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INTRODUCTION

Artificial intelligence (AI) refers to the ability of machines to 
mimic human intelligence without explicit programming; AI can 
solve tasks that require complex decision-making [1,2]. Recent 
advances in computing power and big data handling have en-
couraged the use of AI to aid or substitute for conventional ap-
proaches. The results of AI applications are promising, and have 

attracted the attention of researchers and practitioners. In 2015, 
some AI applications began to outperform human intelligence: 
ResNet performed better than humans in the ImageNet Large 
Scale Visual Recognition Competition 2015 [3], and AlphaGo 
became the first computer Go program to beat a professional 
Go player in October 2015 [4]. Such technical advances have 
promising implications for medical applications, particularly be-
cause the amount of medical data is doubling every 73 days in 
2020 [5]. As such, it is expected that AI will revolutionize health-
care because of its ability to handle data at a massive scale. Cur-
rently, AI-based medical platforms support diagnosis, treatment, 
and prognostic assessments at many healthcare facilities world-
wide. The applications of AI include drug development, patient 
monitoring, and personalized treatment. For example, IBM Wat-
son is a pioneering AI-based medical technology platform used 
by over 230 organizations worldwide. IBM Watson has consis-
tently outperformed humans in several case studies. In 2016, 
IBM Watson diagnosed a rare form of leukemia by referring to a 
dataset of 20 million oncology records [6]. It is clear that the use 
of AI will fundamentally revolutionize medicine. Frost and Sulli-
van (a research company) forecast that AI will boost medical 
outcomes by 30%–40% and reduce treatment costs by up to 
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50%. The AI healthcare market is expected to attain a value of 
USD 31.3 billion by 2025 [7].

Otorhinolaryngologists use many instruments to examine pa-
tients. Since the early 1990s, AI has been increasingly used to 
analyze radiological and pathological images, audiometric data, 
and cochlear implant (CI). Performance [8-10]. As various meth-
ods of AI analysis have been developed and refined, the practi-
cal scope of AI in the otorhinolaryngological field has been broad-
ened (e.g., virtual reality technology [11-13]). Therefore, it is es-
sential for otorhinolaryngologists to understand the capabilities 
and limitations of AI. In addition, a data-driven approach to health-
care requires clinicians to ask the right questions and to fit well 
into interdisciplinary teams [8].

Herein, we review the basics of AI, its current status, and fu-
ture opportunities for AI in the field of otorhinolaryngology. We 
seek to answer two questions: “Which areas of otorhinolaryn-
gology have benefited most from AI?” and “ What does the fu-
ture hold?”

MACHINE LEARNING AND DEEP LEARNING

AI has fascinated medical researchers and practitioners since the 
advent of machine learning (ML) and deep learning (DL) (two 
forms of AI) in 1990 and 2010, respectively. A flowchart of the 
literature search and study selection is presented in Fig. 1. Im-
portantly, AI, ML, and DL overlap (Fig. 2). There is no single def-
inition of AI; its purpose is to automate tasks that generally re-
quire the application of human intelligence [14]. Such tasks in-
clude object detection and recognition, visual understanding, 
and decision-making. Generally, AI incorporates both ML and 
DL, as well as many other techniques that are difficult to map 

onto recognized learning paradigms. ML is a data-driven tech-
nique that blends computer science with statistics, optimization, 
and probability [15]. An ML algorithm requires (1) input data, 
(2) examples of correct predictions, and (3) a means of validat-
ing algorithm performance. ML uses input data to build a model 
(i.e., a pattern) that allows humans to draw inferences [16,17]. 
DL is a subfield of ML, in which tens or hundreds of representa-
tive layers are learned with the aid of neural networks. A neural 
network is a learning structure that features several neurons; 
when combined with an activation function, a neural network 
delivers non-linear predictions. Unlike traditional ML algorithms, 
which typically only extract features, DL processes raw data to 
define the representations required for classification [18]. DL 
has been incorporated in many AI applications, including those 
for medical purposes [19]. The applications of DL thus far in-
clude image classification, speech recognition, autonomous driv-
ing, and text-to-speech conversion; in these domains, the perfor-
mance of DL is at least as good as that of humans. Given the 
significant roles played by ML and DL in the medical field, clini-
cians must understand both the advantages and limitations of 
data-driven analytical tools.

AI IN THE FIELD OF 
OTORHINOLARYNGOLOGY

AI aids medical image-based analysis
Medical imaging yields a visual representation of an internal 
bodily region to facilitate analysis and treatment. Ear, nose, and 
throat-related diseases are imaged in various manners. Table 1 
summarizes the 38 studies that used AI to assist medical image-

	� Ninety studies that implemented artificial intelligence (AI) in 
otorhinolaryngology were reviewed and classified.

	� The studies were divided into four subcategories.

	� Research challenges regarding future applications of AI in oto-
rhinolaryngology are discussed.

H LI IG GH H T S

Fig. 1. Flowchart of the literature search and study selection.

Artificial 
intelligence

Machine
learning

Deep 
learning 430 Studies after 

duplicates omitted

132 Full-text articles 
examined for eligibility

53 Full-text articles 
excluded with reasons

90 Studies included 
in synthesis

300 Studies screened 130 Studies excluded

458 Studies 
obtained through 
database search

0 Additional studies 
obtained through 

other sources

Fig. 2. Interconnections between artificial intelligence, machine 
learning, and deep learning.
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Fig. 3. Artificial intelligence (AI) techniques used for medical image-based analysis.

Input image

Input layer Convolutional layer Convolutional layer Fully connected layer

Feature maps Feature maps

OutputsPooled 
feature maps

Pooled 
feature maps
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Table 2. AI techniques used for voice-based analysis

Study
Analysis
 modality

Objective AI technique
Validation 
method

No. of samples in 
the training dataset

No. of samples in 
the testing dataset

Best result

[58] CI Noise reduction NC+DDAE Hold-out 120 Utterances 200 Utterances Accuracy: 99.5%
[59] CI Segregated speech 

from background 
noise

DNN Hold-out 560×50 Mixtures for each noise 
type and SNR

160 Noise segments 
from original  
unperturbed noise

Hit ratio: 84%;  
false alarm: 7%

[60] CI Improved pitch  
perception

ANN Hold-out 1,500 Pitch pairs 10% of the training 
material

Accuracy: 95%

[61] CI Predicted speech 
recognition and 
QoL outcomes

k-NN, DT 10-CV A total of 29 patients, including 48% unilateral CI users 
and 51% bimodal CI users

Accuracy: 81%

[62] CI Noise reduction DDAE Hold-out 12,600 Utterances 900 Noisy utterances Accuracy: 36.2%
[63] CI Improved speech  

intelligibility in  
unknown noisy  
environments

DNN Hold-out 640,000 Mixtures of sentences  
and noises

- Accuracy: 90.4%

[64] CI Modeling  
electrode-to-nerve 
interface

ANN Hold-out 360 Sets of fiber activation  
patterns per electrode

40 Sets of fiber  
activation patterns 
per electrode

-

[65] CI Provided digital  
signal processing 
plug-in for CI

WNN Hold-out 120 Consonants and vowels, sampled at 16 kHz; half of 
data was used as training set and the rest was used as 
testing set.

SNR: 2.496;  
MSE: 0.086;  
LLR: 2.323

[66] CI Assessed disyllabic 
speech test  
performance in CI

k-NN - 60 Patients - Accuracy: 90.83%

[67] Acoustic  
signals

Voice disorders  
detection

CNN 10-CV 451 Images from 10 health adults and 70 adults with  
voice disorders

Accuracy: 90%

[68] Dysphonic 
symptoms

Voice disorders  
detection

ANN Repeated 
hold-out

100 Cases of neoplasm, 508 cases of benign  
phonotraumatic, 153 cases of vocal palsy

Accuracy: 83%

[69] Pathological 
voice

Voice disorders  
detection

DNN, SVM, 
GMM

5-CV 60 Normal voice samples and 402 pathological voice 
samples

Accuracy: 94.26%

[70] Acoustic  
signal

Hot potato voice  
detection

SVM Hold-out 2,200 Synthetic voice samples 12 HPV samples from 
real patients

Accuracy: 88.3%

[71] SEMG  
signals

Voice restoration for 
laryngectomy  
patients

XGBoost Hold-out 75 Utterances using 7 SEMG  
sensors

- Accuracy: 86.4%

AI, artificial intelligence; CI, cochlear implant; NC, noise classifier; DDAE, deep denoising autoencoder; DNN, deep neural network; SNR, signal-to-noise 
ratio; ANN, artificial neural network; QoL, quality of life; k-NN, k-nearest neighbors; DT, decision tree; CV, cross-validation; WNN, wavelet neural network; 
MSE, mean square error; LLR, log-likelihood ratio; CNN, convolutional neural network; GMM, Gaussian mixture model; SVM, support vector machine; HPV, 
human papillomavirus; SEMG, surface electromyographic. 
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based analysis in clinical otorhinolaryngology. Nine studies 
(23.7%) addressed hyperspectral imaging, nine studies (23.7%) 
analyzed computed tomography, six studies (15.8%) applied AI 
to magnetic resonance imaging, and one study (2.63%) ana-
lyzed panoramic radiography. Laryngoscopic and otoscopic im-
aging were addressed in three studies each (7.89% each). The 
remaining seven studies (18.39%) used AI to aid in the analysis 
of neuroimaging biomarker levels, biopsy specimens, simulated 
Raman scattering data, ultrasonography and mass spectrometry 
data, and digitized images. Nearly all AI algorithms comprised 
convolutional neural networks. Fig. 3 presents a schematic dia-
gram of the application of convolutional neural networks in 
medical image-based analysis; the remaining algorithms consist-
ed of support vector machines and random forests.

AI aids voice-based analysis
The subfield of voice-based analysis within otorhinolaryngology 
seeks to improve speech, to detect voice disorders, and to reduce 
the noise experienced by patients with (CIs; Table 2 lists the 14 
studies that used AI for speech-based analyses. Nine (64.29%) 
sought to improve speech intelligibility or reduce noise for pa-
tients with CIs. Two (14.29%) used acoustic signals to detect 
voice disorders [67] and “hot potato voice” [70]. In other stud-
ies, AI was used for symptoms, voice pathologies, or electromyo-
graphic signals as a way to detect voice disorders [68,69], or to 
restore the voice of a patient who had undergone total laryngec-
tomy [71]. Neural networks were favored, followed by k-nearest 
neighbor methods, support vector machines, and other widely 
known classifiers (e.g., decision trees and XGBoost). Fig. 4 pres-
ents a schematic diagram of the application of convolutional 
neural networks in medical voice-based analysis. 

AI analysis of biosignals detected from medical devices
Medical device-based analyses seek to predict the responses to 
clinical treatments in order to guide physicians who may wish to 
choose alternative or more aggressive therapies. AI has been used 
to assist polysomnography, to explore gene expression profiles, 
to interpret cellular cartographs, and to evaluate the outputs of 

non-contact devices. These studies are summarized in Table 3. 
Of these 14 studies, most (50%, seven studies) focused on anal-
yses of gene expression data. Three studies (21.43%) used AI to 
examine polysomnography data in an effort to score sleep stages 
[72,73] or to identify long-term cardiovascular disease [74]. Most 
algorithms employed ensemble learning (random forests, Gentle 
Boost, XGBoost, and a general linear model+support vector ma-
chine ensemble); this approach was followed by neural network-
based algorithms (convolutional neural networks, autoencoders, 
and shallow artificial neural networks). Fig. 5 presents a schemat-
ic diagram of the application of the autoencoder and the support 
vector machine in the analysis of gene expression data.

AI for clinical diagnoses and treatments
Clinical diagnoses and treatments consider only symptoms, med-
ical records, and other clinical documentation. We retrieved 24 
relevant studies (Table 4). Of the ML algorithms, most used lo-
gistic regression for classification, followed by random forests and 
support vector machines. Notably, many studies used hold-outs 
to validate new methods. Fig. 6 presents a schematic diagram of 
the process cycle of utilizing AI for clinical diagnoses and treat-
ments.

DISCUSSION

We systematically analyzed reports describing the integration of 
AI in the field of otorhinolaryngology, with an emphasis on how 
AI may best be implemented in various subfields. Various AI 
techniques and validation methods have found favor. As described 
above, advances in 2015 underscored that AI would play a ma-
jor role in future medicine. Here, we reviewed post-2015 AI ap-
plications in the field of otorhinolaryngology. Before 2015, most 
AI-based technologies focused on CIs [10,75-86]. However, AI 
applications have expanded greatly in recent years. In terms of 
image-based analysis, images yielded by rigid endoscopes, laryn-
goscopes, stroboscopes, computed tomography, magnetic reso-
nance imaging, and multispectral narrow-band imaging [38], as 

Fig. 4. Artificial intelligence (AI) techniques used for voice-based analysis.

Input signal Feature extraction Convolutional layer Fully connected layer

Spectrogram Feature maps

Outputs

Visual
representation

Pooled 
feature maps

Vectorized
feature maps
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Table 3. AI analysis of biosignals detected from medical device

Study Analysis modality Objective AI technique
Validation 
method

No. of samples in 
the training dataset

No. of samples in 
the testing dataset

Best result

[73] EEG signal of PSG Sleep stage scoring CNN 5-CV 294 Sleep studies; 122 composed the 
training set, 20 composed the  
validation set, and 152 were used in 
the testing set.

Accuracy: 81.81%; 
F1 score: 81.50%; 
Cohen’s Kappa: 
72.76%

[72] EEG, EMG, EOG 
signals of PSG

Sleep stage scoring CNN Hold-out 42,560 Hours of 
PSG data from 
5,213 patients

580 PSGs Accuracy: 86%;  
F1 score: 81.0%;  
Cohen’s Kappa: 
82.0%

[74] Sleep heart rate 
variability in PSG

Long-term  
cardiovascular  
outcome prediction

XGBoost 5-CV 1,252 Patients with cardio vascular  
disease and 859 patients with  
non-cardio vascular disease 

Accuracy: 75.3%

[87] Sleep breathing 
sound using an 
air-conduction  
microphone

AHI prediction Gaussian process, 
SVM, RF, LiR

10-CV 116 Patients with OSA CC: 0.83; LMAE: 
9.54 events/hr; 
RMSE: 13.72 
events/hr

[88] Gene signature Thyroid cancer lymph 
node metastasis and 
recurrence rediction

LDA 6-CV 363 Samples 72 Samples AUC: 0.86; sensitivity: 
86%; specificity: 
62%; PPV: 93%; 
NPV: 42%

[89] Gene expression 
profile

Response prediction to 
chemotherapy in pa-
tient with HNSCC

SVM LOOCV 16 TPF-sensitive patients and 13  
non-TPF-sensitive patients

Sensitivity: 88.3%; 
specificity: 88.9%

[90] Mucus cytokines SNOT-22 scores  
prediction of CRS  
patients

RF, LiR - 147 Patients with 65 patients with  
postoperative follow-up

R2: 0.398

[91] Cellular  
cartography

Single-cell resolution 
mapping of the organ 
of Corti

Gentle boost, RF, 
CNN

Hold-out 20,416 Samples 19,594 Samples Recall: 99.3%;  
precision: 99.3%; 
F1: 93.3%

[92] RNA sequencing, 
miRNA  
sequencing, 
methylation data

HNSCC progress  
prediction

Autoencoder and 
SVM

2×5-CV 360 Samples from TCGA C-index: 0.73;  
Brier score: 0.22

[93] DNA repair defect HNSCC progress  
prediction

CART 10×5-CV 180 HPV-negative HNSCC patients AUC: 1.0

[94] PESI-MS Identified TGF-β  
signaling in HNSCC

LDA LOOCV A total of 240 and 90 mass spectra 
from TGF-β-unstimulated and  
stimulated HNSCC cells, respectively

Accuracy: 98.79%

[95] Next generation  
sequencing of 
RNA

Classified the risk of  
malignancy in  
cytologically  
indeterminate  
thyroid nodules

Ensemble of elastic 
net GLM and SVM

40×5-CV A total of 10,196 genes, among which 
are 1,115 core genes

Sensitivity: 91%; 
specificity: 68%

[96] Gene expression 
profile

HPV-positive  
oropharyngeal squa-
mous cell carcinoma  
detection

LR 500-CV 146 Genes from patients with  
node-negative disease and  
node-positive disease

AUC: 0.93

[97] miRNA expression 
profile

Sensorineural hearing 
loss prediction

DF, DJ, LR, NN LOOCV 16 Patients were included. Accuracy: 100%

AI, artificial intelligence; EEG, electroencephalogram; PSG, polysomnography; CNN, convolutional neural network; CV, cross-validation; EMG, electromy-
ography; EOG, electrooculogram; AHI, apnea-hypopnea index; SVM, support vector machine; RF, random forest; LiR, linear regression; OSA, obstructive 
sleep apnea; CC, correlation coefficient; LMAE, least mean absolute error; RMSE, root mean squared error; LDA, linear discriminant analysis; AUC, area 
under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; HNSCC, head and neck squamous cell 
carcinoma; LOOCV, leave-one-out cross validation; TPF, docetaxel, cisplatin, and 5-fluorouracil; SNOT-22, 22-item sinonasal outcome test; CRS, chronic 
rhinosinusitis; miRNA, microRNA; TCGA, the cancer genome atlas; CART, classification and regression trees; HPV, human papillomavirus; PESI-MS, probe 
electrospray ionization mass spectrometry; TGF-β, transforming growth factor beta; GLM, generalized linear model; LR, logistic regression; DF, decision 
forest; DJ, decision jungle; NN, neural network. 
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Fig. 5. Artificial intelligence (AI) analyses of biosignals detected from medical devices. SVM, support vector machine.

Input data Feature extraction Classification

Auto encoder

Gene expression

SVM

Table 4. AI techniques used for clinical diagnoses and treatments

Study Analysis modality Objective AI technique
Validation 
method

No. of samples in  
the training dataset

No. of samples in  
the testing dataset

Best result 

[98] Hearing aids Hearing gain  
prediction

CRDN Hold-out 2,182 Patients that were diagnosed with 
hearing loss; the percentages of  
randomly sampled training, validation, 
and test sets were 40%, 30%, and 30%, 
respectively.

MAPE: 9.2%

[99] Hearing aids Predicted CI  
outcomes

RF LOOCV 121 Postlingually deaf adults with CI MAE: 6.1;  
Pearson’s  
correlation  
coefficient: 0.96

[100] Clinical data SSHL prediction DBN, LR, SVM, 
MLP

4-CV 1,220 Unilateral SSHL patients Accuracy: 77.58%; 
AUC: 0.84

[101] Clinical data including 
demographics and 
risk factors

Determined the risk  
of head and neck  
cancer

LR Hold-out 1,005 Patients,  
containing 932 
 patients with no 
cancer outcome 
and 73 patients 
with cancer  
outcome

235 Patients,  
containing 212  
patients with no 
cancer outcome 
and 23 patients 
with cancer  
outcome

AUC: 0.79

[102] Clinical data including 
symptom

Peritonsillar abscess  
diagnosis prediction

NN Hold-out 641 Patients 275 Patients Accuracy: 72.3%; 
sensitivity: 6.0%; 
specificity: 50%

[103] Vestibular test  
batteries

Vestibular function  
assessment

DT, RF, LR,  
AdaBoost, 
SVM

Hold-out 5,774 Individuals 100 Individuals Accuracy: 93.4%

[104] Speakers and  
microphones within 
existing smartphones

Middle ear fluid  
detection

LR LOOCV 98 Patient ears AUC: 0.9; sensitivity: 
84.6%; specificity: 
81.9%

[105] Cancer data survival 5-Year survival patients 
with oral cavity  
squamous cell  
carcinoma

DF, DJ, LR, NN Hold-out 26,452 Patients 6,613 Patients AUC: 0.8; accuracy: 
71%; precision: 
71%; recall: 68%

[106] Histological data Occult lymph node  
metastases  
identification in  
clinically oral cavity 
squamous cell

RF, SVM, LR, 
C5.0

Hold-out 56 Patients 112 Patients AUC: 0.89;  
accuracy: 88.0%; 
NPV: >95%

[107] Clinicopathologic data Head and neck free  
tissue transfer surgical 
complications  
prediction

GBDT Hold-out 291 Patients 73 Patients Specificity: 62.0%; 
sensitivity: 60.0%; 
F1: 60.0%

(Continued to the next page)
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well as hyperspectral imaging [45-52,54], are now interpreted 
by AI. In voice-based analysis, AI is used to evaluate pathologi-
cal voice conditions associated with vocal fold disorders, to ana-
lyze and decode phonation itself [67], to improve speech per-
ception in noisy conditions, and to improve the hearing of pa-

tients with CIs. In medical device-based analyses, AI is used to 
evaluate tissue and blood test results, as well as the outcomes of 
otorhinolaryngology-specific tests (e.g., polysomnography) 
[72,73,122] and audiometry [123,124]. AI has also been used to 
support clinical diagnoses and treatments, decision-making, the 

Study Analysis modality Objective AI technique
Validation 
method

No. of samples in  
the training dataset

No. of samples in  
the testing dataset

Best result 

[108] Clinicopathologic data Delayed adjuvant  
radiation prediction 

RF Hold-out 61,258 Patients 15,315 Patients Accuracy: 64.4%; 
precision: 58.5%

[109] Clinicopathologic data Occult nodal metastasis 
prediction in oral cavity 
squamous cell  
carcinoma

LR, RF, SVM, 
GBM

Hold-out 1,570 Patients 391 Patients AUC: 0.71;  
sensitivity: 75.3%; 
specificity: 49.2%

[110] Dataset of the center 
of pressure sway 
during foam  
posturography

Peripheral vestibular 
dysfunction prediction 

GBDT, bagging, 
LR

CV 75 Patients with vestibular dysfunction 
and 163 healthy controls

AUC: 0.9; recall: 
0.84

[111] TEOAE signals Meniere’s disease  
hearing outcome  
prediction

SVM 5-CV 30 Unilateral patients Accuracy: 82.7%

[112] Semantic and syntactic 
patterns in clinical 
documentation

Vestibular diagnoses NLP+Naïve 
Bayes

10-CV 866 Physician-generated histories from 
vestibular patients

Sensitivity: 93.4%; 
specificity: 98.2%; 
AUC: 1.0

[113] Endoscopic imaging Nasal polyps diagnosis ResNet50, 
Xception, and 
Inception V3

Hold-out 23,048 Patches (167 patients) as training 
set, 1,577 patches (12 patients) as  
internal validation set, and 1,964  
patches (16 patients) as external test set

Inception V3: AUC: 
0.974

[114] Intradermal skin tests Allergic rhinitis diagnosis Associative 
classifier

10-CV 872 Patients with allergic symptoms Accuracy: 88.31%

[115] Clinical data Identified phenotype 
and mucosal  
eosinophilia endotype 
subgroups of patients 
with medical refractory 
CRS

Cluster analysis - 46 Patients with CRS without nasal polyps 
and 67 patients with nasal polyps

-

[116] Clinical data Prognostic information 
of patient with CRS

Discriminant 
analysis

- 690 Patients -

[117] Clinical data Identified phenotypic 
subgroups of CRS  
patients

Discriminant 
analysis

- 382 Patients -

[118] Clinical data Characterization of  
distinguishing clinical 
features between  
subgroups of patients 
with CRS

Cluster analysis - 97 Surgical patients with CRS -

[119] Clinical data Identified features of 
CRS without nasal  
polyposis

Cluster analysis - 145 Patients of CRS without nasal  
polyposis

-

[120] Clinical data Identified inflammatory 
endotypes of CRS

Cluster analysis - 682 Cases (65% with CRS without nasal 
polyps)

-

[121] Clinical data Identified features of 
CRS with nasal polyps

Cluster analysis - 375 Patients -

AI, artificial intelligence; CRDN, cascade recurring deep network; MAPE, mean absolute percentage error; RF, random forest; LOOCV, leave-one-out cross 
validation; CI, cochlear implant; MAE, mean absolute error; SSHL, sudden sensorineural hearing loss; DBN, deep belief network; LR, logistic regression; 
SVM, support vector machine; MLP, multilayer perceptron; CV, cross-validation; AUC, area under the receiver operating characteristic curve; NN, neural 
network; DT, decision tree; DF, decision forest; DJ, decision jungle; NPV, negative predictive value; GBDT, gradient boosted decision trees; GBM, gradient 
boosting machine; TEOAE, transient-evoked otoacoustic emission; NLP, natural language processing; CRS, chronic rhinosinusitis.

Table 4. Continued
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prediction of prognoses [98-100,125,126], disease profiling, the 
construction of mass spectral databases [43,127-129], the identi-
fication or prediction of disease progress [101,105,107-110,130], 
and the confirmation of diagnoses and the utility of treatments 
[102-104,112,131].

Although many algorithms have been applied, some are not 
consistently reliable, and certain challenges remain. AI will pre-
sumably become embedded in all tools used for diagnosis, treat-
ment selection, and outcome predictions; thus, AI will be used 
to analyze images, voices, and clinical records. These are the goals 
of most studies, but again, the results have been variable and are 
thus difficult to compare. The limitations include: (1) small train-
ing datasets and differences in the sizes of the training and test 
datasets; (2) differences in validation techniques (notably, some 
studies have not included data validation); and (3) the use of 
different performance measures during either classification (e.g., 
accuracy, sensitivity, specificity, F1, or area under the receiver 
operating characteristic curve) or regression (e.g., root mean square 
error, least mean absolute error, R-squared, or log-likelihood ra-
tio).

ML algorithms always require large, labeled training datasets. 
The lack of such data was often a major limitation of the studies 
that we reviewed. AI-based predictions in the field of otorhino-
laryngology must be rigorously validated. Often, as in the broad-
er medical field, an element of uncertainty compromises an oth-
erwise ideal predictive method, and other research disparities 
were also apparent in the studies that we reviewed. Recent prom-
ising advances in AI include the ensemble learning model, which 
is more intuitive and interpretable than other models; this model 
facilitates bias-free AI-based decision-making. The algorithm in-
corporates a concept of “fairness,” considers ethical and legal is-
sues, and respects privacy during data mining tasks. In summary, 
although otorhinolaryngology-related AI applications were di-
vided into four categories in the present study, the practical use 
of a particular AI method depends on the circumstances. AI will 
be helpful for use in real-world clinical treatment involving com-
plex datasets with heterogeneous variables.

CONCLUSION

We have described several techniques and applications for AI; 
notably, AI can overcome existing technical limitations in otorhi-
nolaryngology and aid in clinical decision-making. Otorhinolar-
yngologists have interpreted instrument-derived data for decades, 
and many algorithms have been developed and applied. How-
ever, the use of AI will refine these algorithms, and big health 
data and information from complex heterogeneous datasets will 
become available to clinicians, thereby opening new diagnostic, 
treatment, and research frontiers.
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