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Purpose BRCA1 and BRCA2 are among the most important genes involved in DNA repair via homologous recombination (HR). Ger-
mline BRCA1/2 (8BRCA1/2)-related cancers have specific characteristics and treatment options but conducting gBRCA1/2 testing
and interpreting the genetic imprint are sometimes complicated. Here, we describe the concordance of gBRCA1/2 derived from a
panel of clinical tumor tissues using next-generation sequencing (NGS) and genetic aspects of tumors harboring gBRCA1/2 patho-
genic variants.

Materials and Methods Targeted sequencing was performed using available tumor tissue from patients who underwent gBRCA1/2
testing. Comparative genomic analysis was performed according to gBRCA1/2 pathogenicity.

Results A total of 321 patients who underwent gBRCA1/2 testing were screened, and 26 patients with gBRCA1/2 pathogenic
(8BRCA1/2p) variants, eight patients with gBRCAL/2 variants of uncertain significance (6BRCA1/2v), and 43 patients with gBR-
CA1/2 wild-type (8BRCA1/2w) were included in analysis. Mutations in TP53 (49.4%) and PIK3CA (23.4%) were frequently detected
in all samples. The number of single-nucleotide variants per tumor tissue was higher in the gBRCAL/2w group than that in the
8BRCA1/2p group (14.81 vs. 18.86, p=0.278). Tumor mutation burden (TMB) was significantly higher in the gBRCAL/2w group
than in the gBRCA1/2p group (10.21 vs. 13.47, p=0.017). Except for BRCA1/2, other HR-related genes were frequently mutated in
patients with gBRCAL/2w.

Conclusion We demonstrated high sensitivity of gBRCA1/2 in tumors analyzed by NGS using a panel of tumor tissues. TMB value
and aberration of non-BRCA1/2 HR-related genes differed significantly according to gBRCA1/2 pathogenicity in patients with breast
cancer.

Key words Breast neoplasms, BRCA, High-throughput nucleotide sequencing, Germ-line mutation, Genomic landscape, Tumor muta-

tion burden

Introduction

Advances in precision medicine have maintained pace
with the development of genetic profiling technologies. Dis-
eases that were previously classified into only a few types
have gradually been subdivided into specific diagnoses, par-
ticularly in oncology, leading to an era of personalized treat-
ment. Various therapeutic alternatives to conventional chem-
otherapy, such as targeted therapy and immunotherapy,
have been established and meticulously investigated [1,2].

Next-generation sequencing (NGS) has markedly changed
the way breast cancer is identified and treated. In addition
to molecular subtyping, physicians should consider numer-
ous genetic factors to combat breast cancer. Testing germline
BRCA1/2 (§BRCA1/2) plays a pivotal role in assessing the
hereditary risk of breast cancer and in guiding treatment

decisions, particularly with the development of poly(ADP-
ribose) polymerase (PARP) inhibitors [3,4].

Although ¢gBRCA1/2 aberration must be confirmed under
specific clinical conditions, additional costs and the necessity
of blood sampling present practical hurdles to this process.
Attempts have been made to infer the result of germline
mutations obtained from tissue NGS results, but accuracy
remains a concern. In addition, although the clinical and
pathological characteristics of gBRCA-related breast cancer
have been well-acknowledged over several decades [5,6], the
genetic aspects of these characteristics have not been fully
revealed at the NGS level.

Based on these considerations, this study was conducted
to assess the consistency of gBRCA1/2 aberrations between
blood germline testing and tumor tissue sequencing and to
characterize the genomic landscape of breast cancer accord-
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ing to gBRCA1/2 pathogenicity

Materials and Methods

1. Patient selection

After obtaining approval from the Korea University Anam
Hospital Institutional Review Board (No. 2017AN0401), we
reviewed the charts of patients who were prescribed gBR-
CA1/2 testing at Korea University Anam Hospital. The test
has been covered by the Korean National Health Insurance
since 2012 and was conducted in patients with breast can-
cer having a family history of breast/ovarian cancer; diag-
nosed at < 40 years of age; and having bilateral breast can-
cer, multiple primary cancers, including breast or ovarian
malignancy, or male breast cancer. The results of the ¢BR-
CA1/2 test were presented as pathogenic ({BRCA1/2p), vari-
ants of uncertain significance [VUS; (BRCA1/2v)], and wild-
type (§BRCA1/2w). Patients who agreed to participate in the
K-MASTER project, a Korean National Precision Medicine
Cancer Treatment Clinical Trial Platform, were enrolled in
the study, and genomic profiles of tumors were collected
from all patients in all groups. Detailed information about
the K-MASTER project is available in the Supplementary
Methods.

2. Germline BRCA1/2 test

Germline DNA was extracted from peripheral blood using
the QIAamp DNA Blood Mini Kit (Qiagen, Chatsworth, CA),
according to the manufacturer’s instructions. Before April
2018, germline BRCA1/2 testing based on Sanger sequencing
was performed as described previously [7]. In brief, direct
sequencing of 73 amplicons covering all exons and flanking
introns of BRCAI and BRCA?2 was performed on the ABI
3500Dx Genetic Analyser (Applied Biosystems, Foster City,
CA) using a BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems). After April 2018, we conducted a mul-
tigene NGS panel test that included all exons and flanked
intron regions of 31 hereditary cancer susceptibility genes,
viz.,, ATM, BARD1, BRIP1, CHEK2, NBN, PALB2, RADA50,
RAD51C, BRCA1, BRCA2, PTEN, CDH1, TP53, EPCAM,
MLH1, MSH2, MSH6, PMS2, MUTYH, APC, MEN1, RET,
STK11, RAD51D, TSC1, TSC2, NF1, NF2, SMARCBI, LZTR1,
and VHL). NGS was performed on the Illumina MiSeq plat-
form (Illumina Inc., San Diego, CA), generating 2x150-bp
paired-end reads. Sequencing reads were aligned using the
hgl9 reference with BWA (ver. 0.7.10) algorithm. For the
post-alignment process, duplicates were removed using Pic-
ard (ver. 1.115), and indel realignment and base recalibration
were performed using GenomeAnalysisTK-Lite (ver. 2.3.9).
Variant calling was performed using GATK HaplotypeCaller
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ver. 3.8, annotation was performed using ANNOVAR, and
conversion to Human Genome Variation Society nomencla-
ture was performed with SnpEff ver. 4.3t. Germline variants
were classified according to the five-tier system of the Amer-
ican College of Medical Genetics and Genomics guidelines

[8].

3. NGS of tumor tissue

Mutation analysis of solid tumor tissues was performed
using targeted NGS. DNA was extracted, purified, and quan-
tified from formalin-fixed, paraffin-embedded breast tumor
specimens according to the K-MASTER protocol. Using the
K-MASTER panel, which allows the detection of variants of
409 representative genes using the HiSeq sequencing plat-
form, we investigated the mutation profile of the collected
tissues. After passing the quality control process, the pipe-
line demonstrated the results of single-nucleotide variants
(SNVs), copy number variants (CNVs), and genomic fusion
data from each sample. Detailed laboratory and bioinformat-
ics protocols are available in the Supplementary Methods.

In this study, the average depth of targeted sequencing
coverage, duplication rate, on-target rate, pass rate score,
and uniformity were 699.16 (141.51-1,202.54), 29.72% (11.8%-
84.32%), 94.42% (88.74%-99.14%), 97.97% (25.9%-100%), and
77% (70%-91%), respectively. In terms of quality control, 74
of 77 samples (96.1%) covered a depth of more than 300.

4. Statistical analysis

The Student’s t test was used to compare continuous and
numerical values between the groups. Normally distributed
data are presented as the mean and standard deviation (SD),
and deviated data are presented as the median and inter-
quartile range. p-values were calculated using the Student’s
t test or Mann-Whitney U test, based on Levene’s test. The
correlation between two factors was assessed using Pearson
or Spearman correlation coefficients, according to data distri-
bution. Statistical analyses were performed using IBM SPSS
Statistics software ver. 26 (IBM Corp., Armonk, NY) and
visualized using R ver. 4.0.0 (R Software, R Foundation for
Statistical Computing, Vienna, Austria).

Results

1. Study population

Of the 321 patients who underwent the gBRCA1/2 testing,
45 patients were categorized as harboring ¢gBRCA1/2p, 34
were categorized as harboring gBRCA1/2v, and 242 were cat-
egorized as harboring ¢gBRCA1/2w. After obtaining informed
consent from patients and ensuring quality control of the
extracted DNA, 26 ¢BRCA1/2p breast cancer tissues, eight



Ju Won Kim, Genomic Features According to gBRCA Status

Patients with breast cancer having high risk of germline BRCA mutation
- Family history of breast/ovarian cancer

- Diagnosis at young age ( < 40 years old)

- Bilateral breast cancer

- Double primary cancer, including breast or ovarian malignancy

- Male breast cancer
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Fig. 1. Schematic flow chart of the study. Among the patients who underwent gBRCA1/2 testing covered by Korean National Health Insur-
ance, next-generation sequencing (NGS) analysis was conducted with available tumor tissue. After quality control, 26 gBRCA1/2p breast
cancer tissues, 8 §gBRCA1/2 variants of uncertain significance (VUS) tissues, and 43 gBRCA1/2w tissues were analyzed.

Table 1. Sample characteristics

Characteristic No. of patients (%) gBRCA gBRCA gBRCA
(n=77) Pathogenic (n=26) VUS (n=8) Wild-type (n=43)

Age at diagnosis (yr) 42 (27-75) 45.5 (29-74) 34.5 (28-62) 39 (27-75)
Sex

Female 75 (97.4) 26 (100) 8 (100) 41 (95.3)

Male 2(2.6) 0 0 2(47)
Stage at diagnosis

DCIS 2(2.6) 0 0 2(47)

I 9 (11.7) 6 (23.1) 0 3(7.0)

I 44 (57.1) 17 (65.4) 5 (62.5) 22 (51.2)

i} 12 (15.6) 2(7.7) 0 10 (23.3)

v 10 (13.0) 1(3.8) 3(37.5) 6 (13.6)
Molecular subtype

Hormone receptor+ 23(29.9) 10 (38.6) 6 (75.0) 17 (39.5)

HER2+ 17 (22.1) 5(19.2) 2(25.0) 10 (23.3)

TNBC 27 (35.1) 11 (42.3) 0 16 (37.2)
Family history

Breast/Ovarian cancer patients in 1st degree relatives 28 (36.4) 14 (53.8) 2 (25.0) 12 (27.9)

Breast/Ovarian cancer in 2nd degree relatives 5(6.5) 1(3.8) 1(12.5) 3(7.0)

Breast/Ovarian cancer in 3rd degree relatives 2(2.6) 0 1(12.5) 1(2.3)

Any other cancer in 1st, 2nd, or 3rd degree relatives 14 (18.2) 3(11.5) 0 11 (25.6)

No family history of cancer 28 (36.4) 8 (30.8) 4 (50.0) 16 (37.2)

Values are presented as median (range) or number (%). DCIS, ductal carcinoma in situ; HER2, human epidermal growth factor receptor 2;
TNBC, triple-negative breast cancer; VUS, variant of unidentified significance.
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¢BRCA1/2 VUS tissues, and 43 ¢gBRCA1/2w tissues were ana-
lyzed (Fig. 1). The clinicopathologic characteristics are sum-
marized in Table 1. The median age at diagnosis was 45.5
years in gBRCA1/2p, 34.5 years in gBRCA1/2v, and 39 years in
¢BRCA1/2w. The difference in age between gBRCA1/2p and
gBRCA1/2w group was not statistically significant (p=0.238
by t test) The familial history of breast/ovarian cancer was
more prominent in the gBRCA1/2p group than in the other
two groups (53.8% vs. 25.0% vs. 27.9%, respectively, having
1st degree relatives, p=0.053).

2. Consistency between Sanger sequencing of gBRCA1/2
testing and tumor NGS

Twelve nonsynonymous SNVs (34.3%), 11 stopgain SNVs
(31.4%), 10 frameshift deletions (28.6%), and two splicing
variants (5.7%) were present in all patients harboring any
type of gBRCA1/2 aberration ({BRCA1/2p or gBRCA1/2v). Of
the 35 ¢BRCA1/2 variants confirmed in the blood samples of
34 patients by Sanger sequencing, 33 variants (94.3%) were
also detected in tumor tissue NGS outcomes. Five BRCAI
aberrations were inconsistent due to different reference
sequences (NM_00294 and NM_007300), but all of them were
the same variants after conversion. The complete profiles of
BRCA1/2 aberrations are presented in Table 2.

3. Genomic landscape of breast cancer according to gBR-
CA1/2 pathogenicity

Fig. 2 represents the genetic profile of breast cancer tissues
and genes showing more than 5% variant allele frequency
are listed. Except for BRCA1/2, TP53 was the most frequently
mutated gene in all three groups (38/77, 49.4%), followed
by PIK3CA (18/77, 23.4%). Variants in PIK3CA and PTEN,
which are part of the PIK3CA/AKT/mammalian target of
rapamycin pathway, were more prevalent in the gBRCA1/2w
group than in the gBRCA1/2p group (PIK3CA 154% vs.
25.6%, p=0.38, PTEN 7.7% vs. 18.6%, p=0.299).

As the number of gBRCA1/2v samples was small, we com-
pared genomic aberrancies in tumors from the gBRCA1/2p
and ¢BRCA1/2w groups. Comparison of the two groups
revealed that although the total number of reported SNVs
was higher in §BRCA1/2w patients (mean, 14.81 vs. 18.86;
p=0.278), the difference was not statistically significant. The
total number of reported CNVs and fusions was comparable
between the two groups (mean CNV, 5.77 vs. 5.47, p=0.343;
fusion, 0.27 vs. 0.23, p=0.740) (S1 Table). In addition, the
average estimated tumor mutation burden (TMB) was sig-
nificantly higher in tumor samples from gBRCAI/2w patients
than in gBRCA1/2p patients (10.21% vs. 13.47%, p=0.017).
TMB value showed a linear correlation with the number of
reported SNVs with marginal significance (Pearson’s corre-
lation coefficient, 0.096; p=0.432) (Fig. 3A). However, after
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removing one outlier (501192 SNV 130), the Pearson’s cor-
relation coefficient was 0.378 and p-value was 0.001 (Fig. 3B).

4. Homologous recombination DNA damage repair gene
aberration in tumor NGS according to gBRCA pathogenic-
ity

Considering the significant differences in TMB value
according to the gBRCA mutation status, homologous recom-
bination DNA damage repair (HR-DDR) genetic variants
were analyzed further. The following were defined as HR-
DDR genes: ARID1A, ATM, ATRX, BARD1, BLM, BRCAI,
BRCA2, BRIP1, CHEK2, FANCA, FANCD?2, FANCE, FANCG,
MREI1A, NBN, PALB2, RAD50, RAD51, and RAD51B. All
these genes are involved in the HR-DDR pathway, as report-
ed by Heeke et al. [9]. These genes are also included in the
K-MASTER NGS panel.

Except for BRCA1/2, the gBRCA1/2p group showed only
a few HR-DDR genetic aberrations, whereas tumors from
gBRCA1/2w patients harbored several aberrations (Fig. 4).
Among HR-DDR genes, 15 of 26 gBRCA1/2p samples (57.7%)
had exclusively BRCA1/2 aberrations. Less than 50% of the
patients (42.3%) harbored HR-DDR gene aberrations apart
from BRCA1/2, and only four patients (15.4%) harbored mul-
tiple non-BRCA1 /2 HR-DDR gene aberrations. Tumor tissues
harboring multiple non-BRCA1/2 HR-DDR gene aberra-
tions were more common in the gBRCA1/2w group (13/43,
30.2%). On average, ¢gBRCA1/2p patients had significantly
lower numbers of non-BRCA1/2 HR-DDR gene aberrations
per person than ¢BRCA1/2w patients (0.54, 1.26, p=0.008) (S2
Table). In the gBRCA1/2w group, BRIP1 was the most fre-
quently identified HR-related gene (23%), followed by ARI-
D1A (16%) and BLM (12%). All HR-DDR mutation profiles
are shown in S3 Table.

5. Correlation between TMB and homologous recombina-
tion deficiency gene aberrations

To determine whether HR-DDR gene aberrations affected
DNA instability, we performed a matching analysis of TMB
values based on the number of non-BRCA1/2 HR-DDR gene
aberrations (54 Fig.). Non-BRCA1/2 HR-DDR gene aberra-
tions and TMB values showed a trend of correlation, but it
was not statistically significant (Spearman’s correlation coef-
ficient, 0.221; p=0.068). Analysis based on grouping with the
number of non-BRCA1/2 HR-DDR gene aberrations is sum-
marized in S5 and S6 Tables.

To examine the correlation between single gene muta-
tions and TMB or SNV, we compared the average of each
value between groups with or without specific genetic
aberrations (S7 Table). In the analysis of TMB values with 70
tumor samples, tumor tissue with BRCAI mutation pre-
sented lower TMB than tumors without BRCAI mutation
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Fig. 3. Tumor mutation burden (TMB) measured by targeted sequencing correlated with total number of single-nucleotide variants
(SNVs). (A) Correlation between number of SNV and TMB. (B) Correlation between number of SNV and TMB after removing one outlier.

(p=0.016). Tumor samples with aberrations in BRIP1 showed
a higher mean TMB than samples without BRIP1 mutations,
but this difference was not statistically significant. None of
the single gene aberrations correlated with mean SNV, pos-
sibly due to the elevated SD caused by one outlier (501192
SNV 130).

Discussion

In this study, we analyzed breast cancer genomic land-
scape according to germline BRCA1/2 pathogenicity. The
germline BRCA1/2 test using DNA extracted from blood
samples and tumor BRCA1/2 test using tumor samples and
NGS showed fair consistency (94.3%). Patients harboring the
gBRCA1/2p mutation showed lower TMB values and fewer
SNVs than patients with ¢gBRCA1/2w. Although consider-
able differences were observed for PIK3CA and PTEN muta-
tions, these were not statistically significant. Higher number
of genes related to homologous recombination (HR) repair
were mutated more frequently in the gBRCAI/2w group than
in the gBRCA1/2p group, and the differences were remark-
able when limited to non-BRCA1/2 HR-DDR genes. Moreo-
ver, the number of non-BRCA1/2 HR-DDR gene aberrations
correlated with the number of reported SNVs.

In the current era of precision medicine, tumor NGS
is frequently performed to identify potential therapeutic
targets. The major goal of tissue NGS is to detect somatic
mutations for actionable targets; however, information
beyond somatic SNVs should also be acknowledged. Consid-
erable efforts have been undertaken to determine germline
mutations by sequencing clinical tumor samples [10]. How-
ever, discrepancies and inaccuracies in identifying germline
mutations using tissue NGS have been discussed continu-
ously. A previous study showed that tumor-only sequencing
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without matched normal samples could not definitively con-
firm germline aberrations, resulting in high false positivity
[11]. Although some discrepancy is inevitable, it is proposed
that the number of well-characterized pathogenic genes or
their variants should be considered in tumor sequencing.
BRCA1/2, MLH1, MSH2, and MSH6 are often included in
cancer panels and are highly associated with inheritance of
pathogenicity [12]. Our study revealed a high consistency
rate (94.3%) between blood gBRCA1/2 testing and tumor tis-
sue sequencing, suggesting thatitis possible to infer germline
BRCA1/2 aberration from tumor biopsy samples in clinical
settings. The two inconsistent cases of our study, 501005 and
504259, presented fair quality of NGS (mean depth 794.59,
442.08 and on-target rate 90.83%, 95.72%). The inconsistency
might not be due to low-quality or reference gene diversity.
The only possibility is unknown human error in reporting,
but clear explanation is not yet determined.

TMB is another key biomarker that can be indirectly
inferred by clinical NGS. TMB is defined as the number of
base alterations and indels, usually calculated by whole
exome sequencing (WES). TMB calculation algorithms used
in our study and their clinical efficacy were validated by
comparing with TMB calculated by WES, which proved its
feasibility with R? of 0.71 [13]. Moreover, it is comprehensive
with previous studies and demonstrated a fine correlation
between TMB by targeted sequencing and WES (R?=0.74)
[14,15]. Similarly, in our study, we assessed the matched
relationship between TMB and the number of reported SNVs
from a panel of tumor samples (Pearson’s correlation coef-
ficient, 0.378; p=0.001).

TMB has emerged as a promising biomarker in the con-
text of immuno-oncology, particularly in melanoma and
non-small cell lung cancer [16-18]. High TMB can predict the
clinical response to immune checkpoint inhibitors [19,20],
but the correlation is not clear in breast cancer [21]. Approxi-
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mately 20% of metastatic breast cancer cases demonstrate a
high TMB [21]. In our study, 14 of 77 patients (18.2%) pre-
sented high TMB (> 16 Mb). However, the prevalence sharp-
ly increased to 27.9% (12/43) when only the gBRCA1/2 wild-
type group was assessed. Taking these findings into account,
further translational studies may reveal whether certain ger-
mline pathogenicity is predictive of the therapeutic effect of
immunotherapy.

Hypermutated breast cancer can be driven by multiple
mechanisms, including homologous recombination defi-
ciency (HRD), and breast cancer with HRD has the highest
median TMB among groups with dominant signatures [15].
In our study, the genes were selected for academic purposes
and were different from those widely used commercially.
With the limited resource and practical barriers with targeted
sequencing, we could not clearly present HRD score. Alth-
ough their important role in HR-DDR were well acknowl-
edged in preclinical studies, genes which had not been
included in approved commercial panel, such as ARID1A and
NBN, should be interpreted with caution. Although BRCA1/2
are two of the essential HR-DDR genes, our data showed
frequent HR-DDR aberrations and higher mean TMB in the
gBRCA1/2w group than in the gBRCA1/2p group. Previous
studies reported contradictory results about relationship
between germline mutation and TMB. Somatic mutation
of BRCAI/2 was associated with higher mutation burden
and higher TMB comparing with wild type in The Cancer
Genome Atlas-based analysis [22,23]. However, when the
patients were classified according to germline BRCAI/2
mutation, differences of TMB was insignificant or even
lower in ¢gBRCA1/2-mutated group [24,25]. With these evi-
dences and results of our study, we can infer that germline
pathogenic variation in BRCA1/2 might contribute less to
TMB than variations in HRD genes in breast cancer. As with
tremendous effort to detect HRDness in solid cancer and
applying the results to choosing effective treatment, the role
of TMB in breast cancer should be further evaluated. The
results of clinical trials evaluating the efficacy of PARP inhi-
bitors in patients with HRDness are anticipated [26].

In our study, we noted more PIK3CA and PTEN mutations
in the gBRCA1/2w group than in the gBRCA1/2m group. As
two of the major cancer driver mutations, our findings pro-
vide an evidence for their mutual exclusiveness, consistent
with previous studies [24,27]. A recent study also showed
that breast cancer with altered phosphoinositide 3-kinase
pathway harbors a significantly low rate of homologous
recombination co-alterations [28]. In the future, we intend to
explore the correlation between germline and somatic muta-
tions using more genomic data from a larger sample size.

In clinical settings, many of the genes known to cause
hereditary cancer syndrome are included in most cancer pan-
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els. In addition, because of convenience of its application and
short turnaround time, NGS panels are increasingly being
used to identify germline aberrations. Use of comprehensive
genetic analysis based on WES and whole genome sequenc-
ing (WGS) is expected to increase as their accessibility has
improved. These advances have expanded the possibilities
of discovering novel germline mutations. Therefore, further
functional genomic studies based on WES and WGS aimed
at determining clinical implications of genetic variants and
their effects on drug sensitivity are needed.

However, our study has several limitations. First, the sam-
ple size was too small to ensure statistical power. There had
been number of patients who did their NGS analysis with
blood, but they could not be included because the study
was performed to investigate concordance rate of germline
variants between tumor tissue and peripheral blood mono-
nuclear cell. The statistical results should be interpreted
with caution considering selection bias and relatively low
prevalence of gBRCA1/2 mutation in the study cohort. Some
patients were enrolled at the early stage of breast cancer,
whereas others were enrolled at an advanced stage, mak-
ing the total genomic profile heterogeneous. In addition, we
could not verify the clinical significance of HR-DDR aberra-
tion or high TMB in terms of therapeutic targets or predic-
tive markers. As none of the Food and Drug Administration—
approved PARP inhibitors are currently reimbursed for
patients with metastatic breast cancer under the Korean nati-
onal health scheme, platinum-based chemotherapy remains
the most affordable treatment option.

In conclusion, we herein describe the consistency between
gBRCA1/2 status based on blood testing and tissue sequenc-
ing and the differences in genetic landscape according to
germline BRCA1/2 gene variations. The concordance rate of
gBRCA1/2 results by tissue NGS was 94.3%, and a significant
difference was observed in TMB value and aberrated non-
BRCA1/2 HR-DDR genes according to germline BRCA1/2
pathogenicity in patients with breast cancer. In the future, our
data should be validated in a larger cohort, and the clinical
impact on survival outcomes should be further elucidated.
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