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Introduction
Respiratory tract is a primary target because it is the first 

barrier to inhaled dust particles, which are associated with 
increased respiratory morbidity and mortality. Available 
evidence indicates dust particles mediate airway inflammation, 
the progression of asthmatic diseases [1], pneumonia [2,3], and 
inflammation by pathogens, and that they are even linked to 
brain structural changes and stroke [4,5]. Lungs provide large 
surface areas for the exchange of gases, but in so doing are 
exposed to exogenous particles. Particle size critically determines 
inhaled particulate uptake [6]. Fine particulates (less than 10 
μm) reach the alveolar region and are cleared slowly because of 

the lack of a clearing mechanism [7-9]. For this reason, smaller 
particles and its extended deposition can be used to understand 
related downstream responses. Fine dust particles prefer 
respiratory invasion of not only nasal and bronchial epithelial 
layers but also of deep alveoli and other extra-pulmonary 
compartments including fibrotic tissue, lymph nodes, and the 
bloodstream [10,11]. 

Pulmonary health is also threatened by dust particles that 
induce inf lammatory and allergic reactions and cause Ca2+ 
overloading and the production of reactive oxygen species 
(ROS) [12]. Dust particles induce inflammatory reactions by 
inducing the productions of cytokines and chemokines, such as, 
transforming growth factor b1 (TGF-b1), interleukin-1, IL-6, and 
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ABSTRACT Epidemiologic interest in particulate matter (PM) is growing particularly 
because of its impact of respiratory health. It has been elucidated that PM evoked 
inflammatory signal in pulmonary epithelia. However, it has not been established 
Ca2+ signaling mechanisms involved in acute PM-derived signaling in pulmonary 
fibroblasts. In the present study, we explored dust particles PM modulated 
intracellular Ca2+ signaling and sought to provide a therapeutic strategy by 
antagonizing PM-induced intracellular Ca2+ signaling in human lung fibroblasts 
MRC5 cells. We demonstrated that PM10, less than 10 μm, induced intracellular 
Ca2+ signaling, which was mediated by extracellular Ca2+. The PM10-mediated 
intracellular Ca2+ signaling was attenuated by antioxidants, phospholipase blockers, 
polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 
(TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species 
were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) 
anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen 
species signal by measuring DCF fluorescence and the DCF signal attenuated 
by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of 
TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-
mediated signaling and oxidative stress accompanying lung diseases.
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IL-8 [13-16]. In addition, particle-induced oxidative stress triggers 
immune reactions in alveolar macrophages and lung tissues 
[13,17-19], and these reactions have been associated with Ca2+, 
a critical pro-inflammatory mediator signal [19]. Intracellular 
Ca2+ is known to act as a pivotal intracellular messenger, and has 
been demonstrated to regulate several pulmonary functions, 
such as, ciliary beat frequency and mucus secretion [20-23], and 
mechanical movement of fibroblasts [24,25].

Dust particles are known to increase an intracellular Ca2+ 
concentration ([Ca2+]i), which up-regulates transcription factors 
and the productions of their downstream mediators in airway 
epithelial cells [19]. Therefore, dust particles may influence the 
developments and exacerbations of respiratory diseases directly 
or indirectly [14]. However, it cannot be ruled out the possible 
mechanism sustained dust particles is a regulatory factors for 
development of inflammatory signaling in respiratory fibroblasts. 

Although the above-mentioned studies have explored Ca2+ 
response in airway epithelial cells exposed to several particle 
types from ambient or chemical sources, the relationship between 
calcium response and signaling proteins has not been previously 
examined in bronchial fibroblasts. Accordingly, the goals of this 
study were to define changes in intracellular Ca2+ and signaling 
mechanisms in lung fibroblast cells exposed to dust particles 
PM10 and to explore the therapeutic agents responsible for 
particles-mediated signaling mechanism.

Methods

Reagents and cell culture

Human lung fibroblast cell line MRC5 cells were purchased 
from American Type Culture Collection (Rockville, MD). Fura-
2-AM was purchased from Teflabs (Austin, TX). U73122 and its 
inactive analog, U73343 were from Tocris (Minneapolis, MN). 
Caffeine, clotrimazole (CLZ), 3-Aminobenzamide (3-AB), N-(p-
amylcinnamoyl) anthranilic acid (ACA), 2-aminoethoxydiphenyl 
borate (2-APB), Chlorpromazine (CLP), N-acetylcysteine (NAC), 
lanthanum chloride (LaCl3), and all other chemicals were from 
Sigma. Dulbecco's Modified Eagle's Medium (DMEM), penicillin-
streptomycin, trypsin-ethylenediaminetetraacetic acid (EDTA), 
5-(and-6)-choloromethyl-2’,7’-dicholorodihydrof luorescin 
diacetate (CM-H2DCFDA), phosphate-buffered saline (PBS), 
fetal bovine serum (FBS), Pluronic F-127 (20% in DMSO), 
and 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic 
acid tetrakis, acetoxymethyl ester (BAPTA,AM) were from 
Invitrogen (Carlsbad, CA). MRC5 cells were incubated at 
37oC in a humidified 5% CO2/95% air atmosphere in DMEM 
containing 10% FBS, 100 U/mL penicillin, and 100 μg/mL 
streptomycin. When the cell culture reached 80% confluence, 
cells were dispersed by adding trypsin-EDTA for 2 min and then 
transferred to new culture dishes or to glass coverslip-covered 

dishes for Ca2+ measurements.

Asian dust particles (PM10) sampling, analysis, and 
measurement of particles size

Ambient air samples were collected in Incheon City, South 
Korea and analyzed as described previously [2]. Collected 
outdoor dust particles were sonicated for 3 min at maximal watt 
and sieved through filters at 10 μm in size (Mitex membrane 
filters, Millipore). PM10 suspensions consisted of: 48% SiO2, 12% 
AL2O3, 5% Fe2O3, 5% CaO, 4% K2O, 2.37% MgO, 2% Na2O, and 
1% TiO2. PM10 suspensions were heated at 360oC for 30 min to 
remove adhered microorganisms or other organic materials and 
stored at –20oC until use. No LPS in heated PM10 was detected 
(below range of 0.005 EU/ml) by a Limulus amebocyte lysate 
assay kit (BioWhittaker, MD). Particles were diluted in water and 
its size was measured in a Zeta potential and particle size analyzer 
(ELSZ-1000, Otsuka Electronics, Japan). 

Measurement of intracellular Ca2+ concentration ([Ca2+]i)

MRC5 cells cultured on cover glasses were incubated with 4 
μM fura-2, AM in the presence of 0.05% Pluronic F-127 for 15 
min in physiological salt solution (PSS) at room temperature 
in the dark, and then washed for 10 min with PSS (containing 
in mM: 10 D-glucose, 140 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, and 
10 HEPES and titrated to pH 7.4). For the 0 Ca2+ extracellular 
solution, CaCl2 was replaced with 10 mM EGTA. Changes in 
intracellular Ca2+ concentrations were determined by measuring 
the fluorescence intensities using dual excitation wavelengths 
(340 and 380 nm) and an emission wavelength of 510 nm. Results 
are presented as fluorescence (F) ratios (Ratio=F340/380). Emitted 
fluorescence was monitored using a CCD camera (Photometrics, 
AZ) attached to an inverted microscope (Olympus, Japan) and 
analyzed with a MetaFlour system (Molecular Devices, PA). 
Fluorescence images were obtained at 1 sec intervals. Background 
fluorescence at each excitation wavelength was subtracted from 
raw signals. 

Imaging of reactive oxygen species (ROS)

MRC5 cells grown on a cover glass in the presence or absence 
of PM10 were incubated in PSS containing the ROS fluorescence 
probe 10 μg/mL H2DCFDA for 5 min and then washed with 
PBS for 5 min at room temperature. Fluorescence images were 
obtained using a confocal laser-scanning microscope (Leica, 
Buffalo, NY) using an excitation wavelength of 488 nm for 
DCF and measuring emitted light intensities at 525 nm. DCF 
fluorescence was measured in five different regions of selected 
images and signals were normalized versus baseline. Images were 
obtained at 10 min intervals.
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Statistical analyses

Results from the indicated numbers of experiments are ex
pressed as mean±SEM. Statistical significance was determined by 
analysis of variance and accepted for p values of 0.01(*).

Results

PM10-induced [Ca2+]i signal by extracellular Ca2+ in 
human lung fibroblast MRC5 cells

To characterize the source of Ca2+ induced by PM10, MRC5 
cells were stimulated by PM10 in the presence or absence 
of extracellular Ca2+. The PM10-induced [Ca2+]i signal was 
dramatically reduced in the absence of extracellular Ca2+ (Fig. 
1A and 1C; n=25 cells). When treated with BAPTA,AM as a 
broad range of Ca2+ chelator, the PM10-induced [Ca2+]i signal was 
blocked by the chelation of basal and increased Ca2+ (Fig. 1B and 
1C; n=28 cells). These observations showed that PM10 induced an 
increased [Ca2+]i signal which was mediated by extracellular Ca2+ 
in MRC5 cells. To confirm PM10-induced [Ca2+]i increases were 
mainly mediated by extracellular media, cells were treated with 
PM10 in the presence of a non-selective Ca2+ channel blocker La3+. 
PM10-mediated [Ca2+]i increases were blocked by La3+ (Fig. 1D 

and 1E, n=60 cells). Collected dust particles were characterized 
as PM10 (less than 10 μm), which including less than 2.5 μm dust 
particles PM2.5 (Fig. 1F).

PM10-induced [Ca2+]i signal is dependent on the PLC/
IP3 receptor pathway 

To determine the involvement of the phospholipase C (PLC)/ 
IP3 receptor (IP3R) pathway in PM10-induced [Ca2+]i responses, 
MRC5 cells were pre-treated with caffeine, which is an antagonist 
of IP3 receptor (IP3R) in many types of cells [26-28]. The PM10-
induced [Ca2+]i signal was measured in pretreatment with 20 
mM caffeine for 3 min. Caffeine suppressed the [Ca2+]i increase 
induced by PM10 (Fig. 2A and B, n=64 and 97 cells, respectively). 
To determine the role of PLC in the effect of PM10, cells were 
pretreated with U73122 (a specific blocker of PLC) or with its 
inactive analog U73343. U73122 blocked PM10-induced [Ca2+]i 
increases, but U73343 did not (Fig. 2B and 2C, n=31 and 60 cells, 
respectively). These results suggest that PM10-induced [Ca2+]i 
increases are dependent on the PLC/IP3R pathway in MRC5 cells.

PM10-induced [Ca2+]i signal is attenuated by 
inhibition of oxidative pathways 

ROS generation by airway epithelia is a characteristic feature 
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Fig. 1. PM10-induced [Ca2+]i signal by extracellular Ca2+ in human lung fibroblast MRC5 cells. (A) Changes in [Ca2+]i induced by 50 μg/mL PM10 
in 1 mM Ca2+ medium (black line) and in Ca2+-free medium (gray line). Top bars indicate the extracellular solutions applied to MRC5 cells. (B) 50 μg/mL 
PM10-induced [Ca2+]i signals were completely abolished by 10 µM BAPTA-AM. Traces shown were obtained from average signal except the stimulation 
with PM10 only. (C) ΔCa2+ was calculated at the indicated dotted line. Results are presented as mean±SEM. *p values of <0.01 were considered 
significant. (D) Cells were stimulated with the presence of La3+. Traces shown were obtained from average signal except the stimulation with PM10 
only. (E) Results are presented as mean±SEM and *p values of <0.01 were considered significant. (F) Analysis of size distribution of dust particles.
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of respiratory diseases, such as, chronic obstructive pulmonary 
disease (COPD) [29], and therefore, the targeting of ROS 
represents a potential therapeutic strategy in such patients. 
Furthermore, dust particles have been shown to promote the 
production of ROS in bronchial epithelial cells [13]. To probe this 
situation we treated with PM10 in MRC5 cells in the presence 
of several ROS scavengers. PM10-induced [Ca2+]i signals were 
modestly attenuated by the antioxidant NAC (Fig. 3A and 3B, 

n=45 and 65 cells, respectively), indicating that ROS production 
is involved in Ca2+ signaling mechanism. It is known intracellular 
ROS increases polyADP-ribose (ADPR) polymerase 1 (PARP-
1) activity, that this up-regulation is associated with subsequent 
DNA damage. PARP is a cardinal factor downstream of ROS 
production facilitates ADPR synthesis [30]. To determine whether 
PM10-induced ROS responses influence PARP-1 signaling, we 
used a PARP-1 inhibitor 3-AB [31]. Pretreatment with 3-AB 
was found to markedly inhibit PM10-mediated [Ca2+]i increases 
(Fig. 3C, n=36 cells). Cells were also pretreated with a Ca2+-CaM 
inhibitor CLP to determine whether CaM was involved in PM10-
triggered [Ca2+]i signaling [32]. PM10-induced [Ca2+]i increases 
were inhibited by CLP (Fig. 3D, n=30 cells), indicating PM10-
induced increases in [Ca2+]i in lung fibroblast cells are mediated 
by oxidative signaling and are dependent on PARP-1 signaling. 

PM10-induced [Ca2+]i signal is required for the 
involvement of TRPM2 activation 

Increased PARP activity or [Ca2+]i increases are required for the 
activation of transient receptor potential melastatin 2 (TRPM2) 
[33,34], and TRPM2 channel is activated by intracellular ADPR 
and ROS messengers, which leads to excessive Ca2+ inf lux 
[2,30]. To determine whether the PM10-induced [Ca2+]i signal 
was mediated by TRPM2, MRC5 cells were pretreated with 
several types of TRPM2 blockers 2-APB, CLZ, or ACA and 
then treated with PM10. It is known that 2-APB blocks ADPR-
induced TRPM2 currents in several cell types [35,36]. We found 
pretreatment with 2-APB or CLZ (Fig. 4A, 4B, and 4C, n=51, 
32, and 60 cells, respectively) also significantly decreased PM10-
induced Ca2+ influx into lung fibroblast cells. The pretreatment 
of derivative anthranilic acid, N-(p-amylcinnamoyl) anthranilic 
acid ACA [36] markedly decreased PM10-mediated influx despite 
initially increasing [Ca2+]i (Fig. 4D, n=52 cells). These results 
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Fig. 3. PM10-induced [Ca2+]i signal is 
attenuated by inhibition of oxidative 
pathways. (A) Changes in [Ca2+]i induced 
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suggest that the [Ca2+]i response observed in PM10-stimulated 
bronchial epithelial cells required PARP/ADPR signaling to 
mediate activation of oxidative stress-dependent channels such as 
TRPM2 activation. 

PM10 induced ROS production and ROS levels were 
reduced in the presence of TRPM2 blockers

MRC5 cells were loaded with H2DCFDA to determine extents 
of PM10-induced ROS signal. DCFDA fluorescence, which was 
used to detect H2O2, was time-dependently increased by PM10 
(Fig. 5A; n=7), but pretreatment with both TRPM2 inhibitors 
CLZ or ACA resulted in the disappearance H2O2 from cells 
(Fig. 5B and 5C). To avoid the effect of dilution vehicle, PM10 
suspension was included with DMSO. These result suggested that 
PM10 induced ROS signal with time-dependent manner and the 
ROS signal attenuated by both TRPM2 blockers, CLZ and ACA. 

Discussion
Ambient epidemiologic studies have demonstrated that 

increases in the morbidities and mortalities of pulmonary di
seases are correlated with pollution of the environment by par
ticulate matter (PM). Thus, clarifying the mechanisms of airway 
diseases induced by PM would support understanding of their 
pathogeneses. This study demonstrates that PM10 mediates ROS 
production and [Ca2+]i signaling in a human lung fibroblast cell 
line. In view of the inflammatory effects of dust particles on 
respiratory organs such as bronchial epithelia is not surprising; 
however, the present study shows inf lammatory signaling 
upstream of PM is primarily associated with oxidative stress-
dependent Ca2+ channels such as TRPM2, which triggers and 
promotes an inflammatory stream of extracellular Ca2+ into lung 
fibroblasts. 

Ca2+ homeostasis is related to a variety of cellular functions, 
which include protein synthesis, transcription factor activation, 
cell migration, proliferation, and the transduction of extracellular 
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signals into cells [37]. [Ca2+]i is tightly maintained by Ca2+ pump, 
which hydrolyzes ATP to provide the energy for Ca2+ movement 
and for store operated Ca2+ influx channels, such as, stromal 
interaction molecule 1 (STIM1) and Orai. Few studies have 
addressed the pathological aspects of Ca2+ signaling in pulmonary 
fibroblasts, although a large number of studies have been 
undertaken on non-pulmonary fibrotic organs, such as, heart [38], 
liver [39], and kidneys [40]. In the present study, PM10 evoked 
a delayed [Ca2+]i signal (Fig. 1), indicating the involvements of 
other signaling mechanisms prior to Ca2+ influx, and thus, it 
is important to determine whether dust particles induce ROS-
mediated signaling. Although previous report addressed that 
air pollutants evoke both Ca2+-dependent or -independent 
mechanisms [19], our findings for the first time suggest that 
dust particle-mediated ROS production participates in [Ca2+]i 
signaling events via TRPM2 activation in pulmonary fibroblasts, 
which further suggests dust particles-mediated TRPM2 
activation initiates inflammatory events such as increased pro-
inflammatory cytokines level. On the other hands, TRPM2 
activation, which enables excessive Ca2+ influx, phosphorylates 
and activates the PLCγ1/protein kinase Cα (PKCα) pathway, 
which subsequently induces airway epithelial tight junction 
disruption [41]. Particulate stimuli are common events in NLRP3 
inflammasome activation [42].

We cannot exclude the possibility that additional [Ca2+]i sig
naling mechanisms are involved. Our results indicate dust par
ticles elicit [Ca2+]i increases in a IP3/IP3R pathway dependent-
manner. Kyung et al. [13] suggested that dust particles may have 
fibrotic potential in bronchial epithelial cells. This mechanism 
also allows us to predict and test of potential novel approaches 
for the treatment of pulmonary fibrotic diseases by long-term 
exposure of dust particles. However, the mechanism responsible 
for dysfunctional PLC/IP3/IP3R signaling by dust particles 
requires additional investigation in pulmonary fibrosis.

PM deposited in alveolar epithelia causes structural modi
fications in intracellular organelles and pathological changes 
in alveolar cells [43]. Furthermore, PM-mediated oxidative 
stresses are closely related to cell toxicity. In one study, PM2.5-
mediated DNA damage was abolished by anti-oxidant enzymes 
or deferoxamine, indicating oxidative mediators are involved 
in the induction of DNA damage [44]. Oxidative events are also 
associated with many pathologic conditions, such as, pulmonary 
fibrosis and COPD [29,45,46]. Indeed, blockade of ROS signaling 
or TGF-β1 has an anti-fibrotic effect in lung tissue [13,46,47]. In 
addition, at elevated doses, PM appears to increase ROS levels 
and subsequent mitochondrial damage, such as mitochondrial 
swelling and vacuolation, in alveolar type II cells [43]. 

This study provides the role of [Ca2+]i signaling induced by dust 
particles in respiratory fibroblast cells. Currently, no therapeutic 
strategy targets [Ca2+]i signaling in fibroblast-mediated pul
monary diseases [48], but our results suggest potential means 
of controlling fibrotic pulmonary diseases by manipulating 

[Ca2+]i signaling events. In particular, we suggest antioxidant, 
[Ca2+]i signaling pathway inhibitor, and TRPM2 inhibitor 
treatments should be considered for therapeutic trials in fibrotic 
diseases. Importantly, this study shows the modulation of dust 
particles-mediated [Ca2+]i signaling has the potential to generate a 
new wave of therapies targeting pulmonary fibroblasts.
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