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Introduction

Advances in precision medicine have maintained pace 
with the development of genetic profiling technologies. Dis-
eases that were previously classified into only a few types 
have gradually been subdivided into specific diagnoses, par-
ticularly in oncology, leading to an era of personalized treat-
ment. Various therapeutic alternatives to conventional chem-
otherapy, such as targeted therapy and immunotherapy, 
have been established and meticulously investigated [1,2].

Next-generation sequencing (NGS) has markedly changed 
the way breast cancer is identified and treated. In addition 
to molecular subtyping, physicians should consider numer-
ous genetic factors to combat breast cancer. Testing germline 
BRCA1/2 (gBRCA1/2) plays a pivotal role in assessing the 
hereditary risk of breast cancer and in guiding treatment 

decisions, particularly with the development of poly(ADP-
ribose) polymerase (PARP) inhibitors [3,4].

Although gBRCA1/2 aberration must be confirmed under 
specific clinical conditions, additional costs and the necessity 
of blood sampling present practical hurdles to this process. 
Attempts have been made to infer the result of germline 
mutations obtained from tissue NGS results, but accuracy 
remains a concern. In addition, although the clinical and 
pathological characteristics of gBRCA-related breast cancer 
have been well-acknowledged over several decades [5,6], the 
genetic aspects of these characteristics have not been fully 
revealed at the NGS level.

Based on these considerations, this study was conducted 
to assess the consistency of gBRCA1/2 aberrations between 
blood germline testing and tumor tissue sequencing and to 
characterize the genomic landscape of breast cancer accord-
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ing to gBRCA1/2 pathogenicity 

Materials and Methods

1. Patient selection
After obtaining approval from the Korea University Anam 

Hospital Institutional Review Board (No. 2017AN0401), we  
reviewed the charts of patients who were prescribed gBR-
CA1/2 testing at Korea University Anam Hospital. The test 
has been covered by the Korean National Health Insurance 
since 2012 and was conducted in patients with breast can-
cer having a family history of breast/ovarian cancer; diag-
nosed at < 40 years of age; and having bilateral breast can-
cer, multiple primary cancers, including breast or ovarian  
malignancy, or male breast cancer. The results of the gBR-
CA1/2 test were presented as pathogenic (gBRCA1/2p), vari-
ants of uncertain significance [VUS; (gBRCA1/2v)], and wild-
type (gBRCA1/2w). Patients who agreed to participate in the 
K-MASTER project, a Korean National Precision Medicine 
Cancer Treatment Clinical Trial Platform, were enrolled in 
the study, and genomic profiles of tumors were collected 
from all patients in all groups. Detailed information about 
the K-MASTER project is available in the Supplementary 
Methods.

2. Germline BRCA1/2 test
Germline DNA was extracted from peripheral blood using 

the QIAamp DNA Blood Mini Kit (Qiagen, Chatsworth, CA), 
according to the manufacturer’s instructions. Before April 
2018, germline BRCA1/2 testing based on Sanger sequencing 
was performed as described previously [7]. In brief, direct 
sequencing of 73 amplicons covering all exons and flanking 
introns of BRCA1 and BRCA2 was performed on the ABI 
3500Dx Genetic Analyser (Applied Biosystems, Foster City, 
CA) using a BigDye Terminator v3.1 Cycle Sequencing Kit 
(Applied Biosystems). After April 2018, we conducted a mul-
tigene NGS panel test that included all exons and flanked 
intron regions of 31 hereditary cancer susceptibility genes, 
viz., ATM, BARD1, BRIP1, CHEK2, NBN, PALB2, RAD50, 
RAD51C, BRCA1, BRCA2, PTEN, CDH1, TP53, EPCAM, 
MLH1, MSH2, MSH6, PMS2, MUTYH, APC, MEN1, RET, 
STK11, RAD51D, TSC1, TSC2, NF1, NF2, SMARCB1, LZTR1, 
and VHL). NGS was performed on the Illumina MiSeq plat-
form (Illumina Inc., San Diego, CA), generating 2×150-bp 
paired-end reads. Sequencing reads were aligned using the 
hg19 reference with BWA (ver. 0.7.10) algorithm. For the 
post-alignment process, duplicates were removed using Pic-
ard (ver. 1.115), and indel realignment and base recalibration 
were performed using GenomeAnalysisTK-Lite (ver. 2.3.9). 
Variant calling was performed using GATK HaplotypeCaller 

ver. 3.8, annotation was performed using ANNOVAR, and 
conversion to Human Genome Variation Society nomencla-
ture was performed with SnpEff ver. 4.3t. Germline variants 
were classified according to the five-tier system of the Amer-
ican College of Medical Genetics and Genomics guidelines 
[8].

3. NGS of tumor tissue
Mutation analysis of solid tumor tissues was performed 

using targeted NGS. DNA was extracted, purified, and quan-
tified from formalin-fixed, paraffin-embedded breast tumor 
specimens according to the K-MASTER protocol. Using the 
K-MASTER panel, which allows the detection of variants of 
409 representative genes using the HiSeq sequencing plat-
form, we investigated the mutation profile of the collected 
tissues. After passing the quality control process, the pipe-
line demonstrated the results of single-nucleotide variants 
(SNVs), copy number variants (CNVs), and genomic fusion 
data from each sample. Detailed laboratory and bioinformat-
ics protocols are available in the Supplementary Methods.

In this study, the average depth of targeted sequencing 
coverage, duplication rate, on-target rate, pass rate score, 
and uniformity were 699.16 (141.51-1,202.54), 29.72% (11.8%-
84.32%), 94.42% (88.74%-99.14%), 97.97% (25.9%-100%), and 
77% (70%-91%), respectively. In terms of quality control, 74 
of 77 samples (96.1%) covered a depth of more than 300.

4. Statistical analysis
The Student’s t test was used to compare continuous and 

numerical values between the groups. Normally distributed 
data are presented as the mean and standard deviation (SD), 
and deviated data are presented as the median and inter-
quartile range. p-values were calculated using the Student’s 
t test or Mann-Whitney U test, based on Levene’s test. The 
correlation between two factors was assessed using Pearson 
or Spearman correlation coefficients, according to data distri-
bution. Statistical analyses were performed using IBM SPSS 
Statistics software ver. 26 (IBM Corp., Armonk, NY) and 
visualized using R ver. 4.0.0 (R Software, R Foundation for 
Statistical Computing, Vienna, Austria).

Results

1. Study population
Of the 321 patients who underwent the gBRCA1/2 testing, 

45 patients were categorized as harboring gBRCA1/2p, 34 
were categorized as harboring gBRCA1/2v, and 242 were cat-
egorized as harboring gBRCA1/2w. After obtaining informed 
consent from patients and ensuring quality control of the 
extracted DNA, 26 gBRCA1/2p breast cancer tissues, eight 
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Patients with breast cancer having high risk of germline BRCA mutation
- Family history of breast/ovarian cancer 
- Diagnosis at young age ( < 40 years old) 
- Bilateral breast cancer 
- Double primary cancer, including breast or ovarian malignancy 
- Male breast cancer

F/u loss (n=7)
Patients who did not meet
the selection criteria or did 
not complete the informed
consent as mentioned for
K-MASTER (n=3)
NGS QC fail (n=9)

F/u loss (n=3)
Patients who did not meet
the selection criteria or did 
not complete the informed
consent as mentioned for
K-MASTER (n=27)
NGS QC fail (n=3)

NGS QC fail
(n=2)

Patients who met the 
selection criteria and
complete the informed
consent as mentioned for
K-MASTER (n=45)

gBRCA1/2
pathogenic (n=45)

gBRCA
VUS (n=34)

gBRCA wild-type
(n=242)

Tumor tissue NGS
analysis (n=43)

Tumor tissue NGS
analysis (n=8)

Tumor tissue NGS
analysis (n=26)

Fig. 1.  Schematic flow chart of the study. Among the patients who underwent gBRCA1/2 testing covered by Korean National Health Insur-
ance, next-generation sequencing (NGS) analysis was conducted with available tumor tissue. After quality control, 26 gBRCA1/2p breast 
cancer tissues, 8 gBRCA1/2 variants of uncertain significance (VUS) tissues, and 43 gBRCA1/2w tissues were analyzed.

Table 1.  Sample characteristics

Characteristic
	 No. of patients (%)	 gBRCA	 gBRCA	 gBRCA

	 (n=77)	 Pathogenic (n=26)	  VUS (n=8)	 Wild-type (n=43)

Age at diagnosis (yr)	 42 (27-75)	 45.5 (29-74)	 34.5 (28-62)	 39 (27-75)
Sex	
    Female	 75 (97.4)	 26 (100)	 8 (100)	 41 (95.3)
    Male	 2 (2.6)	 0 (	 0 (	 2 (4.7)
Stage at diagnosis	
    DCIS	 2 (2.6)	 0 (	 0 (	 2 (4.7)
    I	 9 (11.7)	 6 (23.1)	 0 (	 3 (7.0)
    II	 44 (57.1)	 17 (65.4)	 5 (62.5)	 22 (51.2)
    III	 12 (15.6)	 2 (7.7)	 0 (	 10 (23.3)
    IV	 10 (13.0)	 1 (3.8)	 3 (37.5)	 6 (13.6)
Molecular subtype	
    Hormone receptor+	 23 (29.9)	 10 (38.6)	 6 (75.0)	 17 (39.5)
    HER2+	 17 (22.1)	 5 (19.2)	 2 (25.0)	 10 (23.3)
    TNBC	 27 (35.1)	 11 (42.3)	 0 (	 16 (37.2)
Family history	
    Breast/Ovarian cancer patients in 1st degree relatives	 28 (36.4)	 14 (53.8)	 2 (25.0)	 12 (27.9)
    Breast/Ovarian cancer in 2nd degree relatives	 5 (6.5)	 1 (3.8)	 1 (12.5)	 3 (7.0)
    Breast/Ovarian cancer in 3rd degree relatives	 2 (2.6)	 0 (	 1 (12.5)	 1 (2.3)
    Any other cancer in 1st, 2nd, or 3rd degree relatives	 14 (18.2)	 3 (11.5)	 0 (	 11 (25.6)
    No family history of cancer	 28 (36.4)	 8 (30.8)	 4 (50.0)	 16 (37.2)
Values are presented as median (range) or number (%). DCIS, ductal carcinoma in situ; HER2, human epidermal growth factor receptor 2; 
TNBC, triple-negative breast cancer; VUS, variant of unidentified significance. 
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gBRCA1/2 VUS tissues, and 43 gBRCA1/2w tissues were ana-
lyzed (Fig. 1). The clinicopathologic characteristics are sum-
marized in Table 1. The median age at diagnosis was 45.5 
years in gBRCA1/2p, 34.5 years in gBRCA1/2v, and 39 years in 
gBRCA1/2w. The difference in age between gBRCA1/2p and 
gBRCA1/2w group was not statistically significant (p=0.238 
by t test) The familial history of breast/ovarian cancer was 
more prominent in the gBRCA1/2p group than in the other 
two groups (53.8% vs. 25.0% vs. 27.9%, respectively, having 
1st degree relatives, p=0.053).

2. Consistency between Sanger sequencing of gBRCA1/2 
testing and tumor NGS

Twelve nonsynonymous SNVs (34.3%), 11 stopgain SNVs 
(31.4%), 10 frameshift deletions (28.6%), and two splicing 
variants (5.7%) were present in all patients harboring any 
type of gBRCA1/2 aberration (gBRCA1/2p or gBRCA1/2v). Of 
the 35 gBRCA1/2 variants confirmed in the blood samples of 
34 patients by Sanger sequencing, 33 variants (94.3%) were 
also detected in tumor tissue NGS outcomes. Five BRCA1 
aberrations were inconsistent due to different reference  
sequences (NM_00294 and NM_007300), but all of them were 
the same variants after conversion. The complete profiles of 
BRCA1/2 aberrations are presented in Table 2.

3. Genomic landscape of breast cancer according to gBR-
CA1/2 pathogenicity

Fig. 2 represents the genetic profile of breast cancer tissues 
and genes showing more than 5% variant allele frequency 
are listed. Except for BRCA1/2, TP53 was the most frequently 
mutated gene in all three groups (38/77, 49.4%), followed 
by PIK3CA (18/77, 23.4%). Variants in PIK3CA and PTEN, 
which are part of the PIK3CA/AKT/mammalian target of 
rapamycin pathway, were more prevalent in the gBRCA1/2w 
group than in the gBRCA1/2p group (PIK3CA 15.4% vs. 
25.6%, p=0.38, PTEN 7.7% vs. 18.6%, p=0.299).

As the number of gBRCA1/2v samples was small, we com-
pared genomic aberrancies in tumors from the gBRCA1/2p 
and gBRCA1/2w groups. Comparison of the two groups 
revealed that although the total number of reported SNVs 
was higher in gBRCA1/2w patients (mean, 14.81 vs. 18.86; 
p=0.278), the difference was not statistically significant. The 
total number of reported CNVs and fusions was comparable 
between the two groups (mean CNV, 5.77 vs. 5.47, p=0.343; 
fusion, 0.27 vs. 0.23, p=0.740) (S1 Table). In addition, the  
average estimated tumor mutation burden (TMB) was sig-
nificantly higher in tumor samples from gBRCA1/2w patients 
than in gBRCA1/2p patients (10.21% vs. 13.47%, p=0.017). 
TMB value showed a linear correlation with the number of 
reported SNVs with marginal significance (Pearson’s corre-
lation coefficient, 0.096; p=0.432) (Fig. 3A). However, after 

removing one outlier (S01192 SNV 130), the Pearson’s cor-
relation coefficient was 0.378 and p-value was 0.001 (Fig. 3B).

4. Homologous recombination DNA damage repair gene 
aberration in tumor NGS according to gBRCA pathogenic-
ity

Considering the significant differences in TMB value  
according to the gBRCA mutation status, homologous recom-
bination DNA damage repair (HR-DDR) genetic variants 
were analyzed further. The following were defined as HR-
DDR genes: ARID1A, ATM, ATRX, BARD1, BLM, BRCA1, 
BRCA2, BRIP1, CHEK2, FANCA, FANCD2, FANCE, FANCG, 
MRE11A, NBN, PALB2, RAD50, RAD51, and RAD51B. All 
these genes are involved in the HR-DDR pathway, as report-
ed by Heeke et al. [9]. These genes are also included in the 
K-MASTER NGS panel.

Except for BRCA1/2, the gBRCA1/2p group showed only 
a few HR-DDR genetic aberrations, whereas tumors from 
gBRCA1/2w patients harbored several aberrations (Fig. 4). 
Among HR-DDR genes, 15 of 26 gBRCA1/2p samples (57.7%) 
had exclusively BRCA1/2 aberrations. Less than 50% of the 
patients (42.3%) harbored HR-DDR gene aberrations apart 
from BRCA1/2, and only four patients (15.4%) harbored mul-
tiple non-BRCA1/2 HR-DDR gene aberrations. Tumor tissues 
harboring multiple non-BRCA1/2 HR-DDR gene aberra-
tions were more common in the gBRCA1/2w group (13/43, 
30.2%). On average, gBRCA1/2p patients had significantly 
lower numbers of non-BRCA1/2 HR-DDR gene aberrations 
per person than gBRCA1/2w patients (0.54, 1.26, p=0.008) (S2 
Table). In the gBRCA1/2w group, BRIP1 was the most fre-
quently identified HR-related gene (23%), followed by ARI-
D1A (16%) and BLM (12%). All HR-DDR mutation profiles 
are shown in S3 Table.

5. Correlation between TMB and homologous recombina-
tion deficiency gene aberrations

To determine whether HR-DDR gene aberrations affected 
DNA instability, we performed a matching analysis of TMB 
values based on the number of non-BRCA1/2 HR-DDR gene 
aberrations (S4 Fig.). Non-BRCA1/2 HR-DDR gene aberra-
tions and TMB values showed a trend of correlation, but it 
was not statistically significant (Spearman’s correlation coef-
ficient, 0.221; p=0.068). Analysis based on grouping with the 
number of non-BRCA1/2 HR-DDR gene aberrations is sum-
marized in S5 and S6 Tables.

To examine the correlation between single gene muta-
tions and TMB or SNV, we compared the average of each 
value between groups with or without specific genetic  
aberrations (S7 Table). In the analysis of TMB values with 70  
tumor samples, tumor tissue with BRCA1 mutation pre-
sented lower TMB than tumors without BRCA1 mutation 

Cancer Res Treat. 2023;55(1):155-166
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(p=0.016). Tumor samples with aberrations in BRIP1 showed 
a higher mean TMB than samples without BRIP1 mutations, 
but this difference was not statistically significant. None of 
the single gene aberrations correlated with mean SNV, pos-
sibly due to the elevated SD caused by one outlier (S01192 
SNV 130).

Discussion 

In this study, we analyzed breast cancer genomic land-
scape according to germline BRCA1/2 pathogenicity. The 
germline BRCA1/2 test using DNA extracted from blood 
samples and tumor BRCA1/2 test using tumor samples and 
NGS showed fair consistency (94.3%). Patients harboring the 
gBRCA1/2p mutation showed lower TMB values and fewer 
SNVs than patients with gBRCA1/2w. Although consider-
able differences were observed for PIK3CA and PTEN muta-
tions, these were not statistically significant. Higher number 
of genes related to homologous recombination (HR) repair 
were mutated more frequently in the gBRCA1/2w group than 
in the gBRCA1/2p group, and the differences were remark-
able when limited to non-BRCA1/2 HR-DDR genes. Moreo-
ver, the number of non-BRCA1/2 HR-DDR gene aberrations 
correlated with the number of reported SNVs.

In the current era of precision medicine, tumor NGS 
is frequently performed to identify potential therapeutic 
targets. The major goal of tissue NGS is to detect somatic  
mutations for actionable targets; however, information  
beyond somatic SNVs should also be acknowledged. Consid-
erable efforts have been undertaken to determine germline 
mutations by sequencing clinical tumor samples [10]. How-
ever, discrepancies and inaccuracies in identifying germline 
mutations using tissue NGS have been discussed continu-
ously. A previous study showed that tumor-only sequencing 

without matched normal samples could not definitively con-
firm germline aberrations, resulting in high false positivity 
[11]. Although some discrepancy is inevitable, it is proposed 
that the number of well-characterized pathogenic genes or 
their variants should be considered in tumor sequencing. 
BRCA1/2, MLH1, MSH2, and MSH6 are often included in 
cancer panels and are highly associated with inheritance of 
pathogenicity [12]. Our study revealed a high consistency 
rate (94.3%) between blood gBRCA1/2 testing and tumor tis-
sue sequencing, suggesting that it is possible to infer germline 
BRCA1/2 aberration from tumor biopsy samples in clinical 
settings. The two inconsistent cases of our study, S01005 and 
S04259, presented fair quality of NGS (mean depth 794.59, 
442.08 and on-target rate 90.83%, 95.72%). The inconsistency 
might not be due to low-quality or reference gene diversity. 
The only possibility is unknown human error in reporting, 
but clear explanation is not yet determined.

TMB is another key biomarker that can be indirectly  
inferred by clinical NGS. TMB is defined as the number of 
base alterations and indels, usually calculated by whole  
exome sequencing (WES). TMB calculation algorithms used 
in our study and their clinical efficacy were validated by 
comparing with TMB calculated by WES, which proved its 
feasibility with R2 of 0.71 [13]. Moreover, it is comprehensive 
with previous studies and demonstrated a fine correlation 
between TMB by targeted sequencing and WES (R2=0.74) 
[14,15]. Similarly, in our study, we assessed the matched  
relationship between TMB and the number of reported SNVs 
from a panel of tumor samples (Pearson’s correlation coef-
ficient, 0.378; p=0.001).

TMB has emerged as a promising biomarker in the con-
text of immuno-oncology, particularly in melanoma and 
non–small cell lung cancer [16-18]. High TMB can predict the 
clinical response to immune checkpoint inhibitors [19,20], 
but the correlation is not clear in breast cancer [21]. Approxi-
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Fig. 3.  Tumor mutation burden (TMB) measured by targeted sequencing correlated with total number of single-nucleotide variants 
(SNVs). (A) Correlation between number of SNV and TMB. (B) Correlation between number of SNV and TMB after removing one outlier.
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mately 20% of metastatic breast cancer cases demonstrate a 
high TMB [21]. In our study, 14 of 77 patients (18.2%) pre-
sented high TMB (> 16 Mb). However, the prevalence sharp-
ly increased to 27.9% (12/43) when only the gBRCA1/2 wild-
type group was assessed. Taking these findings into account, 
further translational studies may reveal whether certain ger-
mline pathogenicity is predictive of the therapeutic effect of 
immunotherapy.

Hypermutated breast cancer can be driven by multiple 
mechanisms, including homologous recombination defi-
ciency (HRD), and breast cancer with HRD has the highest 
median TMB among groups with dominant signatures [15]. 
In our study, the genes were selected for academic purposes 
and were different from those widely used commercially. 
With the limited resource and practical barriers with targeted  
sequencing, we could not clearly present HRD score. Alth-
ough their important role in HR-DDR were well acknowl-
edged in preclinical studies, genes which had not been  
included in approved commercial panel, such as ARID1A and 
NBN, should be interpreted with caution. Although BRCA1/2 
are two of the essential HR-DDR genes, our data showed 
frequent HR-DDR aberrations and higher mean TMB in the 
gBRCA1/2w group than in the gBRCA1/2p group. Previous 
studies reported contradictory results about relationship 
between germline mutation and TMB. Somatic mutation 
of BRCA1/2 was associated with higher mutation burden 
and higher TMB comparing with wild type in The Cancer  
Genome Atlas–based analysis [22,23]. However, when the 
patients were classified according to germline BRCA1/2  
mutation, differences of TMB was insignificant or even 
lower in gBRCA1/2-mutated group [24,25]. With these evi-
dences and results of our study, we can infer that germline 
pathogenic variation in BRCA1/2 might contribute less to 
TMB than variations in HRD genes in breast cancer. As with 
tremendous effort to detect HRDness in solid cancer and  
applying the results to choosing effective treatment, the role 
of TMB in breast cancer should be further evaluated. The  
results of clinical trials evaluating the efficacy of PARP inhi-
bitors in patients with HRDness are anticipated [26].

In our study, we noted more PIK3CA and PTEN mutations 
in the gBRCA1/2w group than in the gBRCA1/2m group. As 
two of the major cancer driver mutations, our findings pro-
vide an evidence for their mutual exclusiveness, consistent 
with previous studies [24,27]. A recent study also showed 
that breast cancer with altered phosphoinositide 3-kinase 
pathway harbors a significantly low rate of homologous  
recombination co-alterations [28]. In the future, we intend to 
explore the correlation between germline and somatic muta-
tions using more genomic data from a larger sample size.

In clinical settings, many of the genes known to cause  
hereditary cancer syndrome are included in most cancer pan-

els. In addition, because of convenience of its application and 
short turnaround time, NGS panels are increasingly being 
used to identify germline aberrations. Use of comprehensive 
genetic analysis based on WES and whole genome sequenc-
ing (WGS) is expected to increase as their accessibility has 
improved. These advances have expanded the possibilities 
of discovering novel germline mutations. Therefore, further 
functional genomic studies based on WES and WGS aimed 
at determining clinical implications of genetic variants and 
their effects on drug sensitivity are needed.

However, our study has several limitations. First, the sam-
ple size was too small to ensure statistical power. There had 
been number of patients who did their NGS analysis with 
blood, but they could not be included because the study 
was performed to investigate concordance rate of germline 
variants between tumor tissue and peripheral blood mono-
nuclear cell. The statistical results should be interpreted 
with caution considering selection bias and relatively low 
prevalence of gBRCA1/2 mutation in the study cohort. Some 
patients were enrolled at the early stage of breast cancer, 
whereas others were enrolled at an advanced stage, mak-
ing the total genomic profile heterogeneous. In addition, we 
could not verify the clinical significance of HR-DDR aberra-
tion or high TMB in terms of therapeutic targets or predic-
tive markers. As none of the Food and Drug Administration– 
approved PARP inhibitors are currently reimbursed for  
patients with metastatic breast cancer under the Korean nati-
onal health scheme, platinum-based chemotherapy remains 
the most affordable treatment option.

In conclusion, we herein describe the consistency between 
gBRCA1/2 status based on blood testing and tissue sequenc-
ing and the differences in genetic landscape according to 
germline BRCA1/2 gene variations. The concordance rate of 
gBRCA1/2 results by tissue NGS was 94.3%, and a significant 
difference was observed in TMB value and aberrated non-
BRCA1/2 HR-DDR genes according to germline BRCA1/2 
pathogenicity in patients with breast cancer. In the future, our 
data should be validated in a larger cohort, and the clinical 
impact on survival outcomes should be further elucidated.
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