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Chronic rhinosinusitis (CRS) is a complex inflammatory disorder that affects between 2% and 16% of adults in the United 
States, with estimated healthcare costs between 4 and 12 million USD. Viruses are a common etiologic factor for URIs, are 
frequently identified in the sinuses of patients with CRS, and trigger CRS exacerbations. Therefore, investigating the role of 
viruses provides an opportunity to identify their role in the pathogenesis of CRS. In this review, we identified the viruses 
frequently isolated in patients with CRS, as well as their associated immunologic responses and contributions to inflamma-
tion. Rhinovirus, parainfluenza virus, influenza virus, and respiratory syncytial virus are the viruses commonly found in pa-
tients with CRS. This information allows us to target pathways early in the pathogenesis of CRS, thereby playing a signifi-
cant role in slowing the progression of this chronic disease. 
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INTRODUCTION

Studies on the pathogenesis of chronic rhinosinusitis (CRS) are 
challenging, as they require longitudinal cohorts and analyses 
prior to the onset of disease. Although significant findings have 
been made regarding the pathophysiology of CRS, the majority 
of these studies have been retrospective or cross-sectional. How-
ever, many CRS patients subjectively recall that their symptoms 
began with an upper respiratory infection (URI) that progressively 
became more severe and chronic in nature. URIs are common 
viral infections affecting the nose, throat, and airways, and can 
last between 7 and 11 days. In some patients, a URI can prog-
ress into acute rhinosinusitis (ARS). ARS features an increase in 
symptom severity for more than 10 days and is frequently asso-
ciated with facial pain/tenderness, hyposmia/anosmia, nasal ob-
struction, and mucopurulent drainage. In certain cases, these symp-
toms persist for at least 12 consecutive weeks and meet the cri-
teria of CRS (Table 1) [1]. CRS is a complex inflammatory disor-

der that affects between 2% and 16% of adults in the United 
States, with estimated healthcare costs between 4 to 12 million 
USD [2,3].

Viruses are a frequent etiologic factor for URIs, are frequently 
identified in the sinuses of patients with CRS, and trigger CRS 
exacerbations [4]. Therefore, investigating the role of viruses may 
provide insights into the pathogenesis of CRS. In this review ar-
ticle, we will discuss the role of viruses and their associated im-
munologic responses and contributions to inflammation in CRS. 
This information may allow us to target pathways early in the 
pathogenesis of CRS, thereby playing a significant role in slow-
ing the progression of this chronic disease.

WHAT VIRUSES ARE SEEN IN CRS?

Several cross-sectional studies have identified the types of virus-
es associated with CRS. Cho et al. [4] found that CRS patients 
had higher proportions of respiratory viruses in their nasal se-
cretions than the control group of patients without CRS. Of the 
viruses identified, rhinovirus (RV) infection in lavage and muco-
sal samples was significantly associated with CRS patients com-
pared to controls. In the same study by Cho et al. [4], parainflu-
enza virus (PIV) , influenza virus, and respiratory syncytial virus 
(RSV) were all also found in the nasal lavage samples of patients 
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with CRS. However, only RV and PIV were detected at higher 
rates among CRS patients than in the control group. In another 
study by Ramadan et al. [8], polymerase chain reaction (PCR) 
confirmed that 20% of the CRS patients’ samples were positive 
for RSV RNA, but none were positive for adenoviral DNA. In a 
third study by Abshirini et al. [9], reverse-transcription PCR 
showed that 28.94% of their sample of patients with CRS had 
RV and 11.84% had RSV. One of the most significant pathogens 
in terms of CRS is human rhinovirus (HRV). HRVs frequently 
cause the common cold, as well as in CRS. There are three main 
subgroups of HRV: HRV-A, HRV-B, and HRV-C [10]. However, 
the majority of studies did not identify HRV species. Willis et al. 
[11] reported that HRV-C infections were associated with more 
sever sinus symptoms, which is similar to findings seen in asthma.

In summary, the viruses that are frequently associated with 
CRS are RV, RSV, PIV, and influenza virus. Other viruses, such 
as adenoviruses, did not show a strong correlation with CRS 
populations compared to controls. The coronavirus disease 2019 
(COVID-19) pandemic has also brought an increased focus on 
the role of viruses in sinonasal disease. Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) is the etiologic virus re-

sponsible for COVID-19, and its receptor, angiotensin-convert-
ing enzyme 2 (ACE2), is highly expressed in the nasal and sinus 
epithelia [12]. RNA viruses and respiratory diseases can increase 
ACE2 expression. RV and its subtypes RV-A and RV-C signifi-
cantly upregulate ACE2 expression, including the truncated iso-
form delta-ACE2, in human nasal airway epithelial cells [13,14]. 
Similar symptoms, such as olfactory dysfunction, are shared by 
COVID-19 and CRS, but no conclusive results have been re-
ported regarding whether patients with SARS-CoV-2 have an 
increased risk of CRS [15,16]. 

VIRUS RECEPTORS AND TARGETS IN THE 
UPPER AIRWAY

Several viruses are known to be associated with CRS, and it is 
important to analyze and study their mechanisms of infection, 
as well as the specific receptors each virus targets. These RNA 
viruses include RV, influenza virus, RSV, and PIV (Table 2) [17]. 
RV and its subtypes invade the host cells using three types of 
cellular membrane glycoproteins: intercellular adhesion molecule 
1 (ICAM-1), low-density lipoprotein receptor (LDLR) family mem-
bers, and cadherin-related family member 3 (CDHR3) [18-21]. 
The ICAM-1 receptor is located in the plasma membrane and cy-
toplasm on the apicolateral portions of the airway epithelial cells. 
ICAM-1 mediates leukocyte adhesion and regulates endothelial 
cell shape, as well as blood vessel barrier function [22]. When 
expressed by dendritic or natural killer cells, ICAM-1 plays a 
significant immunological role in T-lymphocyte binding and the 
formation of immune synapses. A more recently discovered role 
of ICAM-1 is promoting macrophage efferocytosis, or the remov-
al of dying cells, which is important for resolving inflammation 
and tissue homeostasis [22,23]. In the presence of inflammatory 
mediators such as tumor necrosis factor (TNF)-α, interleukin (IL)-
1β, and interferon (IFN)-γ, ICAM-1 expression increases, while 

	� The four most commonly isolated viruses in patients with chron-
ic rhinosinusitis are rhinovirus, parainfluenza virus, influenza 
virus, and respiratory syncytial virus.

	� Viral infection in the upper airways has been shown to degrade 
epithelial barrier function, and rhinovirus infection has been 
specifically shown to degrade tight junction and adherens junc-
tion components.

	� Age is strongly associated with chronic rhinosinusitis risk. 

	� Viral infections linked with chronic rhinosinusitis are more prev-
alent in infants and children than in adults. 
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Table 1. Characteristics of URI progression 

Type of disease URIa) ARSb) CRSc)

Length 7–11 day (up to 14) >10 day >12 wk
Symptom Stuffy and runny nose, mild cough, watery 

eyes, sneezing, low-grade fever, yellow/
green nasal discharge, headache, mild 
fatigue

Thick yellow/green mucus in the nose,  
facial pain and tenderness especially in 
the eyes, cheeks, or nose, PND, nose 
congestion

Increased facial pain, PND, reduced sense 
of smell or taste, nose congestion, nasal 
inflammation

Endoscopy Yellow/green mucus Thick mucus Swelling and polyps
Radiology Mucosal thickening <4 mm or absence of 

mucosal thickening
Mucosal thickening >4 mm, obstruction of 

osteomeatal complexes
Polyps and sinus obstruction, mucosal 

thickening
Severity Mild Moderate Severe
Treatment Supportive (e.g., saline nasal sprays) Pain relievers, nasal steroids,  

decongestants, antibiotics
Oral steroids, functional endoscopic sinus 

surgery, biologic therapies

URI, upper respiratory infection; ARS, acute rhinosinusitis; CRS, chronic sinusitis; PND, postnasal drainage.
a)The mildest form of sinus infection, lasts for 7–11 days, while ARS and CRS are more severe. b)ARS is considered moderate, and its diagnosis requires 
the persistence of symptoms beyond 10 days, with a failure of improvement for at least 10 days. c)CRS is described as severe, and is characterized by the 
presence of symptoms for at least 12 weeks [1,5-7]. 
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glucocorticoids inhibit its expression. ICAM-1 activates tran-
scription factors, increases cytokine production, and is used by a 
majority of RV-A and all of RV-B subgroups [18,37,38]. The 
LDLR family members comprise a group of endocytic cell sur-
face receptors that bind to extracellular ligands (e.g., lipopro-
teins, exotoxins, and lipid-carrier complexes) and bring them 
into the cell. These receptors mediate lipoprotein ligands includ-
ing chylomicrons, low-density lipoprotein, intermediate-density 
lipoprotein, or very low-density lipoprotein. LDLR proteins nor-
mally play a significant role in cardiovascular disease and lipo-
protein homeostasis, as well as atherosclerosis [39]. They are lo-
cated in recycling endosomes, or less commonly, the plasma mem-
brane, and they target 12 known RV-A types [18,39]. Cadherins 
are a group of transmembrane glycoproteins whose functions 
include adhesion, cell signaling, and mechanical transduction. 
CDHR3 receptors are highly expressed in the airway epithelium 
and are located in the plasma membrane. The CDHR3 receptor, 
which has been found to be strongly associated with asthma ex-
acerbation in children, mediates virus binding and replication 
for the subgroup RV-C [18,21,40].

Influenza virus contains a viral attachment protein called hem-
agglutinin (HA), which is a naturally occurring glycoprotein caus-
ing agglutination of red blood cells. HA in influenza virus binds 
to and utilizes sialic acid-containing molecules as receptors to 
gain entry into the cell. This leads to infection of multiple cell 
types utilizing these abundant molecules as receptors, resulting 
in viral binding to nonproductive sialic acid-containing mole-
cules. Therefore, influenza virus also contains a second viral sur-

face protein, neuraminidase, that can cleave sialic acid to release 
the virus after binding to any molecules that do not lead to viral 
infection. Influenza virus primarily targets airway epithelial cells 
using α2,6-type receptors in humans [27]. 

RSV targets ciliated epithelial cells in the airways in which the 
RSV-fusion (RSV-F) glycoprotein binds to the cellular receptor 
human nucleolin. However, it has been suggested that RSV also 
uses signaling receptors that activate kinases and mediate its en-
try. Griffiths et al. [30] found that the insulin-like growth factor-1 
receptor (IGF1R) inhibitor PQ401 and a polyclonal anti-IGF1R 
antibody reduced infection by equivalent amounts, and that in-
sulin-like growth factor (IGF)-1 significantly enhanced RSV in-
fection. There was also colocalization of IGF1R with RSV parti-
cles in cells, suggesting that RSV may interact with IGF1R dur-
ing virus entry. Anderson et al. [31] found that the human che-
mokine receptor, C-X3-C motif chemokine receptor 1 (CX-
3CR1), may be a receptor for RSV infection, as RSV viral loads 
were greatest in cells that expressed CX3CR1. Meanwhile, 
blocking the interaction resulted in reduced RSV viral loads. 

Human PIVs have three types of receptors: high-power field 
(HPF) 1, 2, and 3, where each type targets different areas of the 
respiratory tract. HPF3 targets the upper respiratory tract, lead-
ing to respiratory diseases like bronchiolitis and pneumonia. Sim-
ilar to influenza virus, the receptor-binding HA-neuraminidase 
interacts with sialic acid-containing molecules on the cell surface 
for HPF3-mediated membrane fusion, as well as using the HPF3 
fusion protein [35]. 

Table 2. Characteristics of viruses associated with CRS

Virus Characteristics Receptor Location of receptor Immune response & pathway

Rhinovirus Most common virus isolated in 
patients with CRS [4].

Three distinct subtypes: RV-A, 
RV-B, and RV-C, with RV-C  
being the most severe [10]

ICAM-1 and LDLR for RV-A and 
RV-B [18,19]

CDHR3 for RV-C [21]

ICAM-1 is expressed in most tis-
sues at low levels, particularly 
in endothelial cells [24].

CDHR3 is specifically expressed 
in ciliated epithelial airway 
cells [21].

Induced expression of CXCL9, 
CXCL11, IP-10, and RANTES 
[25];

Degrades tight junction and  
adherens junction components 
[26]

Influenza Causes destruction of airway 
epithelial cells [10]

α2,6-Type receptors [27] Airway epithelial cells [27] Increased levels of IL-6, IL-8, 
TNF-α, IL-10, and IFN-γ [28]

RSV Common cause of respiratory 
infection in children [29]

NCL, IGF1R, CX3CR1 [30,31] IGF1R can be expressed in lung 
epithelium [30].

CX3CR1 is expressed in  
immune cells and in epithelial 
cells [31].

Age-dependent immune  
response: IL-33 increased in 
neonatal mice, but not in adult 
mice [32,33].

PIV Primarily affects young children 
[34]

Interaction between HN and  
SA-containing receptor on cell 
surfaces: α2-3-linked SAs, and 
α2-8-linked SAs [35,36]

Cell surface, airway epithelial 
cells [35]

IL-1β, IL-6, TNF-α, IL-1ra, IFN-γ, 
IL-2, IL-4, IL-5, IL-10, G-CSF, 
GM-CSF, IL-8, IP-10, eotaxin, 
RANTES, PDGF-BB, and 
VEGF [34]

Despite having different receptors, these four viruses frequently isolated in CRS patients are all expressed in epithelial cells.
CRS, chronic rhinosinusitis; RV, rhinovirus; ICAM-1, intercellular adhesion molecule 1; LDLR, low-density lipoprotein receptor; RANTES, regulated upon ac-
tivation, normal T cell expressed and presumably secreted; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; RSV, respiratory syncytial virus; NCL, 
nucleolin; IGF1R, insulin-like growth factor 1 receptor; CX3CR, C-X3-C motif chemokine receptor; PIV, parainfluenza virus; HN, hemagglutinin-neuramini-
dase; SA, sialic acid; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IP-10, interferon gamma-
induced protein 10; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor.
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IMMUNOLOGIC RESPONSES TO VIRUSES

There are two main immune responses to viral infection. Type 1 
immune responses (Th1) are characterized by the production of 
cytokines that exhibit pro-inflammatory responses, such as 
IFNs. Type 2 immune responses (Th2) are characterized by eosin-
ophilic and immunoglobulin E responses as well as ILs (i.e., IL-
10, IL-4, IL-13, and IL-5). These responses are associated with 
atopy and are anti-inflammatory. In a healthy immune system, 
Th1 and Th2 responses balance each other, leading to an opti-
mal immune response [41]. However, a dysregulated immune 
response to viral infections can result in the activation of airway 
remodeling, the epithelial-mesenchymal transition, and epitheli-
al barrier breakdown, which are central to the pathogenesis of 
CRS [42]. 

RV infection occurs at the airway epithelium and activates 
Toll-like receptor 7 (TLR7) and retinoic acid-inducible gene I 
(RIG-1), triggering the induction of cytokine expression (type I 
and type III IFNs). IFNs are classified based on their amino acid 
sequence and structure. Type I IFNs bind and signal through the 
IFN-α and beta receptor subunit (IFNAR)-1 and IFNAR2 recep-
tor complex, while type III IFNs signal through IFNλR1 and IL-
10R2 receptors [43-45]. Both type I and type III IFNs use the 
same Janus kinases that initiate IFN-mediated signaling cascades 
for signal transduction, but structurally, type I IFNs have longer 
and straighter α-helices than type III IFNs. and type III IFNs 
closely resemble the structure of IL-22 from the IL-10 family of 
cytokines [46-50]. Using human nasal epithelial cells, Tan et al. 
discovered that RV infection induced the expression of CXCL-9, 
CXCL-11, IFN-γ-induced protein 10 (IP-10), and regulated upon 
activation, normal T cell expressed and presumably secreted 
(RANTES), which are all components of the type 1 immune re-
sponse. Although cytokine and chemokine expression were 
dominated by the type 1 immune response, moderate expres-
sion of type 2 immunity genes was also discovered [25]. Kim et 
al. [51] found that the same cytokines were induced by RV in 
patients with and without CRS. However, there was a slight im-
pairment of IFN-β protein production and a delay of melanoma 
differentiation-associated protein 5 mRNA expression. Other 
studies have found that RV-B releases fewer proinflammatory 
cytokines, chemokines, and IFNs than the other RV subtypes 
(RV-A and RV-C) [52]. Yeo and Jang [26] found that RV infec-
tion resulted in significantly decreased mRNA levels of tight 
junction components, such as zonula occludens-1, occludin, and 
claudin-1, as well as adherens junction components (e.g., cad-
herin-1) in epithelial cells (Table 2). Epithelial cells act as a bar-
rier and the first line of defense against infections. Therefore, the 
loss of barrier function via degraded tight junction and adherens 
junction components can increase the risk of chronic infection 
because microbes and antigens are more likely to pass through a 
defective barrier [53]. 

RSV infections are one of the most common causes of respi-

ratory infections in children and infants. Most studies detailing 
the immune response due to RSV used patients who had lower 
respiratory tract infections. In patients infected with RSV, IFN-γ 
levels were shown to be increased in both the nasal mucosa and 
the lungs. Additionally, patients with lower IFN-γ production 
had higher severity scores [29,54-56]. In terms of the Th2 re-
sponse, increased levels of IL-4, IL-6, IL-9, IL-10, and IL-13 
were found in the nasal washes of RSV-infected children 
[29,57,58]. According to data from one study, a predominance 
of Th2 cytokines over Th1 cytokines was associated with chil-
dren with hypoxic RSV lower respiratory tract infections, sug-
gesting that a Th2-biased response is associated with severe 
manifestations of RSV infection [29]. Interestingly, several stud-
ies on RSV have shown that its pathogenesis is dependent on 
age. Using mice models, Hijano et al. [32] found that type I 
IFNs, such as IFN-α, were differentially expressed based on age. 
Conversely, IL-33, a Th2-oriented cytokine, was released in large 
amounts following RSV infections in neonatal mice, but the re-
sponse decreased in adult mice. A study by Saravia et al. [33] 
confirmed these results, finding that neonatal mice that were in-
duced with RSV responded with high levels of IL-33 expression 
and significant increases in type 2 innate lymphoid cells, while 
adult mice failed to show either response. This study also found 
that among infants hospitalized with RSV infections, IL-33 and 
IL-13 levels were elevated (Table 2) [32]. 

PIVs primarily affect children and are associated with the in-
duction of wheezing early in life. Yoshizumi et al. [34] determined 
that cells infected with PIV released greater amounts of IL-1β, 
IL-6, TNF-α, IL-1ra, IFN-γ, IL-2, IL-4, IL-5, IL-10, granulocyte 
colony-stimulating factor, granulocyte-macrophage colony-stim-
ulating factor, IL-8, IP-10, eotaxin, RANTES, platelet-derived 
growth factor BB, and vascular endothelial growth factor than 
cells with no PIV infection (Table 2). 

Studies have shown that patients infected with influenza A vi-
rus have increased levels of IL-6, IL-8, TNF-α, IL-10, and IFN-γ 
in their nasal lavage samples (Table 2). These cytokines also cor-
relate with disease severity—as levels increased, disease severity 
increased [28]. According to a study by Skoner et al. [59], IL-6 
was determined to play a potential role in initiating symptoms 
of influenza A infection, while IL-8 did not.

As these upper respiratory viruses infect the epithelium, they 
trigger immune responses that induce the release of cytokines 
and chemokines via intracellular sensors (TLR7 and retinoic ac-
id-inducible gene I). Cytokines and chemokines, such as IL-6 or 
IFN-γ, are induced and secreted by the intracellular sensors be-
fore recruiting neutrophils and macrophages that activate the 
Th1 immune response [28,34,43-45]. The immune response leads 
to inflammation in the infected areas, which coupled with the 
damage from the viral infection itself and from the viral elimi-
nation by lymphocytes (e.g., Th1 cells, cytotoxic T cells), results 
in damage to the epithelium [60]. Continuous viral infection 
and inflammation cause airway remodeling of the nasal epithe-
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lium and degradation of tight junctions and adherens junctions 
[26,53]. Disrupted mechanical barriers and deficiencies in both 
the innate and acquired immune system make the sinonasal 
mucosa more susceptible to antigenic exposition and stimula-
tion, leading to either side of the spectrum of chronic inflamma-
tion. This results in increased viral susceptibility of the epitheli-
um, allowing further disease exacerbations and greater potential 
for bacterial infections to occur (Fig. 1). As the epithelium be-
comes degraded, the persistent infections and immune respons-
es lead to CRS and CRS exacerbations [62]. Epithelial damage 
has been observed in CRS with nasal polyps, and genetic defi-
ciencies or environmentally induced damage of epithelial repair 
mechanisms may be associated with both forms of CRS 
[61,63,64].

RISK FACTORS FOR VIRAL INFECTIONS IN CRS

Several risk factors can facilitate CRS infections by contributing 
to viral binding, entry, replication, and the immune response. 
Epithelial barriers are critical in preventing viral binding and  
entry into sinonasal epithelia. Mutations in CDHR3, the primary 
viral receptor for RV-C, have been associated with an increased 
risk for CRS and asthma [40]. One hypothesis is that the rs6963770 
single-nucleotide polymorphism may result in increased RV-C 
binding and modulate a dysregulated immune response [65]. Age 
is considered a risk factor for RSV infection, as high rates of se-
rious RSV infections and hospitalizations are observed among 
infants. Additionally, the presence of underlying conditions such 
as prematurity, congenital heart disease, immunosuppression, 
and cystic fibrosis all increase the risk of developing severe RSV 
infections [66]. Similar to RSV, PIV infections are more common 
and tend to be more severe in infants and young children, or el-
derly with compromised immune systems [67]. For influenza, a 
study of children in Ontario, Canada found that asthma, regard-
less of the severity, was a significant risk factor associated with 
severe disease [68]. 

Allergic rhinitis and asthma have a strong tendency to co-oc-
cur with CRS, suggesting a common mechanism of disease. In 
all three of these type 2-mediated airway disorders, the epitheli-
al barrier is compromised. This leakiness in the epithelial barrier 
is hypothesized to allow enhanced viral entry through the epi-
thelia to trigger alarmin signals including thymic stromal lym-
phopoietin, IL-33, and IL-13, which can trigger type 2 activation 
of mast cells and eosinophils. Similar mechanisms of epithelial 
barrier dysfunction can be seen in prolonged exposure to tobac-
co and air pollution, which are highly associated with CRS risk 
[69-72]. 

Aside from risk factors pertaining to an increase in CRS risk, 
there are risk factors for acute CRS exacerbations that increase 
nasal and sinus symptom severity. General health risk factors  
include smoking, a higher body-mass index, previous sinus sur-
gery, and a longer CRS status, while several seasonal compo-
nents such as hay fever or the winter season also increase the 
risk of acute CRS exacerbation [58]. Comorbid predisposing 
factors include asthma symptoms, impaired mucociliary clear-
ance, and atrophic rhinitis [73-75].

CRS-RELATED VIRUSES IN CHILDREN VERSUS 
ADULTS

Age is a strong risk factor for CRS. Children have 3–8 viral URIs 
per year compared to adults who only have 2–4 URIs [76]. Male 
children under the age of 3 more commonly contract respiratory 
illnesses than female children of a similar age, while the opposite 
is true as their ages progress [77,78]. Comorbid conditions such 
as allergic rhinitis were found in 36%–60% of pediatric patients 

Fig. 1. As a virus infects the upper airway epithelial cells, it activates 
Toll-like receptor 7 (TLR7) and retinoic acid-inducible gene I (RIG-1). 
These receptors induce the release of type I and type III interferons 
(IFNs), as well as interleukin (IL)-6 and IL-8 and other cytokines, to 
promote a Th1 immune response. A Th2 immune response is also 
induced through the production of IL-4, IL-5, IL-13, and other cyto-
kines. The immune response creates inflammation and airway re-
modeling. Prolonged inflammation results in airway remodeling, 
which contributes to chronic rhinosinusitis (CRS) due to disrupted 
epithelial barrier function. As the epithelium is weak and damaged, 
viral susceptibility increases, resulting in further CRS and upper re-
spiratory disease exacerbations. Additionally, the environment that 
results from this immune response also creates a suitable environ-
ment for bacterial infection, as the epithelial barrier is weak 
[28,34,43-45,61,62]. The figure was created with BioRender.com.
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with CRS [79-81]. Khoo et al. [82] found that asthma and wheez-
ing exacerbations in children were more prevalent at younger 
ages. RV-C was the most frequently identified viral pathogen in 
these children, and several viruses including RSV, PIV, and influ-
enza virus were also detected. 

Certain viruses are more predominant in certain age groups. 
Interestingly, the studies examined in this review revealed that 
RSV and PIV are notably more prevalent in certain age groups. 
For example, children and the elderly are well documented as 
being more susceptible to RSV infection than adolescents or 
adults. Immature immune systems or low lymphocyte counts in 
infants and young children, as well as low levels of RSV-neutral-
izing antibodies in patients over 65, are factors that cause these 
age groups to be more susceptible to infection [83,84]. Further-
more, RSV pathogenesis differs in children and adults. For ex-
ample, most adults and elderly people infected with RSV show 
symptoms similar to influenza infection, while infants and young 
children with RSV infections often progress to lower respiratory 
tract infections and wheezing [85-87]. Additionally, PIV infec-
tion often causes URIs in most healthy young adults, but more 
frequently leads to severe symptoms and lower respiratory ill-
nesses in young children. Similarly to RSV, PIV infection is one 
of the leading causes of acute respiratory tract infections in young 
children under the age of 5, accounting for approximately 17% 
of hospitalizations [67,88,89].

CONCLUSION

In summary, CRS affects millions of people worldwide and pos-
es a significant financial burden. Therefore, understanding the 
mechanisms of infection that drive its pathology is important. In 
order to devise effective therapies for patients with CRS, under-
standing the viruses, their mechanisms of infections, and their 
immune responses is crucial. RVs are frequently isolated in pa-
tients with CRS. RSV, PIV, and influenza virus are also isolated 
in patients with CRS. These four viruses have many similarities 
such as targeting epithelial airway cells and being RNA viruses. 
However, the prevalence, receptor type, and immune response 
vary from virus to virus. 

RVs are the most widely and thoroughly studied viruses in 
terms of CRS specifically, and even in terms of URI and acute 
sinusitis. In the future, we hope to see more studies that detail 
the immune response of upper respiratory tract infections and 
CRS due to RSV, PIV, and influenza virus. Additionally, we 
hope to see more longitudinal studies that follow infants and 
young children infected with serious respiratory viruses and 
how those infections can contribute to the onset of more seri-
ous cases of URI, such as CRS, later in adulthood. Throughout 
this review, we also noticed a scarcity of papers on pediatric 
CRS. Research indicates that this time point is critical in under-
standing the development and onset of adult CRS. Thus, further 

studies are necessary to be better able to target and create new 
therapies. 
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