a specific function for this receptor. 
PPARδ has a broad expression pattern in adult animals, 
and is detected very early during embryogenesis (40). 
Several studies have shown that PPARδ is activated by 
a large variety of ligands and is implicated in the devel-
opmental and metabolic regulation of several tissues. 
PPARδ activators include fatty acids (41, 42), trigly-
cerides (43), the cyclooxygenase (COX) product, prostacy-
clin (42), the COX/prostacyclin synthase derived endo-
cannabinoid metabolites (44), and all transretinoid acid 
(45). A number of synthetic PPARδ ligands have been de-
scribed including GW0742X, GW2433, GW9578, L-783, 
483, GW501516, L-796,449, L-165,041, and compound F 
(46-48). In addition, GW501516 and GW0742 activate 
PPARδ at very low concentrations both in vivo and in vi-
tro with a 1,000-fold selectivity over the other PPAR sub-
types (49). 
  A mouse knockout model, although difficult to generate 
due to highly penetrant lethality (21, 50), indicated a role 
for PPARδ during embryo implantation, as well as in my-
elination of the brain, lipid metabolism and adiposity, and 
epidermal cell proliferation (37, 50, 51). In addition, 
PPARδ has been linked to cell differentiation, inflamma-
tion, cell motility, and cell growth (9, 52). Recent studies 
suggest that PPARδ plays a role in cell growth. For exam-
ple, the PPARδ expression is increased in colorectal can-
cer cells compared with normal colon epithelial cells (30, 
53). Treatment of GW501516, a PPARδ ligand, increased 
the number and size of intestinal polyps (29). In addition, 
PPARδ has been implicated in the growth of several oth-
er cell types including vascular smooth muscle cells (54), 
preadipocytes (17, 55) and epithelial cells (9). It has re-
cently become clear that PPARδ has a function in epi-
thelial tissues; however, this role continues to be debated 

in reports with inconsistent findings. Indeed, some reports 
suggest that ligand activation of PPARδ potentiates cell 
growth (56), whereas other reports suggest that ligand acti-
vation of PPARδ attenuates cell growth (57). Activation 
of PPARδ by its agonist increases COX2 expression in 
human hepatocellular carcinoma cells (58). In addition, 
PPARδ has been shown to mediate prostaglandin E2 
(PGE2)-induced cell growth (59). More importantly, sev-
eral reports have suggested that PPARδ-mediated cell 
growth is induced by COX/prostaglandin (PG) signal 
pathways. Consequently, the interplay between the PPAR
δ and cytosolic phospholipase A2 (cPLA2)/COX2/PGE2 
signaling pathways acts as a positive regulator in cell 
growth. 
  Apart from cell growth, the fact that PPARδ plays an 
important role in embryonic development is supported by 
the observation that most PPARδ-deficient mice die early 
during embryonic development due to a placental defect. 
A recent study showed that the genetic loss of PPARδ sig-
naling does not influence ovulation, fertilization or pre-
implantation (60). Mouse embryos express PPARδ detect-
able at the two-cell stage (61) or eight-cell stage (36), and 
throughout the preimplantation period. Mouse blastocysts 
also express PPARδ in the inner cell mass and the tro-
phectoderm. On the embryonic cell level, prostacyclin or 
the PPARδ agonist increased the embryonic cell mass, in-
dicating that PPARδ is essential for embryo development, 
blastocyst hatching and implantation (36). 

PPARδ and embryonic stem (ES) cells

  The elucidation of PPARδ modulation of ES cells will 
provide new insights into embryonic development. In ad-
dition, research on how normal embryonic development is 
regulated will provide new clues as to how to maintain 
stem cells in culture. The description of the interaction 
among signal molecules is a key to our fundamental un-
derstanding of stem cell proliferation and its translation 
into therapeutic strategies. However, information regard-
ing the potential role of PPARδ in physiological and/or 
developmental processes is very limited, although PPARδ 
is widely expressed in embryonic tissue. There is evidence 
that PPARδ can modulate stem and progenitor cell ex-
pansion and a differentiated phenotype. In neural stem 
cells, PPARδ contributes to the maintenance of the un-
differentiated and proliferative status, by regulating both 
the genes involved in cell cycle control, as observed in oth-
er cell types (54, 62, 63), and inhibiting the activity of the 
other PPARs, which may be involved in cellular differ-
entiation (64-66). In addition, the PPARδ agonist GW 
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Fig. 1. The hypothesized model for the signal pathways involved 
in high glucose-induced mouse ES cell proliferation. High glucose
increased PGE2 synthesis, which is controlled by the coupled acti-
vation of cPLA2/AA and COX2 via ROS. After PGE2 is released into
the extracellular space, it binds to the membrane coupled EP re-
ceptors. This effect is mediated, at least in part, by the activation 
of PI3K/Akt. Finally, these molecules may induce PPARδ, which 
increases cell cycle regulatory protein expression levels. Abbrevi-
ations: AA, arachidonic acid; CDK, cyclin-dependent kinase; COX2,
cyclooxygenase-2; cPLA2, cytosolic phospholipase A2; NAC, N-ace-
tylcysteine; PGE2, prostaglandin E2; PI3K, phosphoinositide 3-kin-
ase; PPAR, peroxisome proliferator activated receptor; ROS, re-
active oxygen species (34).

501516 has been shown to be a promoter involved in the 
development of adenosquamous carcinomas with high ex-
pression of stem cell markers CK19 and Notch1, as well 
as Proliferin, a growth factor that mediates many of the 
effects of the stem cell markers such as Musashi1, in 
mammary cells (67). PPARδ is expressed in the crypt 
cells of the small intestine and negatively regulates Hedge-
hog signaling to block differentiation (68), a process that 
would be expected to promote transformation. The associ-
ation of Wnt activation with stem cell expansion, activa-

tion of β-catenin/T-cell factor (TCF) signaling by 3-phos-
phoinositide-dependent protein kinase 1 (PDK1) and the 
identification of PPARδ responsive genes suggest a com-
mon mechanism for the tumor promoting action of PPAR
δ agonists that may involve stem and progenitor cell pro-
liferation (35). 
  For successful implantation and pregnancy, recent evi-
dence suggests that the implantation timing of PG signal-
ing resulting from cPLA2, COX2 or lysophosphatidic acid 
receptor 3 plays an important role in the subsequent de-
velopmental processes (69-72). However, the underlying 
mechanism and the molecular link between the critical 
steps are still unclear. A previous report provided evidence 
that PPARδ serves as a molecular link that coordinates 
multiple signaling pathways in mouse ES cell pro-
liferation allowing their self-renewal (Fig. 1) (34). In that 
study, high glucose (25 mM) increased PPARδ gene ex-
pression rather than PPARα or PPARγ in the ES cells. 
In addition, the PPARδ agonist, L-165,041 increased ES 
cell proliferation, but the PPARδ antagonist, GW9662 or 
the PPARδ specific small interfering RNAs inhibited the 
effects of high glucose. Moreover, high glucose increased 
COX2 and PGE2 synthesis activating PPARδ, which in-
creases cell cycle regulatory protein expression such as cy-
clins and cyclin dependent kinases (CDKs). It has been 
consistently shown that COX2-derived PGE2 and PGI2 me-
diate their function via PPARδ receptors during the early 
steps of decidualization in mice (73). Although the exact 
mechanisms involved in COX2-derived PG activation of 
PPARδ has not been completely elucidated, previous re-
ports have suggested that the activity of PGE2 is mediated 
by possible activation of the EP2 receptor, which increases 
the cAMP levels (74-76) and PPARδ receptors. Previous 
work has shown that embryos from streptozotocin (STZ)- 
induced diabetic rats have diminished PGE2 content, al-
though they can produce PGE2 in large amounts (77). One 
can speculate that arachidonic acid (AA) might be de-
pleted if PGE2 generation and release is increased in the 
diabetic embryo in order to maintain the intracellular 
PGE2 levels (39). In addition, it has been suggested that 
ligand activation of PPARδ induces the expression of 
COX2 (56), which could theoretically promote cell growth 
and inhibit apoptosis through mechanisms that involve 
the production of prostaglandins. These data raise the pos-
sibility that impaired activation of PPARδ may alter the 
lipid signaling required for normal self-renewal of ES 
cells, which raises that possibility that PPARδ might be 
a putative target for the maintenance of ES cell charac-
teristics. The results of a previous study suggested that the 
loss of PPARδ leads to reduction of the phosphorylation 



Min Young Lee, et al: Role of PPARs in ES Cells  31

status of Akt and STAT3 in the trophoblast (60). Akt is 
a down-stream pathway of PPARδ signaling that is active 
during cell proliferation and survival (60); it was observed 
that PPARδ null mice were not able to progress through 
the normal developmental steps. The PI3K/Akt signaling 
pathway also has been implicated in ES cell self-renewal 
in studies of ES cells without PTEN (78). Thus, this ob-
servation supports the participation of PPARδ in ES cell 
proliferation and maintenance of self-renewal. In addition, 
several groups have shown that STAT3 is an important 
signal transducer and activator in the maintenance of plu-
ripotency and the propagation of mouse ES cells (79-81). 
Although STAT3 phosphorylation with LIF was not influ-
enced by the PPARδ -/- trophoblast, the STAT3 was not 
phosphorylated by the PPARδ agonist. This suggests that 
PPARδ activity not only plays a role in normal develop-
ment but also is involved in ES cell proliferation and 
self-renewal. It has been shown that STAT3 could direct 
the expression of key regulators of the mitotic cycle in ES 
cells and stimulates their entry into the S phase (79). 
Thus, it is possible that PPARδ plays a role in inducing 
cell cycle molecules that are involved in ES cell prolife-
ration. Gene expression profiling experiments will help 
gain insights into the mechanisms involved in PPARδ ac-
tivity during the process of self-renewal. 

Conclusions

  Over the past few years, knowledge of the physiological 
activity of PPARδ has expanded. The study of PPARδ 
characteristics has added to improve understanding of cell 
physiology. PPARδ has been implicated in many cell 
processes, from the embryo to adult cells, and from cell 
proliferation to cell differentiation; it has been shown to 
be crucial for energy homeostasis. Until recently, because 
the function of PPARδ remained elusive, the therapeutic 
potential of PPARδ agonists for lipid and glucose metab-
olism, embryo development and wound healing has been 
tested in mice only. Our current understanding of PPAR
δ has demonstrated that PPARδ also plays a critical role 
in ES cell proliferation. Future studies will likely clarify 
the physiological role of PPARδ in ES cell growth and 
differentiation.
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