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zures and bipolar disorders. In addition, VPA is a potent his-
tone deacetylase (HDACs) inhibitor, which is critical to cellular 
inflammatory and repair processes8). In many animal model 
studies of neurodegenerative diseases, VPA has beneficial ef-
fects in treatment of stroke, amyotrophic lateral sclerosis, spinal 
muscular atrophy, Parkinson’s disease and Alzheimer’s dis-
ease7,10,20,27,28,32,33). Recently, VPA was shown to be important for 
expression and self-renewal of hematopoietic stem cells6). We 
hypothesized that VPA can stimulate expression of NSPCs. 
Therefore, this study is intended to investigate the effects of 
VPA on NSPCs expression in a rat SCI model. 

MATERIALS AND METHODS

Animal surgery and administration of VPA
All animal experiments were performed in accordance with 

the National Institutes of Health guidelines on animal care, and 

INTRODUCTION

Spinal cord injury (SCI) can cause clinically irreversible dis-
ability and result in much comorbidity. The primary SCI is di-
rect injury from an initial mechanical trauma, and the second-
ary injury results from progressive processes that augment the 
injury resulting in a protracted period of tissue destruction1,2,29). 
These cascading injuries make recovery from SCI hard or irre-
versible. However, recent studies demonstrated that spontane-
ous neuronal regeneration can occur in rat models of SCI15,16,19). 
Existence of neural stem/progenitor cells (NSPCs) in adult 
stage was proven in adult mammals, including humans11,17). In 
particular, there were many reports that SCIs induce prolifera-
tion and expression of spinal NSPCs. These observations sug-
gest that adult NSPCs may work for neuronal regeneration in 
adult mammals following SCI. 

Valproic acid (VPA) is widely used for the treatment of sei-
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with a 1 : 2000 dilution of mouse monoclonal anti-nestin (R&D 
Systems Inc., Minneapolis, MN, USA), and rinsed for 3×10 
min in 0.1 M PB. Sections were then incubated in 0.1 M PB con-
taining 4% normal serum and 0.5% Triton X-100 for 2 hours at 
25°C on a shaker, and then in primary antiserum in 0.1 M PB 
containing 4% normal serum and 0.5% Triton X-100 for 12 
hours at 25°C. After rinsing (3×10 min) in 0.1 M PB, sections 
were incubated in a 1 : 200 dilution of biotinylated anti-mouse 
IgG (Sigma, St. Louis, MO, USA) in 0.1 M PB containing 4% 
normal serum and 0.5% Triton X-100 at 25°C for 2 hours. The 
sections were then incubated in a 1 : 50 dilution of avidin-bioti-
nylated horseradish peroxidase (Vector Laboratory) in 0.1 M 
PB for 2 hours and rinsed (3×10 min) in 0.25 M Tris. Finally, 
staining was visualized by reaction with 3, 3’-diaminobenzidine 
tetrahydrochloride (DAB) and hydrogen peroxide in 0.25 M 
Tris for 3-10 min using a DAB reagent set (Kierkegaard&Perry, 
Gaithersburg, MD, USA). All sections were rinsed in 0.1 M PB 
and mounted on Superfrost Plus slides (Fisher, Pittsburgh, PA, 
USA) and dried overnight at 37°C. The mounted sections were 
dehydrated with alcohol, cleared with xylene, and cover slipped 
with Permount mounting medium (Fisher). The labeled cells 
were identified and counted with separation of antibody at three 
tissues in each different animal. The labeled tissues were photo-
graphed using a Zeiss Axiopan microscope with high power 
DIC optics (Carl Zeiss Meditec Incorporation, Jena, Germany). 
The images were viewed on a computer monitor using a Zeiss 
Plan-Apochromat 40x objective (Carl Zeiss) and photographs 
of the central canal region and ventral side of white matter of 
left and right sides were taken with a Zeiss AxioCam HRc digi-
tal camera (Carl Zeiss). Enumeration of immune-positive cells 
used a Labworks, version 4.5, computer-assisted image analyzer 
(UVP, Upland, CA, USA).

Western blotting of SOX2
Rats in three groups were decapitated rapidly under anesthe-

sia. The thoracic spinal cord was rapidly dissected and then im-
mediately frozen in liquid nitrogen. Frozen tissue was mixed 
with RIPA buffer (25 mM Tris-Cl pH 7.6, 150 mM NaCl, 1% 
NP-40, 1% sodium deoxycholate, 0.1% SDS) containing prote-
ase inhibitor cocktail (Roche, Mannheim, Germany) and im-
mediately homogenized. The homogenate was centrifuged at 
13000 rpm for 30 min at 4°C and the supernatants were deter-
mined using the BCA protein assay (Sigma, St. Louis, MO, USA). 
Proteins were separated by 10% SDS-PAGE gel and transferred 
to a nitrocellulose membrane. After incubation in a blocking 
solution of 5% non-fat dry milk in Tris-buffered saline contain-
ing 0.1% Tween-20 for 1 h at room temperature. The mem-
brane was incubated with a 1 : 1000 dilution of mouse mono-
clonal anti-SOX2 (cell signaling) and mouse monoclonal anti-
β-actin (Sigma-Aldrich), and overnight at 4°C, and then with a 
horseradish peroxidase (HRP)-conjugated secondary antibody 
for 1 h at room temperature. The proteins were detected with 
chemiluminescence reagents. Immune-positive bands used an 

were approved by the Institutional Animal Care Committee. 
All efforts were made to minimize the number of animals used 
and animal suffering. Adult male Sprague-Dawley rats (n=30) 
weighing 290-310 grams (Samtako Bio, Osan, Korea) were ran-
domly and blindly allocated into three groups. In group 1 (sham, 
n=8), laminectomy was performed. In group 2 (SCI-VPA, n=11), 
the animals received a dose of 200 mg/kg of VPA (Sigma-Al-
drich, St. Louis, MO, USA). In group 3 (SCI-saline, n=11), ani-
mals received 1.0 mL of the saline vehicle solution. Rats were 
anesthetized intraperitoneally with a mixture of xylazine (10 
mg/kg) and ketamine (60 mg/kg). After laminectomy at T9, the 
extradural plane between the dura and adjacent vertebrae was 
carefully dissected. A modified aneurysm clip with a closing 
force of 30 grams (Aesculap, Tuttlingen, Germany) was held in 
an applicator in the open position. The clip was rapidly released 
from the applicator and applied vertically onto the exposed spi-
nal cord for a 2-minute compression. For the sham controls the 
same surgical procedure was followed, but clip compression 
was not applied. After surgery, the muscle, fascia, and skin were 
sutured using a 4-0 silk suture. Rectal temperature was main-
tained at 37.0±0.5°C by a thermostatically-regulated heating 
pad during surgery, and during recovery, animals were placed 
overnight in a temperature and humidity controlled chamber. 
To reduce post-surgery isolation-induced stress, rats were housed 
in pairs at an ambient temperature of 22-25°C in an alternating 
12-hour light/dark cycle. Bladders were manually emptied twice 
daily until spontaneous voiding occurred. At three days after 
surgery, we checked functional deficit using the open locomo-
tor rating scale by Basso, Beattie, and Bresnahan (the BBB score)3). 
All rats showed 4 or 5 BBB score, indicating proper cord damage 
in SCI model. A dose of 200 mg/kg of VPA or normal saline as a 
vehicle control was intraperitoneally injected twice daily at 12 
hours intervals for 7 days. The total daily VPA dose of 400 mg/
kg/day was similar to doses used in previous studies9,34). To eval-
uate histological changes, the animals were sacrificed and the 
spinal cords were collected 1 week after SCI. For immunohisto-
chemistry analysis, samples were prepared from the sham group 
(n=5), SCI-saline group (n=7), and SCI-VPA group (n=7). Sam-
ples for western blotting analysis were prepared from rats in the 
three groups (group 1=3 rats, group 2, 3=4 rats).

Immunohistochemistry of nestin 
Rats were deeply anesthetized by an intraperitoneal injection 

of ketamine and were perfused intracardially with 4% parafor-
maldehyde in 0.1 M sodium phosphate buffer (PB, pH=7.4). 
The thoracic spinal cord was excised, postfixed for 24 hours, 
and maintained overnight in 30% sucrose in 0.1 M PB. Spinal 
cord tissues were sectioned at a thickness of 30 μm on a cryo-
stat, and sections were floated on the surface of 0.1 M PB. A 5 
and 6 mm section rostral to the center of injury was selected. 
To detect nestin (marker for neural stem cell), spinal cord sec-
tions were blocked with 4% normal serum in 0.5% Triton X-100 
for 1 hour at room temperature and incubated overnight at 4°C 
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sites of the spinal cord based on methods from Sibuya et al.32). 
One site is the white matter of ventral side and the other is the 
ependyma of central canal in a cross-section of spinal cord. We 
used ANOVA analysis for confirmation of density areas of nestin. 

In the white matter of ventral side, nestin immunoreactivity 
was almost undetectable in the sham group (Fig. 1A, D). SCI 
groups showed remarkable nestin immunoreactivity compared 
with sham group. In the SCI-saline group, nestin immunoreac-
tivity extended in arboroid processes from the pial surface to-
ward the spinal cord center (Fig. 1B, E).  In the SCI-VPA group, 
nestin immunoreactivity was much stronger than in SCI-saline 
group (Fig. 1C, F). Density areas of nestin expression in the 
white matter of ventral side differed significantly between the 
SCI and sham group (Fig. 2). The SCI group showed significant-
ly large density area compared with sham group and within SCI 
groups, the SCI-VPA group had a much larger density area of 
nestin than the SCI-saline group. 

In the ependyma of the central canal, nestin immunoreactivi-
ty also was strongest in the SCI-VPA group (Fig. 3C). In sham 
group, nestin immunoreactivity was observed in some cells (Fig. 
3A). SCI groups had significant nestin immunoreactivity com-
pared to the sham group and extended in processes from the 
whole ependymal area (Fig. 3B, C). The density areas of nestin 
expression in the ependyma of the central canal were similar to 
the white matter of ventral side. The SCI groups had significant-
ly large density areas of nestin compared to the sham group, 
and SCI-VPA group had a much larger density area of nestin 
than SCI-saline group (Fig. 4). 

To sum up, VPA increased expression of nestin, a marker for 
NSPCs, in the white matter of the ventral side and ependyma of 
the central canal.

image J, version 1.46r, computer-assisted image analyzer (Na-
tional Institutes of Health, USA).

Statistical analysis
All statistical comparisons were computed using SPSS 17.0 

(SPSS, Inc., an IBM Company, Chicago, IL, USA). Data are ex-
pressed as mean±standard error of the mean. Repeated mea-
sure ANOVA was used to compare groups. Null hypotheses of 
no difference were rejected if p-values were less than 0.05.

RESULTS

Nestin expression in SCI
We analyzed the nestin immunoreactivity from two different 
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Fig. 1. Nestin expression in the white matter of spinal cord 1week after surgery at 5-mm rostral region to injury. A and D : Sham group-operated. B 
and E : SCI-saline group operated. C and F : SCI-VPA group operated. Scale bar=500 μm (A, B and C) and 50 μm (D, E and F). SCI : spinal cord injury, 
VPA : valproic acid.
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Fig. 2. Density areas of nestin expression (μm2) in the white matter of 
ventral side in a cross section of spinal cord 1 week after surgery at 
5-mm rostral region to injury (**p<0.05). SCI : spinal cord injury, VPA : 
valproic acid.
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pression increased time-dependently, and peaked in the 5-mm 
rostral region to the injury center at 1 week after SCI30). SOX2, 
sex-determining region Y-box 2, is a transcription factor that is 
essential for regulation of self-renewal and potency of embry-

SOX2 analysis in SCI
SOX2 was detectable in SCI groups and undetectable in sham 

group. Besides, in SCI groups, VPA significantly increased the 
SOX2 positive band than in the SCI-saline group (Fig. 5). This 
difference was confirmed by ANOVA analysis. SOX2 protein 
levels were highest in SCI-VPA group, followed by SCI-saline 
(Fig. 6). 

DISCUSSION

Recovery from SCI is a major goal of neurosurgeons. Early de-
compressive surgery or high-dose steroid therapy, while long-
standing treatments of choice, do not provide recovery from 
critical sequelae after SCI. Efforts to minimize secondary injury 
of SCI have included drug management as a neuroprotective ef-
fect in many recent studies, including minocycline, erythropoi-
etin, and Nogo-66 receptor antagonist13,23,24). VPA also was in-
vestigated35). These drugs are efficacious for minimizing scarring 
and cavitation caused by SCI13,23,24,35). However, the so-called 
“neuroprotective effect” was not enough for radical manage-
ment of SCI. The ultimate goal of management for SCI is regen-
eration of injured neural tissues, so numerous studies of neural 
stem cell therapy have been reported. 

Embryonic stem cells are pluripotent and self-replicating. 
Transplantation of human embryonic stem cells to injured rat 
spinal cord could result in recovery26). Despite several limita-
tions to be overcome, including differentiation to purified neu-
ral cell type5,18,26) and teratoma formation4), human embryonic 
stem cell therapy is an attractive method for recovery from SCI. 
This strategy has been recently validated21). The existence of 
NSPCs at the embryonic stage and at the adult stage is already 
proven11,17). Reported adult NSPCs so far are the ependymal cells 
and subependymal cells of the cerebral ventricles and glial fi-
brillary acidic protein-positive cells in the subventricular zone. 
Interestingly, SCI induces expression of NSPCs and this phe-
nomenon may be associated with neuronal repair and regener-
ation after SCI30).

Various markers for NSPCs are reported, and among these we 
used nestin and SOX2. Nestin, an intermediate filament protein, 
is a widely employed marker of multipotent neural stem cells in 
adult CNS. In an experiment on an SCI rat model, nestin ex-

A B C
Fig. 3. Nestin expression in the ependyma of central canal 1 week after surgery at 5-mm rostral region to injury. A : Sham group-operated. B : SCI-
saline group operated. C : SCI-VPA group operated. SCI : spinal cord injury, VPA : valproic acid.
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Fig. 4. Density areas of nestin expression (μm2) in the ependyma of cen-
tral canal 1 week after surgery at 5-mm rostral region to injury 
(**p<0.05). SCI : spinal cord injury, VPA : valproic acid.

Fig. 6. SOX2 protein levels relative to sham group (*p<0.1, **p<0.05).

Fig. 5. Western blot band of SOX2 and β-catenin. SCI : spinal cord injury, 
VPA : valproic acid.
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NSPCs were already proved in the spinal cord by a previous 
study30), we would suggest one hypothesis : a higher proportion 
of assignment for NSPCs expression may at increased prolifera-
tion of endogenous NSPCs more than at decreased migration 
of NSPCs by VPA in the case of SCI.  

There is no previous in vivo study about the VPA effect on 
migration of NSPCs to the injury site. In a future study, we have 
to launch an in vivo SCI model study using VPA for investiga-
tion of the effect on migration of NSPCs. 

CONCLUSION

In our study, nestin and SOX2 as markers for NSPCs showed 
increased expression in the SCI-VPA group in comparison with 
the SCI-saline group. This result indicates that VPA increases 
expression of spinal NSPCs in SCI. In future research, we should 
evaluate the GSK3β signaling pathway in spinal cord and phe-
nomenon between proliferation and differentiation of NSPCs 
in SCI and launch an in vivo SCI model study using VPA for in-
vestigation of the effect on migration of NSPCs.
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