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INTRODUCTION
2,3-bis(4-hydroxyphenyl)propionitrile (diarylpropionitrile, 

DPN) was firstly discovered by screening a select group of com-
pounds for inducing the transcriptional activity of estrogen 
receptor beta (ERβ) in human endometrial cancer cells [1]. It has 
been reported that DPN acts as a selective ERβ agonist having a 
70-fold higher relative binding affinity and 170-fold higher rela-
tive potency in transcription assays with ERβ than with ERα [1]. 

Previous studies have reported ERβ-dependent functions of 
DPN [2-4]. It has been studied that DPN enhanced cognitive per-
formance of female mice in the object recognition and placement 
tasks but not in the ERβ knock mice [2], and decreased anxiety-
like behaviors in mice due to association with ERβ [5]. It was also 
reported that DPN has an anti-inflammation effect associated 
with down-regulation of LPS-induced regulated on activation 
normal T cell expressed and secreted production [4] and growth 
inhibitory effect on several cancers [3,6]. However, ER-indepen-
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ABSTRACT Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β 
(ERβ), has been reported to regulate various hormonal responses through activa-
tion of ERβ in tissues including the mammary gland and brain. However, the effect 
of DPN on melanogenesis independent of ERβ has not been studied. The aim of this 
study is to examine the possibility of anti-melanogenic effect of DPN and its under-
lying mechanism. Melanin contents and cellular tyrosinase activity assay indicated 
that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-
stimulated B16F10 melanoma cell line. However, DPN had no direct influence on 
in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect 
on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of 
melanin production was not related with estrogen signaling pathway. Immunoblot-
ting analysis showed that DPN down-regulated the expression of microphthalmia-
associated transcription factor (MITF), a central transcription factor of melanogenesis 
and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-
1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) 
and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed 
the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system 
suggesting that DPN has potential as an anti-melanogenic activity in physiological 
conditions. Collectively, our data show that DPN inhibits melanogenesis via down-
regulation of PKA/CREB/MITF signaling pathway.
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dent bioactivities of DPN are remain unknown. Interestingly, 
DPN has been reported to include a structure of stilbenoid, which 
is one of the main classes of phytoestrogens and has been known 
to have bioactivities including anti-pigmentation independent 
of ER signaling [7,8]. Therefore, it is considerable to investigate 
whether DPN has ER signaling-independent activities, especially 
on melanogenesis.

Melanin, a crucial pigment for determining color of skin, 
eyes, and hair, plays an essential role in protecting human skin 
from various stress involving environmental pollutants, drugs, 
chemicals, and especially protects against UV radiation [9]. 
Melanin is synthesized in melanocytes through metabolic pro-
cess called melanogenesis and transferred to adjacent keratino-
cyte [10]. Tyrosinase, a rate-limiting enzyme in the melanogenic 
biochemical cascade, catalyzes conversion of L-tyrosinase into 
L-dihydroxyphenylalanine (DOPA) and L-DOPA into dopa-
quinone, a precursor of melanin in melanocyte [11]. Tyrosinase 
related protein (TRP)-2 has a dopachrome tautomerase activity 
that isomerizes dopachrome to 5,6-dihydroxyindole-2-carboxylic 
acid (DHICA) which is a relatively stable intermediate [12]. TRP-1 
oxidates DHICA leading to conversion into eumelanin, a subtype 
of melanin [13]. Tyrosinase, TRP-1, and TRP-2 are major tran-
scriptional genes of a melanocyte-specific transcription factor, M-
microphthalmia-associated transcription factor (MITF) [11]. In 
addition, it has been reported that MITF activates a number of 
pigmentation-related genes, including melanocortin 1 receptor 
(MC1R), MART-1, PMEL, and endothelin receptor b [14-17].

In response to UV irradiation, p53 is accumulated in epidermal 
keratinocytes and transactivates its target genes including pro-
opiomelanocortin [18,19], which is a precursor protein of adre-
nocorticotropic hormone (ACTH) and alpha-melanocyte stimu-
lating hormone (α-MSH) [20,21]. The POMC-derived bioactive 
products bind to MC1R expressed on membrane of melanocytes, 
which is the member of G-protein coupled receptor (GPCR), in a 
paracrine manner and act as important determinants on cutane-
ous pigmentation [20]. Subsequently, the activation of MC1R ac-
cumulates the intracellular cAMPs followed by binding of cAMP 
to the regulatory subunit of protein kinase A (PKA) [22,23]. The 
released catalytic subunits of PKA phosphorylate CREB at serine 
133 residue, one of the critical transcription factors of MITF along 
with sex-determining region Y-box 10 and lymphoid enhancer-
binding factor 1 [11,24,25]. It has been reported that p38 and 
extracellular signal-regulated kinase (ERK) 1/2 also mediate the 
phosphorylation of CREB at serine 133 residue in response to 
α-MSH stimulation [26,27].

Here, we newly proposed the functional activity of DPN inde-
pendent of ERβ signaling. In this study we investigated the effect 
of DPN on melanogenesis in α-MSH-stimulated B16F10 mela-
noma cells and associated molecular mechanisms.

METHODS

Reagents and antibodies

Diarylpropionitrile, arbutin, 17β-estradiol, α-MSH, L-DOPA, 
mushroom tyrosinase, and dibutyryl-cAMP were purchased 
from Sigma Aldrich (St. Louis, MO, USA). The primary antibod-
ies against β-actin, MITF, tyrosinase, TRP-1, and TRP-2 were 
purchased from Santa Cruz Biotechnology (Dallas, TX, USA) 
and primary antibodies against CREB, p-CREB (Ser133), PKA 
C-α, p-PKA C- α (Thr197), ERK1/2, p-ERK1/2 (Thr202/Tyr204), 
p38, and p-p38 (Thr180/Tyr182) were purchased from Cell signal-
ing Technology (Danvers, MA, USA). Horseradish peroxidase-
conjugated secondary anti-rabbit and anti-mouse antibodies were 
purchased from Cell signaling Technology.

Cell culture

B16F10 murine melanoma cells and HaCaT keratinocytes were 
purchased from ATCC (Manassas, VA, USA). Cells were cultured 
in Dulbeco’s Modified Eagle’s Medium (DMEM; Gibco, Grand 
Island, NY, USA) supplemented with 10% fetal bovine serum 
(FBS; Biowest, Paris, France) and 1% penicillin/streptomycin (PS; 
Gibco). All cells were maintained in a humidified 5% CO2 incu-
bator at 37°C .

Cell viability assay

The effect of DPN on cell viability was assessed with water-
soluble tetrazolum salt (WST-1) assay (EZ-Cytox; Dogen, Seoul, 
Korea). B16F10 cells (4 × 104) were seeded in 96 well plate and cul-
tured for 24 h. Then, cells were further incubated with DPN (1–100 
μM) for 24 or 48 h. The cell viability was determined by measur-
ing formation of formazan from tetrazolium salt, absorbance at 
450 nm using SYNERGY HTX multi-mode reader (BioTek, Win-
ooski, VT, USA).

Determination of melanin contents

B16F10 melanoma cells (2 × 105) were seeded in 60 mm plate 
and cultured for 24 h. Then, cells were co-treated with DPN (20 
and 50 μM) and α-MSH (100 nM) followed by incubation for 48 
h. Cells were harvested and lysed with 200 μl of 1 N NaOH, fol-
lowed by boiling at 100°C for 1 h. The intracellular melanin con-
tents were determined by measuring absorbance at 450 nm using 
SYNERGY HTX multi-mode reader. Total protein amount was 
quantified with Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, Waltham, MA, USA), standardized with bovine serum 
albumin. 17β-estradiol (1 and 10 μM) was used for determining 
the effect of ER activation on melanogenesis in α-MSH-treated 
B16F10 cells. Arbutin (500 μM) was used as positive control.
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Measurement of tyrosinase activity

The cellular tyrosinase activity was examined using B16F10 
cells. Cells (2 × 105) were seeded in 60 mm plate and further cul-
tured for 24 h. Then, cells were co-treated with DPN (20 and 50 
μM) and α-MSH (100 nM) followed by incubation for 48 h. Cells 
were harvested and lysed with radioimmunoprecipitation assay 
(RIPA) buffer. Total protein amount was quantified with Pierce 
BCA Protein Assay Kit according to manufacturer’s protocol, 
standardized with BSA. The obtained supernatant was reacted 
with L-DOPA (1 mM) and spectrophotometric analysis of dopa-
chrome formation was performed at 450 nm absorbance using 
SYNERGY HTX multi-mode reader. Arbutin (500 μM) was used 
as positive control.

To measure in vitro mushroom tyrosinase activity, dopachome 
formation from L-DOPA by mushroom tyrosinase was analyzed. 
DPN (1–100 μM) was reacted with L-DOPA (1 mM) and mush-
room tyrosinase (100 U/ml) in 0.1 M sodium phosphate buffer 
(pH 6.8), followed by incubation for 10 min at 37°C. The relative 
tyrosinase activities were assessed by measuring absorbance at 
450 nm using SYNERGY HTX multi-mode reader. Arbutin (500 
μM) was used as positive control.

RNA analysis

B16F10 cells (2 × 105) were seeded in 60 mm plate and further 
cultured for 24 h. Then, cells were co-treated with DPN (20 and 
50 μM) and α-MSH (100 nM) followed by incubation for 24 h. 
Total RNAs were extracted from B16F10 melanoma cells using 
Ribo-EX (Geneall, Seoul, Korean). One microgram of total RNAs 
were reverse-transcribed into cDNA using Moloney Murine 
Leukemia Virus reverse transcriptase (M-MLV) (Invitrogen, 
Waltham, MA, USA) according to the manufacturer’s protocol. 
The transcriptional expression levels of MITF, tyrosinase, TRP-
1, and TRP-2 were quantified by quantitative real time PCR 
(qRT-PCR) using StepOnePlus Real-Time PCR System (Thermo 
Fisher Scientific, Waltham, MA, USA). All reactions in qRT-
PCR analysis were performed using SYBR green PCR master 

mix (Thermo Fisher Scientific) according to manufacturer’s 
protocol. The cDNA was amplified with the following primers: 
MITF: forward, 5’-AGAAGCTGGAGCATGCGAACC-3’ and 
reverse, 5’-GTTCCTGGCTGCAGTTCTCAAG-3’, Tyrosinase: 
forward, 5’-AGTCGTATCTGGCCATGGCTTCTTG-3’, reverse, 
5’-GCAAGCTGTGGTAGTCGTCTTTGTC-3’, TRP-1: for-
ward, 5’-CTGCGATGTCTGCACTG ATGACCTG-3’, reverse, 
5’-TTTCTCCTGATTGGTCCACCCTCAG-3’, TRP-2: forward, 
5’-CGTGCTGAACAAGGAATGCT-3’, reverse, 5’-GCATGTC-
CGGTTGAAGAAT-3’, GAPDH; forward, 5’-GTCTCCTCT-
GACTTCAACAGCG-3’ and reverse, 5’- ACCACCCTGTTGCT-
GTAGCCAA-3’.

Melanin content analysis using UVB-irradiated HaCaT-
conditioned medium

UVB-irradiated HaCaT conditioned media system was modi-
fied according to previous study [28]. HaCaT keratinocyte cells (1 
× 106) were seeded in 100 mm plate and further cultured for 24 h. 
Cells were washed with phosphate-buffered saline (PBS; Gibco) 
prior to UVB irradiation. Cells were irradiated with 30 mJ/cm2 
of UVB using BoTeck Super Light–IV UV illuminator (BoTeck, 
Gunpo, Korea) and further cultured with fresh culture media for 
24 h. Conditioned media from UVB-irradiated or nonirradiated 
HaCaT cells were harvested and co-treated with DPN (20 and 
50 μM) to B16F10 cells. After 48 h of incubation, the melanin 
contents analysis was performed using the same method as men-
tioned above.

Statistical analysis

All data were analyzed using One-Way ANOVA followed by 
Tukey’s test in Prism version 8.0.1 (GraphPad software, San Di-
ego, CA, USA) and are presented as mean ± SD. p-value < 0.05 
was considered statistically significant.

Fig. 1. Cell viability of B16F10 melanoma cells after treatment with DPN. (A) Chemical structure of DPN. (B) B16F10 cells were treated with DPN 
(1–100 μM). Cells were further cultured for 24 h and 48 h, then the cell viability was determined by WST-1 assay. Data are shown as mean ± SD from 
three independent experiments. DPN, diarylpropionitrile; WST-1, water-soluble tetrazolum salt. *p < 0.05 were considered as statistically significant.

BA
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RESULTS

DPN attenuated melanin synthesis in B16F10 
melanoma cells

DPN, an ERβ selective agonist derived from resveratrol, has 
been known to include a structure of stilbenoid which has high 
affinity and selectivity for ERs (Fig. 1A) [8]. Prior to investigate 
whether DPN affects melanogenesis, the cell cytotoxicity of DPN 
in B16F10 melanoma cell line was examined by WST-1 assay at 24 
and 48 h. As shown in Fig. 1B, the cell viability was not affected 
by DPN treatment (1–100 μM) even at the maximum concen-
tration at 24 h. At 48 h, DPN had no cytotoxicity on B16F10 at 
low concentration but marginally reduced cell viability at the 
concentration of 100 μM (p < 0.05). To elucidate whether DPN 
affects melanin synthesis, the cells were co-treated with α-MSH 
and DPN (20 and 50 μM) for 48 h then the intracellular melanin 
contents were examined. As a result, DPN significantly blocked 

the melanin production in α-MSH-stimulated B16F10 cells (Fig. 
2A). As tyrosinase is the key enzyme in melanin synthesis [10], we 
analyzed the cellular tyrosinase activity by measuring conversion 
of L-DOPA into dopachrome. The cellular tyrosinase activities 
were assessed with tyrosinase obtained from B16F10 co-treated 
with α-MSH and DPN for 48 h. DPN significantly inhibited the 
cellular tyrosinase activities in α-MSH-stimulated B16F10 cells 
(Fig. 2B). To determine whether DPN directly affects the enzy-
matic activity of tyrosinase, the effect of DPN (1–100 μM) on in 
vitro mushroom tyrosinase activity was evaluated. As shown 
in Fig. 2C, DPN did not have significant effect on the in vitro 
mushroom tyrosinase activities relative to the control even at the 
maximum concentration, indicating that DPN might affect the 
intracellular tyrosinase expression level. Since it has been known 
that DPN can induce estrogen signaling by binding ER [29,30], 
we next investigated whether estrogen signaling affects melano-
genesis using 17β-estradiol in α-MSH-treated B16F10. As severe 
cytotoxicity was observed in B16F10 cells treated with 20 μM 

Fig. 2. Effect of DPN on melanogen-
esis in αα-MSH-stimulated B16F10 
cells. B16F10 cells were co-treated with 
α-MSH (100 nM) and DPN (20 and 50 
μM). (A) After 48 h, the melanin contents 
were examined by measuring absor-
bance at 450 nm. (B) Cellular tyrosinase 
activities were examined by analyzing 
conversion of L-DOPA into dopachrome 
by measuring absorbance at 490 nm. (C) 
The effects of DPN (1–100 μM) on enzy-
matic activity of tyrosinase were exam-
ined using mushroom tyrosinase in cell 
free system. Tyrosinase activities were 
determined by analyzing conversion of 
L-DOPA into dopachrome. (D) B16F10 
cells were co-treated with α-MSH (100 
nM) and 17β-estradiol (1 and 10 μM) 
or α-MSH (100 nM) and DPN (50 μM). 
Cells were further cultured for 48 h and 
the melanin contents were determined 
by measuring absorbance at 450 nm. 
Arbutin (500 μM) was used as positive 
control. Data are shown as mean ± SD 
from three independent experiments. 
DPN, diarylpropionitrile; α-MSH, alpha-
melanocyte stimulating hormone; 
DOPA, dihydroxyphenylalanine; ns, not 
significant. *p < 0.05 were considered 
as statistically significant from vehicle 
treated group. #p < 0.05 were considered 
as statistically significant from α-MSH-
treated group.

B
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17β-estradiol through previous experiments (Supplementary Fig. 
1), we analyzed the intracellular melanin amounts in B16F10 cells 
treated with 1 and 10 μM 17β-estradiol. As shown in Fig. 2D, 
17β-estradiol did not affect the melanin biosynthesis in α-MSH-
stimulated B16F10 cells at both concentrations of 1 and 10 μM, 
whereas DPN effectively inhibited melanogenesis. These results 
suggest that DPN can interfere melanin synthesis independently 
of the ER signaling pathway.

DPN inhibited the expression of tyrosinase and its 
related genes in B16F10 melanoma cells

Since DPN did not directly influence on tyrosinase enzymatic 
activity, we examined whether DPN affects the expressions of 
melanogenic enzymes including tyrosinase and tyrosinase-relat-
ed proteins (Fig. 3A). Immunoblotting analysis showed that the 
expressions of tyrosinase, TRP-1, and TRP-2 were down-regu-
lated in α-MSH-stimulated B16F10 cells relative to control. Next, 
quantitative RT-PCR analysis revealed that DPN down-regulated 

the transcriptional expressions of tyrosinase, TRP-1, and TRP-2 
genes in α-MSH-stimulated B16F10 cells (Fig. 3B–D). Taken to-
gether, these data showed that the expressions of tyrosinase, TRP-
1, and TRP-2 were inhibited by DPN at the transcription level.

The inhibitory effect of DPN on melanogenesis was 
mediated by cAMP/PKA/CREB signaling pathway

It has been reported that MITF acts as a master transcription 
factor for the expression of tyrosinase and tyrosinase related pro-
teins including TRP-1 and TRP-2 in the process of melanin bio-
synthesis [31]. So, we examined whether DPN affects the expres-
sion of MITF. Immunoblot analysis indicated that the expression 
of MITF was significantly inhibited by DPN in a dose-dependent 
manner (Fig. 4A). Subsequently, qRT-PCR analysis showed that 
DPN down-regulated the transcriptional expression level of 
MITF (Fig. 4B). It has been well known that α-MSH can induce 
the expression of MITF through PKA/CREB signaling pathway 
in melanocyte [24,25]. Therefore, down-regulation of MITF by 

Fig. 3. Effect of DPN on the expression 
of tyrosinase and its related genes 
in αα-MSH-stimulated B16F10 cells. 
(A) B16F10 cells were co-treated with 
α-MSH (100 nM) and DPN (20 and 50 
μM) for 24 h. The expression levels of 
tyrosinase, TRP-1 and TRP-2 were ex-
amined by immunoblotting with their 
specific antibodies. Actin was used as a 
loading control. Indicated immunoblot 
intensities were analyzed by Image-J. (B–
D) The transcriptional expression levels 
of tyrosinase, TRP-1 and TRP-2 were 
examined by qRT-PCR. GAPDH was used 
for normalizing mRNA expression level. 
Data are shown as mean ± SD from three 
independent experiments. DPN, diaryl-
propionitrile; α-MSH, alpha-melanocyte 
stimulating hormone; TRP, tyrosinase-re-
lated protein. *p < 0.05 were considered 
as statistically significant from vehicle 
treated group. #p < 0.05 were considered 
as statistically significant from α-MSH-
treated group.

A
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DPN led us to explore whether DPN can affect the phosphoryla-
tions of CREB and PKA. As shown in Fig. 4C, the phosphoryla-
tions of PKA at threonine 197 residue and CREB at serine 133 res-
idue were reduced by treatment with DPN in α-MSH-stimulated 
B16F10 cells. These results indicate that DPN down-regulates 
PKA and CREB phosphorylation, thereby reducing MITF gene 
transcription. Since ERK and p38 have been reported to affect 
CREB phosphorylation at serine 133 residue [17,32-34], we further 
investigated whether the phosphorylation levels of ERK and p38 
were affected by DPN. In Fig. 4C, immunoblotting showed that 
the phosphorylations of ERK and p38 were not affected by DPN 
in α-MSH-stimulated B16F10 cells. These findings indicated that 
DPN does not affect ERK and p38 signaling, but mediates PKA 
signaling, thereby interfering with melanin synthesis.

DPN has anti-melanogenic activity in UVB-irradiated 
HaCaT conditioned media system

In the skin under physiological conditions, keratinocytes 
generate a series of substances by UVB irradiation, which are 
transferred to neighboring melanocytes with paracrine action to 
induce melanogenesis [35]. To investigate whether DPN inhibits 
melanin synthesis under UV irradiation conditions mimicking 
physiological skin environment, B16F10 cells were cultured with 
UVB-irradiated HaCaT keratinocyte conditioned media (UV-

CM) and then anti-melanogenic effect of DPN was examined 
(Fig. 5). As shown Fig. 5, the melanin contents of B16F10 cells 
were increased by culturing with UV-CM relative to conditioned 
media not irradiated with UVB (NUV-CM) and DPN effectively 
down-regulated the melanin contents of B16F10 cells in a dose-
dependent manner. This observation suggests the potential of 
DPN to inhibit melanin synthesis in a physiological environment.

DISCUSSION
DPN is an ERβ agonist with high binding affinity, and it has 

been specifically studied for its hormonal bioactivities associ-
ated with ERβ [1,2,5]. However, potential bioactivities of DPN 
independent of the ERβ signaling pathway remain unclear. DPN 
was first synthesized from a derivative of resveratrol that acts 
as a partial agonist on ERα and has a chemical structure of stil-
benoid (Fig. 1A) [8]. Stilbenoids have been reported to belong to 
phytoestrogens similar to endogenously produced mammalian 
estrogens [8]. Glyceollin II and resveratrol were also reported to 
have the same stilbenoid structure as DPN [8] and interestingly, 
these chemicals have also been reported to inhibit melanogen-
esis [36-39]. These studies led us to predict that DPN can affect 
the melanin biosynthesis mechanism independently of the ERβ 
signaling pathway through the stilbenoid structure. In this study 

Fig. 4. Effect of DPN on the cAMP/PKA/
CREB signaling pathway in αα-MSH-
stimulated B16F10 cells. (A) B16F10 
cells were co-treated with α-MSH (100 
nM) and DPN (20 and 50 μM). After 
24 h, the expression level of MITF was 
examined by immunoblotting. (B) Cells 
were co-treated with α-MSH (100 nM) 
and DPN (20 and 50 μM). The cells were 
further cultured for 24 h and mRNA ex-
pression level of MITF was examined by 
qRT-PCR. Data are shown as mean ± SD 
from three independent experiments. 
(C) The expressions of PKA, pPKA, CREB, 
pCREB, ERK, pERK, p38, and pp38 were 
examined by immunoblotting with their 
specific antibodies. Indicated immunob-
lot intensities were analyzed by Image-
J. DPN, diarylpropionitrile; PKA, protein 
kinase A; CREB, cAMP-response element-
binding protein; MITF, microphthalmia-
associated transcription factor; α-MSH, 
alpha-melanocyte stimulating hormone; 
ERK, extracellular signal-regulated ki-
nase. *p < 0.05 were considered as sta-
tistically significant from vehicle treated 
group. #p < 0.05 were considered as sta-
tistically significant from α-MSH-treated 
group.

BA
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we analyzed for the first time the inhibitory effect of DPN on 
melanogenesis in α-MSH-stimulated B16F10 melanoma cells. In 
addition, we demonstrated that DPN also exerts an inhibitory 
effect on UVB-induced melanogenesis using a UV-irradiated 
keratinocyte conditioned medium model that mimics the physi-
ological skin melanogenesis environment.

It has been reported that melanin biosynthesis can be regulated 
in various ways [10,40]. The most important process in melanin 
biosynthesis depends on the activity of tyrosinase, a melanocyte-
specific enzyme [41]. Several studies have indicated a regulation 
that can inhibit melanin biosynthesis by directly inhibiting the 
enzymatic activity of tyrosinase [42,43]. In addition, several re-
ports suggested that tyrosinase can affect melanin synthesis by 
regulating the amount of intracellular expression [44-48]. It has 
been reported that the cellular expression of tyrosinase can be 
affected by transcriptional regulation [44-46] or by post-tran-
scriptional regulation by protein ubiquitination [47,48]. Fig. 2C 
indicated that DPN does not directly affect the tyrosinase enzy-
matic activity. Furthermore, Fig. 3 showed that DPN can inhibit 
melanin biosynthesis by inhibiting the intracellular expression 
of tyrosinase at the transcriptional level. In Fig. 3, the transcrip-
tional expressions of tyrosinase, TRP-1, and TRP-2 proteins were 

down-regulated by DPN in α-MSH treated B16F10 cells indicat-
ing that the expression of MITF could be affected by DPN. MITF 
has been reported as a transcription factor for multiple cellular 
processes including melanogenesis, differentiation, proliferation, 
and cell survival [49]. Previous studies have demonstrated that 
the expressions of key melanogenic enzymes including tyrosinase 
and TRP-1, and TRP-2 are regulated by MITF during melanogen-
esis [46,50,51]. Fig. 4A indicated that DPN dramatically inhibits 
the expression of cellular MITF at the transcriptional level. We 
further investigated whether CREB, an up-stream regulator of 
MITF [25], and protein kinases of which activate CREB were af-
fected by DPN. Several studies have reported protein kinases that 
phosphorylate CREB at serine 133 residue [26,27,40]. It has been 
demonstrated that PKA phosphorylates CREB in a cAMP-de-
pendent pathway, an important second messenger during mela-
nogenesis [24,40,52]. It has been reported that p38 MAPK is acti-
vated by α-MSH stimulation to induce phosphorylation at serine 
133 residue in CREB [26,34,53]. It has also been reported that 
ERK is activated in cAMP-dependent manner involving the Ras 
signaling pathway and can induce the phosphorylation at CREB 
serine 133 residue independently of PKA in melanocytes [54]. Fig. 
4C indicated that phosphorylations of PKA and CREB were in-
hibited by DPN, whereas p38 MAPK was not affected. There have 
been conflicting studies on the effect of ERK on melanogenesis. 
Several reports indicate that ERK directly phosphorylates MITF 
at serine 73 residue, leading to ubiquitin-dependent degradation 
of MITF [55,56]. However, these studies were performed in the 
presence of ROS accumulation or in c-kit-induced melanogenesis. 
Interestingly, previous study has demonstrated that cAMP was 
increased by DPN in rat aortic smooth muscle and this is opposite 
phenomenon from our data [57]. This difference is expected to be 
due to different origins of the samples, tissues, and cultured cells, 
or mismatch of cell type. Moreover, our data suggests that DPN 
did not affect the intracellular level of cAMP because cAMP-
dependent phosphorylation of ERK was not affected by DPN 
(Supplementary Fig. 2) [54,58]. Nevertheless, further investiga-
tions are needed to identify the precise regulatory mechanisms of 
DPN in PKA phosphorylation.

Estrogen signaling has been reported to positively regulate 
melanin biosynthesis and tyrosinase activity in cultured me-
lanocytes [59]. It has also been reported that the production of 
estrogen is relate to the physiological environment including 
melasma in pregnancy [60]. Estrogen exerts its biological effects 
through its specific receptors, ERα and ERβ which are nuclear re-
ceptors that form homo- or heterodimer and act as transcription 
factor [61]. Our data showed that DPN, which can activate ER 
signaling with binding affinity to ERβ, inhibited α-MSH-induced 
melanin production (Fig. 2A). This result led us to examine the 
relationship between ER signaling and melanogenesis in α-MSH-
stimulated B16F10 cells. It has been reported that 17β-estradiol, 
the most abundant estrogen in a physiological condition, binds 
to ERα and ERβ [29,30]. Therefore, the effect of 17β-estradiol on 

Fig. 5. Effect of DPN on melanogenesis using UVB-irradiated HaCaT 
conditioned media system. HaCaT keratinocytes were irradiated with 
30 mJ/cm2 of UVB and further cultured for 24 h, then cultured media 
which referred to as conditioned media (UV-CM) were harvested. 
B16F10 cells were treated with DPN (20 and 50 μM) and UV-CM and 
further cultured for 48 h. The melanin contents were examined by 
measuring the absorbance at 450 nm. HaCaT cultured media not ir-
radiated with UVB were used as a negative control (NUV-CM). Arbutin 
was used as a positive control. *p < 0.05 were considered as statistically 
significant from vehicle treated group. Data are shown as mean ± SD 
from three independent experiments. DPN, diarylpropionitrile. #p < 0.05 
were considered as statistically significant from the conditioned media-
treated group.
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melanin synthesis in α-MSH-stimulated B16F10 was analyzed 
to examine whether the activation of ER signaling has an effect 
on α-MSH-induced melanogenesis. In Fig. 2D, DPN inhibited 
melanin biosynthesis, but 17β-estradiol (1 and 10 μM) did not 
inhibit melanin biosynthesis and even slightly promoted melanin 
production. This result corresponds to previous studies which 
have reported that 17β-estradiol enhances tyrosinase activity and 
melanogenesis [59,62]. Interestingly, there are also reports that 
17β-estradiol also binds to ERα and G protein-coupled estrogen 
receptor (GPER) [30,63]. GPER is partially responsible for induc-
ing melanogenesis in melanoma. It has also been reported that 
silymarin, known as phytoestrogen, is a selective ERβ agonist 
and reported to inhibit melanin synthesis [64,65]. Our experi-
mental results did not rule out whether DPN inhibits melanin 
biosynthesis through GPER signaling or selective ERβ signaling 
mechanisms. Additional experiments are needed to clarify the 
inhibitory mechanism of melanin biosynthesis by DPN.

To date, the general model for analyzing the effect on melanin 
biosynthesis in cells has been used the α-MSH-treated B16F10 
mouse melanoma cell line [66,67]. In a physiological environ-
ment, skin pigmentation is mainly initiated by UV irradiation. 
After UV irradiation, keratinocytes release proopiomelanocortin 
(POMC) precursor peptide, which is then cleaved with α-MSH 
and ACTH [21,68]. These POMC-derived peptide hormones start 
to induce melanin biosynthesis by acting as ligands of MC1R 
expressed on neighboring melanocytes [66,68]. We introduced a 
UV-irradiated keratinocyte conditioned media system that mim-
ics the physiological skin environment and determined whether 
DPN affects melanin biosynthesis using this model (Fig. 6). Our 

results demonstrate the potential of DPN as an anti-pigmentation 
agent that can be applied to the skin. Further experiment using 
3D-reconstucted human pigmented epidermis of skin model 
is required to validate the anti-pigmentation effect of DPN in a 
physiological environment.

In conclusion, we demonstrated that DPN inhibited the mela-
nin biosynthesis and it was mediated by modulation of PKA/
CREB signaling axis leading to down-regulation of MITF, tyrosi-
nase, and tyrosinase-related proteins via an estrogen receptor-
independent pathway (Fig. 6). We also confirmed anti-melanoge-
netic effect of DPN using a UVB-irradiated HaCaT conditioned 
medium model that mimics the physiological skin environment. 
Collectively, our data indicated that DPN could be a potential 
agent for the treatment of hyper-pigmentation.
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