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Objective : To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative 
adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images.
Methods : GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image 
slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and 
MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images 
were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two 
experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative 
analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR).
Results : The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification 
of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels 
(mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB).
Conclusion : This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 
280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm 
of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs 
will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed 
involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.
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INTRODUCTION

Recently, remarkable advances in artificial intelligence (AI), 

especially deep learning, have been allowed the technology to 

be applied in medical image analysis. For example, convolu-

tion neural network (CNN), a class of deep learning algo-

rithm, have shown remarkable performance in the classifica-

tion of lesions on medical images4,7,13). Besides CNN, various 

other deep learning algorithms have been developed, and ap-

plied in the same context. Generative adversarial networks 

(GANs), which were introduced by Ian Goodfellow, have pro-

duced especially realistic images5). GANs have been used to 

synthesize positron emission tomography (PET) images from 

computed tomography (CT) images2). A study also has been 

reported to synthesize CT images from magnetic resonance 

(MR) images using GANs12).

MR images and CT images are very important in the evalu-

ation of lumbar spine diseases. In particular, CT scans are fast 

and suitable for bony structure analysis. However, they cannot 

distinguish soft tissues well. Conversely, MR scans are suitable 

for soft tissue evaluation, although they are sometimes con-

traindicated, such as in patients with claustrophobia or pace-

makers. Moreover, MR scans are more expensive and require 

more time than CT scans.

Objective of the present study was to synthesize lumbar 

spine MR images from lumbar spine CT images using GANs. 

And, the similarities between synthesized and real MR images 

were quantitatively and qualitatively evaluated to confirm the 

feasibility of using this method in a clinical practice.

MATERIALS AND METHODS

GANs
GANs can learn the way to synthesize MR images from CT 

images using mapping (G : ICT → IMR). The generator network, 

(G), is trained to generate realistic synthetic MR images that 

cannot be distinguished from “real” MR images by an adver-

sarially trained discriminate network, D, which is trained to 

do as well as possible at detecting the generator’s “generated” 

(Fig. 1).

Objective
We applied adversarial losses to the generator network and 

its discriminator. The objective could be expressed as follows :

LGAN (G, D) = �EICT, IMR - Pdata (ICT,IMR) [log D (ICT, IMR)] + EICT~Pdata (ICT ) 
[log (1 - D (ICT, G(ICT )))]

Fig. 1. Flow diagram of the deep generative adversarial networks (GANs). CT : computed tomography, MR : magnetic resonance.
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whereby G tries to translate an ICT image to a G(ICT) image 

that looks similar to an image from the MR image domain. 

The discriminator D tries to discriminate between the real 

and synthesized pairs that provide ICT with synthesized MR 

image in the equation. The generator network G tries to mini-

mize this objective against an adversarial D that tries to maxi-

mize it, i.e., G*= argmingmaxDLGAN (G,D).
Previous approaches have found it beneficial to combine the 

adversarial loss with a more traditional loss, such as L1 dis-

tance14). For the paired data (ICT, IMR), the generator network G 

is tasked to not only generate realistic MR images, but also to 

be near the reference IMR of the input ICT. The L1 loss term for 

the G was :

LL1(G) = EICT,IMR~Pdata (ICT, IMR) [‖IMR-G(ICT)‖1]

The overall objective was :

G* = argG
min max

D LGAN (G,D) + λLL1(G)

Fig. 2. Selecting the MR axial image corresponding to the CT image. Top : the axial planes of the sagittal MR and CT were parallel. Axial images at this 
disc level were included. Bottom : the axial plane of the sagittal MR and CT images were not parallel. This paired images were excluded. CT : computed 
tomography, MR : magnetic resonance.
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whereby λ control the relative importance of adversarial 

loss and voxel-wise loss.

Pairing and preprocessing of CT and MR images
After obtaining approval from Institutional Review Board 

of Pusan National University Hospital (1808-008-069), we 

collected CT and MR images from each patient who had un-

dergone lumbar spine CT and MR scans within three days of 

each other. The CT scans were acquired on a 16-slice CT scan-

ner (Revolution CT; GE Healthcare, Milwaukee, WI, USA). 

The MR images were acquired on a 1.5T MR scanner (Avanto; 

Siemens, Erlangen, Germany) and a 3T MR scanner (Skyra; 

Siemens). We then excluded CT and MR images of severe 

lumbar spine pathologies, such as tumor, infection or fracture, 

although we included images of degenerative disease. Among 

the MR images, magnetic resonance T2 weighted axial 

(MRT2) images were collected. Because this was a preliminary 

study to confirm the feasibility of GANs, only one type of MR 

sequence was selected. Among the CT and MRT2 images, we 

selected axial images that were parallel to the endplate of ver-

tebral body and passed through the middle of the interverte-

bral disc. CT and MRT2 pairs that had different axes were ex-

cluded (Fig. 2). Two neurosurgeons selected CT and MRT2 

images. To ensure efficient training, we augmented the train-

ing images. All images were adjusted in 256-grayscale. All real 

CT and MR images were cropped using following method. 

Horizontally, the image is cut parallel at the most ventral part 

of the lumbar vertebral body. It was then cut in the dorsal di-

rection from the center of the thecal sac to the ventral end of 

the vertebral body. Finally, it was cut vertically by the same 

length at the center of the thecal sac. The range within which 

both lateral sides of the vertebral body can be seen was mea-

sured in all images (Fig. 3).

We obtained and reviewed lumbar spine CT and MR imag-

es performed at our hospital in 2017. Images conforming to 

the conditions mentioned above were confirmed in 129 pa-

tients (66 men, 63 women). The mean age of these patients 

was 61 years (range, 23–85). On average, 2.29 pairs of images 

Fig. 3. Range of image cropping. Horizontally, the image was cut parallel at the most ventral part of the lumbar vertebral body. It was then cut in the 
dorsal direction from the center of thecal sac to the ventral end of the vertebral body (left side). Finally, it was cut vertically by the same length at the 
center of thecal sac (right side). The range within which both lateral sides of the vertebral body could be seen in all images was measured. This range 
was then applied to all images. 
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(range, one to five pairs) were used per patient. A total 280 

pairs of images were used as training data. Our algorithm 

then generated synthetic MRT2 images from 15 CT images 

other than the training images.

Implementation
To create the generator network G, we used the architecture 

described by Johnson et al.10), which is a 2D fully-convolution-

al network consisting of one convolutional layer followed by 

two strided convolutional layers, nine residual blocks, two 

fractionally-strided convolutional layers, and one last convo-

lutional layer6). Instance normalization and ReLU followed all 

but the last convolution15). The synthesis network took a 256×

256 input and generated an output image of the same size. For 

the discriminators D, we adapted PatchGANs, which classifies 

each N×N patch in an image as either real or fake8). In this 

way, the discriminators could focus better on high-frequency 

information in local image patches. Network D used two con-

volutions and five strided convolutions. Except for the first 

and last convolution, each convolutional layer was followed by 

instance normalization and leaky ReLu15,17). To optimize our 

networks, we used mini-batch stochastic gradient descent and 

applied the Adam optimizer with a batch size of 111). The 

learning rate started at 2e-4 for the first 1e5 iterations, and a de-

cayed linearly to zero over the next 2e5 iterations. For all ex-

periments, we set λ=10 empirically. At inference time, we ran 

the generator network G only to give a CT image.

The proposed approach training took about 20 hours for 2e5 

iterations using a single GeForce GTX 1080Ti GPU. At infer-

ence time, the system required 35 ms to synthesize a single-

slice CT image to MR image.

Quantitative analysis
Real and synthesized MRT2 images were compared using 

the mean absolute error (MAE) :

MAE = 
 1
N

 
N-1

∑
i=0

 ||IMR(i) - SynMR(ICT(i))||

where i is the index of the 2D axial image slice in aligned 

voxels, and N is the number of slices in the reference MRT2 

images. The MAE measures the average distance between 

each pixel of the synthesized and the real MRT2 images. In 

addition, the synthesized MRT2 images were evaluated using 

the peak signal-to-noise ratio (PSNR) : 

PSNR = 10∙log10( MAX2

MSE )

MSE = 1
N

 
N-1

∑
i=0

(IMR(i) - SynMR(ICT(i)))2

where MAX=25512). PSNR measures the ratio between the 

maximum possible intensity value and the mean square error 

(MSE) of the synthesized and real MRT2 images. Smaller MSE 

values indicate more similarity between the two images. If 

there is no difference between two images, the MSE value is 0 

and the PSNR value becomes infinite. In general, if the PSNR 

values >30 dB indicate that no differences can be distin-

guished by the human eye18).

Fig. 4. Qualitative comparison between synthetic MR and real MR images. Questionnaires were given to six medical doctors (two radiologists, two 
spine surgeons, and two neurosurgical residents) who had not seen synthetic MR images before. They were asked to select the real MR image. CT : 
computed tomography, MR : magnetic resonance.
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Fig. 5. Evaluation of the similarities between synthetic MR and real MR images by radiologists. The similarity of each structure showed in spine CT and 
MR images was evaluated in terms of percentile by two radiologists. CT : computed tomography, MR : magnetic resonance.
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Fig. 6. All CT scans (CT01–CT15) to generate the synthetic magnetic resonance T2 weighted axial (MRT2) images were listed. The left side shows the CT 
scans, the middle displays the synthetic MRT2 images, and the right side comprises the real MRT2 images. CT : computed tomography.
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Qualitative analysis
We made questionnaires showing synthetic and real MRT2 

images corresponding to spine CT (Fig. 4). Six medical doc-

tors who had never seen synthetic MRT2 images completed 

these questionnaires : two musculoskeletal radiologists, a se-

nior spine surgeon, a junior spine surgeon, and two 4th-year 

neurosurgical residents. One of the radiologists and a senior 

spine surgeon had more than 15 years of experience. Other ra-

diologists and a junior spine surgeon had about five years of 

experience. We then made another questionnaire to evaluate 

the similarity of each structure in the spine CT scans (Fig. 5). 

The following features were subdivided : disc signal, degree of 

disc protrusion, muscle, fat tissue, facet joint signal, degree of 

stenosis, thecal sac, bone, and overall similarity. The synthetic 

and real MRT2 images corresponding to the spine CT scan 

were shown simultaneously. Two radiologists then measured 

the similarity between the two MRT2 images as a percentage.

RESULTS

All CT images, the synthetic MRT2 images, and the real 

MRT2 images were shown in Fig. 6. The MAE values between 

the synthesized and real spine MRT2 images ranged from 

13.74 to 34.24 pixels (Fig. 7). The PSNR value of all paired MR 

images were found to over 30 dB. Table 1 shows the MAE and 

PSNR values of each case.

Fig. 7. Examples of MAE between the real and synthesized MR images. MAE : mean absolute error, SynMR : synthetic magnetic resonance image, IMR : real 
magnetic resonance image, MR : magnetic resonance.
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Table 1. Quantitative evaluation with MAE and PSNR

MAE PSNR

CT01 34.2438 62.19011

CT02 16.17634 66.29696

CT03 23.92239 63.87309

CT04 13.74883 68.16079

CT05 21.08447 64.35221

CT06 24.9148 64.08604

CT07 18.20002 65.42336

CT08 26.93308 62.8914

CT09 19.16938 64.81556

CT10 14.6635 67.66655

CT11 23.86057 64.74725

CT12 28.89516 61.95778

CT13 16.32125 66.3896

CT14 18.26298 64.31207

CT15 17.50098 66.67446

Mean±SD 21.19317±5.814048 64.92248±1.857414

MAE : mean absolute error, PSNR : peak signal-to-noise ratio, CT : computed 
tomography, SD : standard deviation
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Table 2. Results of selection between real and synthetic MR images corresponding to spinal CT images

Radiologist01 Radiologist02
Senior spine 

surgeon
Junior spine 

surgeon
Resident 01 Resident 02

No. of  
synthetic MR 

selection

CT01 R R R R R R 0

CT02 R R R S R R 1

CT03 R R R R R R 0

CT04 R R R R R R 0

CT05 R R R R R R 0

CT06 R R R R R R 0

CT07 R R R R R S 1

CT08 R R R S R R 1

CT09 R R R S R R 1

CT10 R R R R R R 0

CT11 R R R S R R 1

CT12 R R R S R S 2

CT13 R R R R R S 1

CT14 R R R S R S 2

CT15 S R R R S S 3

The rate of failure to 
choose real MR (%)

6.7 (1/15) 0 (0/15) 0 (0/15) 40 (6/15) 6.7 (1/15) 33.3 (5/15)

MR : magnetic resonance, CT : computed tomography, R : real MR image; S : synthetic MR image

Table 3. Similarity between real and synthetic MR images analyzed by expert radiologists (similarities are listed in rad01–rad02 order)

Disc signal 
(%)

Disc 
protrusion 

(%)
Muscle (%)

Fat tissue 
(%)

Facet joints 
(%)

Degree of 
stenosis (%)

Thecal sac 
(%)

Bone (%) Overall (%)

CT01 90–70 95–80 95–90 90–90 90–70 90–80 85–80 90–70 90–80

CT02 80–80 95–80 80–80 90–90 80–80 90–90 90–80 80–80 85–85

CT03 80–70 80–30 75–90 80–90 80–80 75–30 75–50 90–80 80–69

CT04 70–70 95–60 85–90 90–100 80–80 95–60 95–40 90–90 90–75

CT05 80–60 90–70 90–90 90–90 85–70 95–80 90–80 90–50 90–70

CT06 80–70 90–60 90–90 95–40 80–70 90–80 85–80 90–70 85–70

CT07 80–80 80–90 90–70 75–50 80–80 90–80 85–60 80–80 80–75

CT08 85–70 90–40 95–90 95–80 90–80 90–70 90–60 90–80 90–70

CT09 90–70 85–80 85–90 95–90 90–80 90–80 85–80 90–80 85–80

CT10 80–40 95–60 95–90 95–90 85–80 95–40 90–40 90–80 90–65

CT11 75–80 85–90 90–80 90–90 90–50 80–70 80–50 90–50 80–75

CT12 75–80 95–80 95–90 95–90 90–70 90–80 85–80 90–70 90–80

CT13 90–80 85–80 95–90 90–90 90–70 90–80 85–70 90–70 90–80

CT14 75–60 95–90 80–90 90–80 80–80 90–90 85–80 90–80 80–80

CT15 75–80 90–80 85–80 90–80 80–80 90–90 85–80 90–80 85–80

Mean 79.6–70.7 89.3–70.7 87.9–86.4 90–82.1 84.3–75 89.3–72.9 86.1–66.4 88.6–74.3 85.7–74.6

MR : magnetic resonance, CT : computed tomography, rad01 : the first expert radiologist, rad02 : the second expert radiologist
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In questionnaire to distinguish the real from the synthe-

sized MRT2 image, the rates at which the synthetic image was 

chosen ranged from 0 % to 40 % (Table 2). The CT15 was the 

most frequently chosen case for the synthetic MRT2 image, 

even though the MAE of CT15 was 17.5 pixels, which was not 

the lowest.

The average overall similarity measured by the two radiologists 

was 80.2 % (Table 3). Image CT03 had the lowest overall similari-

ty, while images CT01, CT02, CT12, and CT13 had highest over-

all similarity. Among all features, those with the highest similarity 

were muscle (87.5±6.3%) and fat tissue (86.3±12.5%), while disc 

signal (75.5±10%) and thecal sac (76.7±14.9%) had the lowest av-

erage similarity.

DISCUSSION
 

GANs are an emerging AI-based unsupervised learning 

technique that involves a pair of networks in competition with 

each other. Since their introduction in 2014, GANs have been 

applied in various areas, mainly image classification and re-

gression of image, image synthesis, image-to-image transla-

tion, and super-resolution3). In the present study, we applied 

GANs to image synthesis and showed that synthetic systems 

can be trained, using paired data, to synthesize MRT2 images 

from CT scan. The approach utilized adversarial loss from a 

discriminator network, as well as voxel loss based on paired 

data, to synthesize realistic MR images. Quantitative evalua-

tion showed that the synthesized MRT2 images were close ap-

proximations of the reference MRT2 image, achieving a PSNR 

>30 dB (Table 1).

In previous studies related to GANs, authors have used 

GANs to convert MR to CT images, or CT to PET imag-

es2,12,16). In particular, PET image synthesis can improve the 

accuracy of PET-based computer-aided diagnosis systems2). 

Studies converting MR to CT have reported that such tech-

niques can prevent radiation exposure during CT scanning, as 

well as save the costs and time associated with additional im-

aging12,16). In the same studies, the synthetic images created 

using GANs were very similar to real images2,9,12,16). However, 

these results were obtained from quantitative analysis only; no 

qualitative analysis was carried out by clinicians or radiologist. 

In the present study, although the synthetic MRT2 images 

were quantitatively similar to the real MRT2 images, medical 

expert could not be deceived at all times. Although the MR 

images misrecognition rates of the neurosurgical resident and 

junior spine surgeon were relatively high, they did not exceed 

50%.

The results of both quantitative and qualitative analysis dif-

fered between the synthetic MR and real MR images. A low 

MAE and high PSNR indicate quantitative similarity. Thus, 

cases CT04 and CT10 were the most similar. However, in the 

qualitative analysis, none of the six doctors misinterpreted 

these two cases as real MR images at all. The overall similarity 

was not rated as high by the radiologists either. In the qualita-

tive analysis by physicians, CT15, CT12, and CT14 were mis-

interpreted as real MR images more frequently, while CT01, 

CT02, CT12, and CT13 had the highest similarity. Therefore, 

CT12 had the highest similarity in the qualitative analysis, but 

the second lowest in the quantitative analysis. As such, the 

qualitative and quantitative analyzes were discrepant. It fol-

lows that image conversion by AI should not be evaluated us-

ing quantitative methods only.

The structural similarity of each lumbar vertebrae between 

the CT and MR images, as measured by two radiologist, 

ranged from 40% to 100%. The features with the highest sim-

ilarity were muscle and fat tissue, while the disc signal and 

thecal sac showed the least similarity between the synthesized 

and real images. These factors may have caused the difference 

between quantitative and qualitative similarity. In the MRT2 

axial image, the area occupied by the paraspinal muscle was 

large, but that occupied by the thecal sac was small. In addi-

tion, the muscle has a simple structure, so the calculated 

quantitative similarity wound have been high. In contrast, 

neural structures and ligaments occupied a small area and 

thus wound not have contributed much to quantitative simi-

larity. However, the radiologists focused more on these struc-

tures in the lumbar spine MRT2 images and may therefore 

have perceived a high qualitative difference, despite of the 

high quantitative similarity.

Because this was a preliminary study, there were some limi-

tations. Firstly, no standard or criteria were used in the quali-

tative analysis. No previous research has evaluated similarity 

by comparing synthesized medical images to actual images. 

Thus, we devised these criteria ourselves; as such, they have 

not been verified. Future studies must establish criteria for 

similarity, and analysis by more radiologists is needed. Sec-

ondly, no severe pathologies were included in the images used 
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for training or synthesis in the present study. Only relatively 

normal or simple degenerative lesions were included. Finally, 

only MRT2 axial images at disc level were synthesized because 

1) in the case of degenerative diseases of lumbar spine, more 

information can be obtained from T2-weighted than T1-

weighted images; 2) many degenerative diseases, such as spinal 

stenosis or disc protrusion, are visible at the disc level; and 

3) among sagittal and coronal images it is difficult to find 

paired images because lordosis differs among individual shots. 

Thus, sagittal or coronal images must be reconstructed from 

synthetic axial MR images when required.

In the present study, the minimum overall average qualita-

tive similarity measured by radiologists was 74.6%, while the 

maximum was 85.7%. These values are not satisfactory. Thus, 

synthetic MR images cannot completely replace actual MR 

images in the usual clinical practice. In particular, diseases 

with very low incidence, such as spinal tumors, may have a 

low similarity in synthetic MR images because of few num-

bers of training images1). Moreover, diagnosis or deciding 

treatment plan with synthetic images alone will lead to legal 

disputes. However, in special clinical conditions that CT scan 

is possible but MR scan is not possible, these synthetic MR 

images may increase the diagnostic usefulness of CT images. 

Since these were based on a relatively small dataset and had 

high quantitative similarity, they warrant further study in-

cluding a large dataset, various pathologies, and other MR se-

quences of the lumbar spine.

CONCLUSION

This was the first study to apply GANs to synthesize spine 

MR images from CT images. Despite a small dataset of 280, 

the synthetic MR images were relatively well implemented. 

Synthetic medical imaging using GANs is a new AI paradigm 

in medical imaging. MR image synthesis using this method 

may improve the diagnostic usefulness of CT. To inform clini-

cal applications, further studies are needed that involve large 

data sets, various pathologies, and other MR sequences of the 

lumbar spine.
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