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INTRODUCTION 

General anesthesia and sleep have long been discussed in 

the neurobiological context owing to their commonalities 

such as unconsciousness, immobility, non-responsiveness 

to external stimuli, and lack of memory upon returning to 

consciousness. In 1855, it was hypothesized that a common 

mechanism might be involved in general anesthesia and 

normal deep sleep [1]. However, since the exact mecha-

nisms of anesthesia and sleep are yet to be completely un-

derstood, the relationship between the two phenomena re-

mains uncertain. This review discusses the current under-

standing of neurobiological mechanisms underlying sleep 

and anesthesia and explores potential clinical implications. 

Based on the similarities and differences between these 

seemingly similar states, we sought to gain a better insight 

into anesthesiology and sleep medicine. 
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General anesthesia and sleep have long been discussed in the neurobiological context ow-
ing to their commonalities, such as unconsciousness, immobility, non-responsiveness to ex-
ternal stimuli, and lack of memory upon returning to consciousness. Sleep is regulated by 
complex interactions between wake-promoting and sleep-promoting neural circuits. Anes-
thetics exert their effects partly by inhibiting wake-promoting neurons or activating sleep-pro-
moting neurons. Unconscious but arousable sedation is more related to sleep-wake circuit-
ries, whereas unconscious and unarousable anesthesia is independent of them. General 
anesthesia is notable for its ability to decrease sleep propensity. Conversely, increased 
sleep propensity due to insufficient sleep potentiates anesthetic effects. Taken together, it is 
plausible that sleep and anesthesia are closely related phenomena but not the same ones. 
Further investigations on the relationship between sleep and anesthesia are warranted. 
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DEFINITION OF GENERAL ANESTHESIA 
AND SLEEP 

The American Society of Anesthesiologists defined gener-

al anesthesia as “drug-induced loss of consciousness during 

which patients are not arousable, even by painful stimula-

tion” [2]. This condition is also accompanied by amnesia, 

akinesia, and the stability of life-sustaining physiological 

systems [3]. Sleep is characterized by immobility and a re-

duced level of responsiveness to the environment, unlike the 

awake state, and differs from hibernation or anesthesia in 

that it is quickly reversible [4]. Sleep is often regarded as a 

passive state; however, it is a dynamic process that is regulat-

ed by complex mechanisms rather than a state of inactivity. 

Sleep states are categorized into the following two distinct 

phases: rapid eye movement (REM) and non-rapid eye 

movement (NREM) sleep. REM sleep is accompanied by 

bursts of rapid eye movements, irregular breathing and 
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heart rate, dreams, and muscular atonia, whereas NREM 

sleep is characterized by slow eye movement, decreased 

muscle tone, body temperature, and heart rate [5].  

ELECTROENCEPHALOGRAPHIC 
FINDINGS IN GENERAL ANESTHESIA 

AND SLEEP 

Electroencephalograms (EEG) reveal distinct patterns 

during general anesthesia. As the depth of anesthesia in-

creases, the EEG pattern changes from paradoxical exci-

tation, phases 1 and 2, followed by burst suppression and 

isoelectric traces [3]. 

During the induction period, EEG shows an increase in 

beta activity (13–25 Hz), implying a paradoxically excited 

brain status. Under lighter phases anesthesia (phase 1), EEG 

beta activity decreases while alpha (8–12 Hz) and delta (0.5–

4 Hz) activities increase. An intermediate state (phase 2) is 

characterized by increased alpha and delta activity in the 

anterior brain, called anteriorization. The EEG of phase 2 

anesthesia is similar to that of stage 3 NREM sleep. Under 

more profound anesthetic state (phase 3), a critical feature 

on EEG is intermittent high-power range oscillations 

(bursts) in alternation with isoelectricity (suppression), 

which is known as burst suppression [6–9]. This distinct fea-

ture is mainly observed when the brain is inactivated, such 

as during hypothermia [10–12], deep general anesthesia 

[3,13], and coma [14]. Surgical procedures are usually con-

ducted in phases 2 and 3. 

EEG during sleep also shows distinct stages. In NREM 

stage 1, the EEG frequency decreases, and strong alpha and 

theta activities are observed. In NREM stages 2 and 3, the 

amplitude of EEG increases, and the frequency reduces fur-

ther, which are characterized by both sleep spindles (7–14 

Hz) and K-complexes. In NREM stage 4, brain waves show 

high-amplitude and low-frequency rhythms. In particular, 

large-amplitude delta waves (0.5–4 Hz) are characteristic of 

NREM sleep stage 4, also known as slow-wave sleep. During 

REM sleep, EEG shows high-frequency and low-amplitude 

rhythms, and theta (7–9 Hz) activity is prominently observed 

[15]. More information can be found in the review by Brown 

et al. [3]. 

REGULATORY MECHANISMS FOR SLEEP 
AND WAKEFULNESS IN THE BRAIN 

Arousal pathway 

Activation of wake-promoting systems causes arousal in 

an organism and prevents it from falling asleep. During 

states of wakefulness, low-amplitude oscillations at 20–60 

Hz were found in the cortical EEG, and an electromyogram 

(EMG) shows irregular muscle activities [16–18]. According 

to Moruzzi and Magoun [19], the waking state is maintained 

by an ascending flow of arousal signals emanating from the 

brainstem reticular formation. The ascending reticular acti-

vating system (ARAS) is generally located in the pons and 

midbrain. In addition to ARAS, many other wake-promoting 

areas were identified [20,21]. Recent advances in neurosci-

entific techniques have enabled the identification of intrace-

rebral nuclei and their neurotransmitter-specific cell types 

which maintain or promote wakefulness. Optogenetics and 

chemogenetics have revolutionized the anatomical and 

physiological understanding of sleep and wakefulness. Op-

togenetics is a cutting-edge neurotechnology that uses 

light-sensitive proteins, such as channelrhodopsin, and illu-

mination to control the activity of neurons in a cell-type- 

and region-specific manner with high temporal precision. 

Neurons induce or suppress action potentials when 

light-sensitive ion channels or pumps are stimulated opti-

cally [22]. Similarly, chemogenetics employs mutated mus-

carinic receptors, such as hM3Dq and hM4Di, which are re-

sponsive to the exogenous chemical clozapine-N-oxide 

(CNO) but not to the endogenous ligand acetylcholine. After 

hM3Dq or hM4Di is expressed in a specific group of cells, 

the specific neurons can be excited or inhibited selectively 

by CNO administration. Wake-promoting cell groups in-

clude noradrenergic cells in the locus ceruleus (LC) [23], 

5-HT-synthesizing (serotonergic) cells in the dorsal raphe 

nuclei (DRN) [24], acetylcholine-synthesizing (cholinergic) 

cells [25–28], glutamatergic, and GABAergic cells [25,27,29] 

in the pedunculopontine tegmentum (PPT) and laterodorsal 

tegmentum (LDT), and DA-synthesizing (dopaminergic) 

cells in the ventral tegmental area (VTA) [30]. The parabra-

chial nucleus (PB) is also a strong wake-promoting area that 

is active during hypercarbia, pain, cold, and nausea [31]. In 

the forebrain, some nuclei promote wakefulness in conjunc-

tion with ARAS [16], including histaminergic cells in the tu-

beromammillary nuclei (TMN) [32], hypocretinergic (also 

known as orexinergic) cells in the lateral hypothalamus (LH) 
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[33–36], cholinergic and parvalbumin-containing cells in the 

basal forebrain (BF) [37], and glutamatergic neurons in the 

PB [31]. Activation of these systems spontaneously or exper-

imentally leads to a pattern of cortical activation required to 

maintain wakefulness. However, it remains unclear whether 

all these cell populations are simultaneously necessary to 

generate and maintain wakefulness. 

Sleep-promoting pathway 

First, the ventrolateral preoptic area (VLPO) was discov-

ered as a sleep-promoting area. GABAergic and galaninergic 

neurons in the VLPO project to wake-promoting brain re-

gions, such as the TMN, DRN, LC, PB, hypocretinergic neu-

rons, and cholinergic neurons of the BF. Other areas were 

also found to have sleep-active neurons. The parafacial zone 

in the rostral medulla, which is dorsolateral to the origin of 

the facial nerve, contains GABAergic/glycinergic neurons. 

These neurons are active during NREM sleep, and their se-

lective activation causes longer NREM sleep and higher EEG 

delta rhythm [38]. In the cortex, most neurons are wake-ac-

tive, but neurons containing nitric oxide synthase (nNOS) in 

the deep layer are sleep-active [39]. These neurons fire in re-

sponse to homeostatic sleep pressure and release GABA and 

nitric oxide, slowing down cortical rhythms. Additionally, 

two sets of neurons are essential for REM sleep. One is cho-

linergic neurons in the PPT/LDT area, which are active 

during REM sleep and are known as “REM-ON” cells [40]. 

The other is glutamatergic neurons in the sublaterodorsal 

nucleus, which have been discovered more recently as REM-

sleep generators [41]. 

Flip-flop switch model 

Interestingly, sleep-promoting VLPO and wake-promoting 

regions are connected by bidirectional inhibitory projec-

tions. This reciprocal inhibitory neural circuitry is similar to 

flip-flop circuitry in electronics, which enables rapid transi-

tions between sleep and wake states and keeps the states in 

a stable manner. Thus, a model mechanism for sleep-wake 

control between VLPOs and arousal-promoting regions was 

proposed and named the “flip-flop switch” model [42]. Acti-

vating VLPO neurons promotes sleep by inhibiting arous-

al-promoting areas such as LC, TMN, and DRN neurons, 

whereas activating LC, TMN, and DRN neurons promote 

wakefulness by inactivating VLPO neurons. As a result of 

solid inhibition between these two sides of the switch, the 

system rapidly shift from one state to the other and stabilizes 

one state against the other. Therefore, balancing arous-

al-promoting and sleep-promoting circuitries is critical for 

determining a vigilance state. 

Homeostatic sleep regulation 

In general, prolonged wakefulness is followed by longer 

and deeper sleep. Homeostatic sleep response is character-

ized by a higher sleep propensity and longer sleep time after 

sleep deprivation (SD) [43]. Adenosine is a neurochemical 

substrate of sleep propensity and sleep-inducing factor that 

increases in proportion to prior wakefulness [44]. In con-

trast, slow wave activity (SWA) is considered an electrophys-

iological measure of sleep propensity or the tendency to-

ward sleep and can be measured by the power of cortical 

delta waves (0.5–4 Hz). Homeostatic sleep response occurs 

during recovery sleep after SS and is characterized by in-

creased SWA. Additionally, slow-wave energy (SWE), the 

time integral of SWA during NREM sleep, also represents the 

homeostatic sleep response. 

ANESTHETIC AGENTS: GABAERGIC VS. 
NON-GABAERGIC 

General anesthetics increase inhibitory neurotransmis-

sion and decrease excitatory neurotransmission in the cen-

tral nervous system, ultimately leading to a suppressed state 

of the brain. However, the mechanisms of action of general 

anesthetics are not yet well established. In addition, the rep-

resentative states of general anesthesia, including uncon-

sciousness, amnesia, analgesia, and akinesia, are mediated 

by different receptors and brain regions. Most general anes-

thetics act on neurotransmitter-gated ion channels. It has 

been found that among the various ion channels, the γ-ami-

nobutyric acid type A (GABAA) receptor plays a significant 

role as a functional site for general anesthesia [45–49]. GABA 

is the primary inhibitory neurotransmitter in the mammali-

an central nervous system and its inhibition is mediated 

mainly through chloride-permeable chloride-gated ion 

channels called GABAA receptors. Activation of GABAA re-

ceptors triggers an inflow of chloride ions into the cell, caus-

ing cell membrane potential hyperpolarization and de-

creased neuronal excitability [50]. The GABAA receptor has 

an active site to which GABA and other drugs, such as bicuc-

ulline, can bind as a ligand along with multiple allosteric 

binding sites [51]. Various anesthetics, including benzodiaz-
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epines, propofol, neuroactive steroids, barbiturates, and in-

haled anesthetics, can modulate receptor activity by binding 

to the different allosteric binding sites [52]. Non-GABAergic 

agents such as ketamine [53], nitrous oxide [54], and xenon 

[55] rarely interact with GABAA receptors. The anesthetic ef-

fects are mediated by non-competitive antagonism of the 

N-methyl-D-aspartic acid (NMDA) receptor, resulting in de-

creased excitatory neurotransmission. Especially, ketamine 

interacts with the opioid, monoaminergic, cholinergic, puri-

nergic, and adrenoreceptor systems [56,57]. 

THE ACTION OF ANESTHETICS 
BLOCKING THE AROUSAL PATHWAY 

Tuberomammillary nucleus 

The TMN is a critical wake-promoting nucleus and a tar-

get for anesthesia-induced sedation [58]. In particular, after 

sedation induced by GABAergic anesthetics such as propo-

fol, muscimol, and pentobarbital, the expression pattern of 

the c-Fos gene, a marker of neuronal activity, appears simi-

lar to that of NREM sleep. Expression of c-Fos, a marker for 

neuronal activation, decreased in TMN while increased in 

the VLPO, suggesting that GABAergic agents activate the 

VLPO and suppress the TMN. Furthermore, muscimol di-

rectly injected into the TMN increased the loss of righting 

response (LORR) time, a behavioral measure of the degree 

of sedation, in a dose-dependent manner, whereas GABAA 

receptor antagonist, gabazine reduced the LORR [58,59]. 

These findings suggest that GABAergic anesthetics inhibit 

neuronal activity in the TMN, resulting in reduced release of 

histamine and loss of consciousness [60,61]. 

Locus ceruleus 

LC noradrenergic neurons have strong wake-promoting 

effects, and pre-and post-synaptic mechanisms contribute 

to the suppression of LC neuronal activity by general anes-

thesia. Neuronal loss in the LC of the zebrafish model result-

ed in faster induction and slower emergence from general 

anesthesia [62]. In addition, chemogenetic activation of LC 

noradrenergic neurons reduces delta power during isoflu-

rane anesthesia and shortens its emergence time. Converse-

ly, adrenoreceptor antagonists lenghthens the duration of 

anesthesia [63]. 

Hypocretinergic neurons 

Hypocretinergic neurons also mediate anesthetic effects 

by decreasing their wake-promoting functions. Evidence 

suggests that isoflurane and sevoflurane decrease c-Fos ex-

pression in hypocretinergic neurons, also known as orexin-

ergic neurons, implying that their activity is suppressed [64]. 

More recently, these neurons in the perifornical area of the 

lateral hypothalamus have demonstrated influencing the 

maintenance and emergence from isoflurane and desflu-

rane anesthesia [65]. In addition, these neurons also affect 

induction via projections to the paraventricular nucleus. 

DOES ANESTHESIA HAVE SLEEP-LIKE 
EFFECTS? 

To date, many researchers have concluded that sleep and 

anesthesia are distinct states, but they share several similari-

ties [66,67]. Although it is already known that anesthetics 

can induce sedation by acting on arousal neural circuits [58], 

no clear evidence showed that sleep-promoting nuclei cause 

sedation until volatile anesthetics, such as isoflurane or hal-

othane, was examined for the activity of the sleep-promoting 

VLPO region by measuring the expression level of c-Fos [68]. 

As a result of volatile anesthetics administered during the 

dark period, an active period for the rodents, c-Fos-positive 

neurons increased in a dose-dependent manner, similar to 

the activation level of VLPO neurons during spontaneous 

sleep during the light period. 

CAN ANESTHESIA REDUCE SLEEP 
PROPENSITY? 

Sleep characteristics are homeostatically regulated based 

on the length and depth of previous sleep. Therefore, it is 

reasonable to question whether anesthesia can function in 

the same manner as sleep homeostasis. General anesthesia 

with a slow-wave or isoelectric EEG after sleep deprivation 

can result in a blunted SWA rebound, implying that anesthe-

sia may have a similar effect to NREM sleep [69]. According 

to a study comparing the cumulative SWE of the group that 

received isoflurane for 1 h immediately after sleep depriva-

tion for 4 h against the group that did not receive isoflurane, 

the slope of rebound sleep was flattened in the group treated 

with isoflurane [69]. This phenomenon can have two infer-

ences. First, anesthesia may have caused an abnormal brain 

condition suppressing SWA and the abnormality sustained 
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during recovery sleep. Another possibility is that anesthesia 

may have resolved the accumulated sleep pressure by an 

unknown mechanism. However, because both the high and 

low doses of anesthetic agents reduced SWA during recovery 

sleep and only a low dose could generate slow waves, anes-

thesia SWA may not be necessary for the sleep-like effect. 

Instead, there may be an unknown mechanism that medi-

ates the sleep-like effects of general anesthesia. Sevoflurane 

may have similar but different effects on NREM and REM 

sleep. Six-hour sevoflurane anesthesia following 12-h sleep 

deprivation reduced the homeostatic response in NREM 

sleep but not in REM sleep [70]. Sevoflurane treatment after 

sleep deprivation reduced rebound sleep compared with no 

sevoflurane treatment, suggesting that homeostatic sleep 

pressure was partly resolved by sevoflurane anesthesia. 

CAN ANESTHESIA AMELIORATE SD-
INDUCED COGNITIVE DYSFUNCTION? 

Sleep deprivation is commonly associated with memory 

impairment, one of the most prevalent symptoms. There-

fore, it is unclear whether sedation with anesthetics also re-

duces SD-induced memory impairments. Dexmedetomi-

dine, a selective α2-adrenergic receptor agonist, appears to 

counteract memory impairment induced by sleep depriva-

tion [71]. Chronically sleep-deprived mice simultaneously 

treated with dexmedetomidine showed decreased memory 

impairment. Simultaneously, they showed lower levels of 

inflammatory cytokines, such as tumor necrosis factor-α 

(TNF-α) and interleukin (IL)-6, and increased levels of neu-

roprotective signaling molecules, such as brain-derived 

neurotrophic factor (BDNF) and tyrosine kinase B (TrkB). 

Dexmedetomidine reduces detrimental responses caused 

by sleep deprivation, potentially resembling sleep effects. 

DOES SLEEP PRESSURE POTENTIATE THE 
EFFECTS OF THE ANESTHETICS? 

We have reviewed that anesthesia may have sleep-like ef-

fects. In contrast, whether sleepiness or sleep deprivation 

can affect anesthesia is a clinically important question. 

Twenty-four-hour sleep-deprived rats showed a shorter time 

taken for loss of righting reflex and a longer time to recovery 

when anesthetized with propofol and isoflurane, implying 

that they presented faster induction and slower emergence 

from anesthesia [70,72]. These data support the hypothesis 

that increased sleep pressure enhances the effects of propo-

fol and isoflurane. Given that preoperative sleep disturbance 

is associated with an increased risk of postoperative deliri-

um [73] and that increased sleep pressure may potentiate 

the efficacy of anesthetic agents [72], it is clinically relevant 

to determine whether dose reduction could be considered 

for patients with either a pre-existing medical or psychiatric 

condition that hinders sleep chronically, or acute preopera-

tive sleep disruption, or both. These findings suggest that 

sleep propensity could contribute to the response to anes-

thetics and that sleep quantity and quality may contribute to 

individual differences in responses to anesthetics.  

CHALLENGES TO THE 
“SHARED CIRCUIT HYPOTHESIS” 

The “shared circuit hypothesis” proposes that the activa-

tion of sleep-promoting neurons is necessary or sufficient 

for attaining unarousable unconsciousness or general anes-

Fig. 1. Similarities and differences in the mechanism of action 
of general anesthesia and sleep. General anesthesia and sleep 
have similar properties, as there is some degree of overlap in 
their neuronal circuitry. Sleep and anesthesia can be initiated by 
inhibiting the wake-promoting pathway or activating the sleep-
promoting pathway. However, other mechanisms are thought to be 
used to reach the “Unconscious, Not arousable” state by general 
anesthesia, but the exact mechanism is not yet understood. LC: 
locus coeruleus, DRN: dorsal raphe nuclei, PPT: pedunculopontine 
tegmental nucleus, LDT: laterodorsal tegmental nucleus, 
VTA: ventral tegmental area, PB: parabrachial nucleus, TMN: 
tuberomammillary nuclei, LH: lateral hypothalamus, BF: basal 
forebrain, VLPO: ventrolateral preoptic area, PZ: parafacial zone, 
nNOS: neuronal nitric oxide synthase (nNOS)-containing neurons 
in the cortex, PPT: pedunculopontine tegmental nucleus, LDT: 
laterodorsal tegmental nucleus, SLD: sublaterodorsal nucleus. 
Figure were created using BioRender.com.
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thesia [33]. This hypothesis has persisted for a long time but 

has recently been challenged. Ablation of the VLPO, a major 

sleep-promoting area, could increase the sensitivity to iso-

flurane. However, VLPO-ablated rats did not lose the ability 

to achieve deep isoflurane anesthesia [74]. In addition, a re-

cent study by Vanini et al. showed that selective activation of 

VLPO using chemogenetics did not facilitate anesthesia. 

Briefly, they selectively activated GABAergic neurons in the 

VLPO by activating the hM3Dq receptor with CNO and 

found no difference in the time taken for loss and recovery 

of consciousness by isoflurane anesthesia. These findings 

disprove that VLPO is not necessary or sufficient to induce 

general anesthesia. Nevertheless, it should be noted that 

there are multiple levels of anesthetic action (Fig. 1). Anes-

thetic agents can cause unconscious but arousable states by 

acting on sleep-promoting areas, such as the VLPO, LH, LC, 

and TMN. For a deeper level of anesthesia, such as the un-

conscious and non-arousable state, anesthetics should act 

directly on the neural substrate of consciousness [75]. 

CONCLUSION 

Recent advances in understanding the neurobiology of 

sleep, wakefulness, and anesthesia have elucidated the bidi-

rectional relationship between sleep and anesthesia. Neural 

circuits of sleep-wake regulation are affected by anesthetics, 

and, in turn, anesthesia is affected by sleep propensity. Al-

though sleep and anesthesia do not occur simply by the 

same mechanism or neural circuitry, their interaction might 

be important and meaningful for future investigations. Sys-

tematic research on the relationship between sleep distur-

bance and anesthesia is warranted. 
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