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Background: As a side effect of interscalene brachial plexus block (ISBPB), stellate gangli-
on block (SGB) causes reductions in pupil size (Horner’s syndrome) and cardiac sympa-
thetic nervous activity (CSNA). Reduced CSNA is associated with hemodynamic instabili-
ty when patients are seated. Therefore, instantaneous measurements of CSNA are import-
ant in seated patients presenting with Horner’s syndrome. However, there are no effective
tools to measure real-time CSNA intraoperatively. To evaluate the usefulness of pupillom-
etry in measuring CSNA, we investigated the relationship between pupil size and CSNA.
Methods: Forty-two patients undergoing right arthroscopic shoulder surgery under ISB-
PB were analyzed. Pupil diameters were measured at 30 Hz for 2 s using a portable pupil-
lometer. Bilateral pupil diameters and CSNA (natural-log-transformed low-frequency
power [0.04-0.15 Hz] of heart rate variability [InLF]) were measured before ISBPB
(pre-ISBPB) and 15 min after transition to the sitting position following ISBPB (post-sit-
ting). Changes in the pupil diameter ([right pupil diameter for post-sitting — left pupil di-
ameter for post-sitting] — [right pupil diameter for pre-ISBPB - left pupil diameter for
pre-ISBPB]) and CSNA (InLF for post-sitting — InLF for pre-ISBPB) were calculated.
Results: Forty-one patients (97.6%) developed Horner’s syndrome. Right pupil diameter
and InLF significantly decreased upon transition to sitting after ISBPB. In the linear regres-
sion model (R* = 0.242, P = 0.001), a one-unit decrease (1 mm) in the extent of changes in
the pupil diameter reduced the extent of changes in InLF by 0.659 In(ms’/Hz) (95% CI
[0.090, 1.228]).

Conclusions: Pupillometry is a useful tool to measure changes in CSNA after the transi-
tion to sitting following ISBPB.

Keywords: Arthroscopy; Brachial plexus block; Heart rate; Linear models; Pupil; Shoul-
der; Sitting position; Stellate ganglion; Sympathetic nervous system.

Introduction

Interscalene brachial plexus block (ISBPB) has been widely used for surgical anesthesia

in patients undergoing arthroscopic shoulder surgery [1,2]. However, ISBPB is not with-
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out side effects. Local anesthetic placed into the interscalene
groove spills out of the groove and spreads along the prevertebral
fascia toward the ipsilateral stellate ganglion [3]. Local anesthet-
ic-induced stellate ganglion block (SGB) inhibits the oculosympa-
thetic pathway, resulting in miosis of the ipsilateral pupil (Horner’s
syndrome). Given that the stellate ganglion synapses with cardiac
sympathetic postganglionic fibers [4], SGB also reduces cardiac
sympathetic nervous activity (CSNA). Therefore, SGB has been
used as one of the methods for cardiac sympathetic denervation
to treat medically refractory arrhythmias driven by enhanced
CSNA, such as refractory ventricular arrhythmia, long QT syn-
drome, and inappropriate sinus tachycardia [5-7]. Usually, ar-
throscopic shoulder surgery is performed with patients seated be-
cause the sitting position provides excellent intra-articular visual-
ization, reduces intraoperative blood loss, decreases the incidence
of traction neuropathy, and facilitates the conversion to an open
procedure [8]. However, after a right SGB, the CSNA does not in-
crease with positional changes from supine to sitting [9] or during
head-up tilt [10], unlike normal physiologic conditions where a
transition to sitting enhances sympathetic nervous activity (SNA)
[9] to compensate for a reduction in the venous return to the
heart [11]. Occasionally, a right SGB leads to cardiac arrest during
a head-up tilt test [12]. Therefore, the measurement of CSNA is
important after the transition to the sitting position when patients
present with Horner’s syndrome after ISBPB. However, measure-
ment of CSNA using conventional methods is impractical in in-
traoperative settings [13]. Alternatively, heart rate variability
(HRV) is feasible to measure the autonomic nervous activity con-
fined to the heart. Despite the unreliability of the low-frequency
power (LF) of HRV, which is reported to represent cardiac auto-
nomic outflow by baroreflexes rather than CSNA [14] and is sig-
nificantly affected by heart rate [15], LF performs well to reflect
changes in CSNA in response to a postural change maneuver or
head-up tilt test, which consistently increases SNA [16,17]. Hence,
LF is assumed to reliably represent CSNA in seated patients re-
ceiving arthroscopic shoulder surgery under ISBPB, similar to
subjects undergoing a postural change maneuver or head-up tilt
test, because they share the same physiological conditions (re-
duced venous return to the heart). However, the accurate calcula-
tion of LF requires a 4-minute-long electrocardiogram (ECG)
waveform [18], so it cannot provide instantaneous information
about CSNA. In addition, an ECG waveform is prone to artifacts
from movement or electrocauterization, which require manual
processing to remove, thereby preventing the automatic calcula-
tion of HRV parameters.

Pupil size is controlled by the interplay of the iris sphincter and

dilator muscles, which are innervated by the parasympathetic and
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sympathetic nervous systems, respectively. Therefore, pupillome-
try is useful to evaluate autonomic nervous activity. Recently, ow-
ing to its easy applicability and low cost, pupillometry has been
proposed as an alternative method for the assessment of cardiac
autonomic nervous activity [19,20] after a significant correlation
was found between pupil size and LF at rest in healthy subjects
[21,22], during exercise in athletes [20], and during exercise in
patients undergoing hemodialysis [19]. In particular, the mea-
surement of pupil size would be useful to assess CSNA in patients
receiving SGB to treat atrial fibrillation that prevents the analysis
of HRV [23].

However, the relationship between the changes in pupil size and
CSNA has not been investigated after transitioning to the sitting
position under the influence of ISBPB-induced SGB. Therefore,
the usefulness of pupillometry remains unclear for seated patients
with ISBPB-induced SGB. In this study, we measured the pupil
size and autonomic nervous activity (HRV parameters) of patients
in the seated position after ISBPB to test the hypothesis that
changes in pupil size are correlated with changes in CSNA before
ISBPB and after the transition to sitting following ISBPB.

Materials and Methods

The protocol of this observational study was approved by the
Institutional Review Board of Daegu Catholic University Medical
Center (IRB no. CR-18-052). Written informed consent was ob-
tained from all patients during their preoperative visits to the out-
patient department. The study followed the Good Clinical Prac-
tice guidelines and the principles of the Declaration of Helsinki
(2013).

We enrolled patients aged 20-60 years with an American Soci-
ety of Anesthesiologists physical status of 1 who were scheduled
to undergo right arthroscopic shoulder surgery under ISBPB. The
exclusion criteria were coagulopathy, infection at the ISBPB site,
peripheral neuropathy or neurologic sequelae on the operative
limb, allergy to local anesthetics or history of allergic shock, con-
tralateral vocal cord palsy, contralateral hemidiaphragmatic pare-
sis or paralysis, contralateral pneumothorax or hemothorax, phys-
iologic anisocoria (a difference in the pupil diameter between
both eyes of more than 0.5 mm), severe ptosis precluding mea-
surement of the pupil diameter, arrhythmias, conduction abnor-
malities on ECG, use of medications that affect cardiac conduc-
tion, ischemic heart disease, hypertension, diabetes mellitus, thy-
roid dysfunction, electrolyte imbalance, psychiatric diseases, and
difficulty communicating with the medical personnel.

The patients abstained from alcohol and caffeine-containing

products for at least 24 h before surgery. No premedication was
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administered to the patients. On arrival to the operating room,
the patients were placed in a supine position on the operating ta-
ble. A pulse oximeter sensor (TruSignal™ SpO, Finger Sensor,
TS-F-D, GE Healthcare Finland Oy, Finland) and a noninvasive
blood pressure cuff were placed over the right index finger and on
the left arm, respectively. Three ECG electrodes were placed on
both the infraclavicular fossae and left anterior axillary line mid-
way between the costal margin and the iliac crest. Once the ECG
and photoplethysmographic (PPG) waveforms were displayed
without artifacts on a patient monitor (CARESCPE™ Monitor
B650, GE Healthcare Finland Oy, Finland), all the lights in the
operating room were turned off, the patient monitor was turned
away from the patient, and acclimation commenced under quiet
conditions at ambient temperature to stabilize the patients” hemo-
dynamics and autonomic nervous activity. In the low mesopic
conditions, the patients were instructed not to talk, to remain as
still as possible, and to breathe regularly without taking deep
breaths. After 15 min of the acclimation period (pre-ISBPB), the
pupil diameter was measured in the left eye and then in the right
eye. Subsequently, the systolic, diastolic, and mean arterial blood
pressures were measured. The measurements were followed by
administration of the ISBPB with the lights on. The patients re-
mained still in the supine position with the lights off for 30 min
after the ISBPB. The pupil size and arterial blood pressure were
measured (post-ISBPB), and then the lights were turned on. The
patients were placed in the seated position with the back elevated
to 70°-80°; the hips and knees flexed to 30° and 120°, respectively;

5-minute-long Vj’ n
waveform to be  Lights
analyzed turned on  ISBPB

1

and the knees rested on a pillow. Following evaluation of the sen-
sory and motor blockade, the patients remained still in the seated
position with the lights off for 15 min. The study session ended
after the third measurement of the pupil diameter and the blood
pressure were taken (post-sitting). The study timeline is illustrated
in Fig. 1. All the study cases began and finished between 9:00 am
and 12:00 pm. The anesthesiologist who performed the ISBPB
was not involved in (and was blinded to) the data collection and
analysis. One of the authors extracted and analyzed the PPG
waveforms for the last 5 min before each of the first two measure-
ments of the pupil diameter (pre-ISBPB and post-ISBPB) and an-
alyzed the ECG waveforms for the last 5 min before each of the
three measurements (pre-ISBPB, post-ISBPB, and post-sitting).
Another author measured the pupil diameter, blood pressure, and
degree of sensory and motor blockade. Both authors were blinded
to each other’s data.

At the end of the experiment, the patient was prepared for sur-
gery, and the surgery proceeded with the patient seated. Intraop-
eratively, ECG and pulse oximetry were monitored continuously.
The patient’s arterial blood pressure was monitored using a non-
invasive blood pressure cuff at 5-min intervals. However, the
blood pressure could be measured at any time within the 5-min
interval at the discretion of the attending anesthesiologist, who
was not involved in the study.

For the placement of ISBPB, a 5- to 13-MHz linear phased array
transducer (UST-5413, Hitachi Aloka Medical, Ltd., Japan)

equipped in an ultrasound machine (Prosound™ a6, Hitachi Alo-
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Fig. 1. Experimental design of the study. The study parameters were measured at three time points. ISBPB: interscalene brachial plexus block.
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ka Medical, Ltd., Japan) was used to visualize the 5", 6", and 7"
cervical nerve roots (C5, C6, and C7 nerve roots) [2]. A 50-mm,
22-gauge block needle (SonoPlex STIM, Pajunk® GmbH, Germa-
ny) was introduced lateral to the transducer using an in-plane
technique and was advanced in a lateromedial direction. Each
nerve root and the supraclavicular nerve located between the
middle scalene muscle and the posterior border of the sternoclei-
domastoid muscle [24] were blocked with 25-30 ml of 0.75% rop-
ivacaine.

Following the adaptation to low mesopic conditions [25], the
patients were instructed to keep their head and eyes facing for-
ward and their eyes wide open without blinking during the target-
ing and measurements. The eyecup of an automated monocular
infrared pupillometer (VIP™-200 pupillometer, NeurOptics Inc.,
USA) was placed around the eye being tested and parallel to the
axis of vision. The tilt of the instrument was minimized to ensure
the best alignment (right angle) between the instrument and the
axis of vision. The pupil diameter was measured at 30 Hz for 2 s.
Its average and standard deviation were calculated from the 60
measurement data (Supplementary Fig. 1) [1]. If the standard de-
viation was more than 0.1 mm, the measured value was discarded,
and a new measurement was performed. The pupil diameter con-
tralateral to the ISBPB was measured first, and then the ipsilateral
diameter was measured.

Between the beginning and end of vital sign monitoring, the
ECG and PPG waveforms were continuously recorded at a sam-
pling rate of 300 Hz using S5 collect software (GE Healthcare Fin-
land Oy, Finland) installed in a laptop computer connected to a
patient monitor via a UPI-PI Serial Cable (GE Healthcare Finland
Oy, Finland). The pulse oximeter sensor was placed on the index
finger ipsilateral to the ISBPB before the patients had transitioned
from the supine to seated position; afterward, the sensor was
placed on the contralateral index finger.

Five-minute-long ECG waveforms for each study time point
were loaded onto the WinDaq Waveform Browser (DATAQ In-
struments, USA). The R peaks of the ECG signal were automati-
cally detected using Advanced CODAS analysis software (DATAQ
Instruments). Undetected or erroneously detected peaks were
identified by manual inspection and then manually replaced with
new correct peaks or discarded.

The beat-to-beat RR intervals were calculated using Advanced
CODAS analysis software. The RR intervals from ectopic beats
were defined as those 20% shorter or longer than the previous in-
terval. They were replaced with adjacent normal RR intervals.
ECG waveform segments with more than three ectopic beats were
excluded from the final analysis. In a tachogram, the abscissa and

ordinate represent the time in seconds and RR interval in milli-
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seconds, respectively. Each data point was linearly interpolated,
and then new discrete-time equidistant data were generated by
resampling at 4 Hz from the interpolated line. By creating a resid-
ual plot from the simple linear regression model built with time
(independent variable) and corresponding RR interval (depen-
dent variable) resampled at 4 Hz, the tachogram was detrended.
The 300-second-long detrended data were split into five segments
of 100 s in length with two adjacent segments overlapping by 50%
(50 s). Each segment was Hamming windowed [26] and submit-
ted to fast Fourier transform to generate five periodograms. The
values of the spectral power corresponding to each frequency
from the five periodograms were averaged (Welch method of
power spectral density estimation) [27]. The frequency resolution
was 0.01 Hz, and the highest frequency of the power spectrum
was 2 Hz (Nyquist frequency).

The areas from 0.04 to 0.15 Hz, from 0.15 to 0.4 Hz, and from 0
to 0.4 Hz were integrated to obtain the LE high-frequency power
(HF), and total power of HRV, which represent the combined
sympathetic and parasympathetic modulation of the heart rate via
baroreceptor reflexes, parasympathetic modulation of heart rate
in response to spontaneous respiration, and the overall activity of
the autonomic nervous system [28]. Because LF is mainly modu-
lated by SNA [16,17], the LF to HF ratio (LF/HF) represents the
sympathovagal balance [28]. Its increase indicates a shift in the
sympathovagal balance toward sympathetic predominance, and
vice versa. The power spectral density was calculated using the
advanced DSP module of DADISP software version 6.7 (DSP De-
velopment Corp., USA). The LE HE, and total power were natu-
ral-log-transformed due to their skewed distribution. Descrip-
tions of the spectrogram, time domain and nonlinear HRV pa-
rameters, and sample and approximate entropy are provided in
the Supplementary Material 1.

As with the analysis of ECG waveforms, the systolic peaks of
the PPG signal were detected using Advanced CODAS analysis
software (DATAQ instrument) in the 5-minute-long PPG wave-
forms for each study time point, which were loaded onto the
WinDaq Waveform Browser (DATAQ Instruments). The missing
or spurious peaks detected under visual inspection were replaced
with new ones or deleted, respectively.

Pulse wave transit time was defined as the time interval be-
tween an R peak of the ECG signal and the foot of the PPG wave
corresponding to the R peak (the maximum of the second deriva-
tive of the PPG wave) [29]. Erroneously detected or undetected
maximum peaks of the second derivative were manually deleted
or added, respectively. The surgical pleth index (SPI) displayed on
the patient monitor was also recorded [30].

A hypotensive bradycardic event (HBE) was determined to oc-
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cur 1) if the heart rate decreased by more than 30 beats/min from
the pre-ISBPB rate within a 5-min interval or decreased to less
than 50 beats/min at any time and/or 2) if the systolic blood pres-
sure decreased by more than 30 mmHg from the pre-ISBPB blood
pressure within the 5-min interval or decreased to less than 90
mmHg at any time. However, the presence of signs and symptoms
of an HBE (lightheadedness, nausea, vomiting, and cold sweats)
were not mandatory for its diagnosis [31]. HBEs were managed
with 5-10 mg of ephedrine, the administration of which could be
repeated up to three times.

Because the purpose of this study was to assess the usefulness
of pupillometry to predict the changes in CSNA following ISBPB,
the primary endpoint was the change in pupil diameter from the
baseline (pre-ISBPB) to the sitting position (post-sitting), which
were adjusted for the baseline difference between the bilateral eyes
([right pupil diameter for post-sitting — left pupil diameter for
post-sitting] — [right pupil diameter for pre-ISBPB - left pupil di-
ameter for pre-ISBPB]). The secondary outcome variables were
the changes in CSNA from pre-ISBPB to post-sitting (natu-
ral-log-transformed LF [InLF] for post-sitting — InLF for pre-ISB-
PB); the right and left pupil diameters; the HRV parameters from
the frequency domain, the time domain, and nonlinear analyses;
the arterial blood pressure at the three time points; the PPG pa-
rameters at the first two time points; the incidence of HBE; and
the incidence of Horner’s syndrome, which was diagnosed if the

adjusted pupil diameter was less than —0.5 mm [32].

Sample size calculation

According to the results of the pilot study using 10 patients, the
standard deviation of the changes in pupil diameter adjusted for
the baseline differences was 0.4 mm. The regression coefficient
and coefficient of determination (R?) of the linear regression
model between the changes in pupil diameter (independent vari-
able) and the changes in InLF (dependent variable) were 0.5 and
0.21, respectively. A sample size of 42 was required to achieve 90%
statistical power at a two-sided significance level of 0.05 for the
detection of a change in the regression coefficient from 0 under
the null hypothesis to 0.5 under the alternative hypothesis when
the coefficient of determination and standard deviation of the in-
dependent variable were 0.21 and 0.4 mm, respectively. Consider-
ing a drop-out rate of 10%, a total of 48 patients were required in
this study. The sample size was calculated using PASS 15 Power
Analysis and Sample Size Software (2017) (NCSS, LLC, USA,

ncss.com/software/pass).
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Statistical analysis

The normality assumption was tested using the Shapiro-Wilk
test. Normally and nonnormally distributed data are presented as
the mean = SD and median (Q1, Q3), respectively. Categorical
data are presented as the number of patients (percentage). A sim-
ple linear regression analysis was performed to investigate the lin-
ear relationship between the changes in pupil diameter and the
changes in InLF from baseline to when the patient was in the sit-
ting position. We used a linear mixed-effects model to assess the
fixed effects of the side of an eye, three time points, and the inter-
action between them on the pupil diameter, taking into account
the random effects of each subject. The longitudinal changes in
the difference in the pupil diameters between bilateral eyes, the
HRV parameters, and the arterial blood pressure during the three
time points were analyzed using a repeated-measures analysis of
variance (for normally distributed data) or Friedman’ test (for
nonnormally distributed data), with paired t test or Dunn’s test
used for the post hoc pairwise multiple comparisons, respectively.
To compensate for an a error inflation resulting from multiple
pairwise comparisons, the probability values were adjusted using
the Bonferroni correction. The changes in the PPG parameters
during the first two time points were assessed by a paired t test. A
two-sided probability value < 0.05 was considered statistically
significant. All statistical analyses were performed using IBM
SPSS Statistics for Windows (Version 20.0.0, IBM Corp., USA).

Results

Out of 48 recruited patients, six patients were excluded from
the analysis due to the development of arrhythmia despite a nor-
mal preoperative ECG (n = 1); the presence of severe preopera-
tive ptosis in both eyes, which precluded appropriate measure-
ment of the pupil diameter (n = 1); intolerance to the nearly up-
right seated position (n = 1); the inability to visualize the C7
nerve root under ultrasound guidance (n = 1); protocol violation
(n = 1); and an intolerance to the subjective dyspnea caused by
ipsilateral diaphragmatic paralysis, leading to conversion to gen-
eral anesthesia (n = 1). Table 1 shows the characteristics of the 42
patients whose data were analyzed. Out of the 42 patients, 41
(97.6%) developed Horner’s syndrome. The ipsilateral (right) pu-
pil diameter was significantly decreased; the absolute difference in
the pupil diameter between ipsilateral (right) and contralateral
(left) eyes was significantly increased post-ISBPB and post-sitting
compared to pre-ISBPB (Fig. 2). The InLF, natural-log-trans-
formed HF (InHF), and natural-log-transformed total power

(InTP) were significantly reduced from baseline (pre-ISBPB) to
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Table 1. Patient Characteristics (n = 42)

Variable Value
Age (yr) 50.0 (30.5, 56.0)
Sex (M/F) 24 (57.1)/18 (42.9)
Height (cm) 165.6 + 8.4
Weight (kg) 62 (56.8,69.3)
Surgical procedures
Rotator cuff repair 26 (61.9)
Labral repair 14 (33.3)
Others 2(4.8)
Duration of surgery (min) 80.0 + 29.1

Values are presented as median (Q1, Q3), number of patients (%) or
mean * SD.
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Fig. 2. Longitudinal changes in the bilateral pupil diameters and the
difference in the pupil diameters between bilateral eyes. *P < 0.001
compared to the contralateral eye, P < 0.001, *P < 0.01. ISBPB:
interscalene brachial plexus block.

the sitting position (post-sitting), while the LF/HF did not change
over the three time points (Fig. 3). However, no significant chang-
es in HRV parameters were observed between pre-ISBPB and
post-ISBPB or between post-ISBPB and post-sitting. A positive
linear relationship was found between the adjusted changes in the
pupil diameter and the changes in InLF from pre-ISBPB to
post-sitting (Fig. 4). A one-unit decrease (1 mm) in the change in
pupil diameter contributed to a 0.659 In(ms’/Hz) decrease in the
change in InLF (95% CI [0.090, 1.228], R’ = 0.242, P = 0.001).
From pre-ISBPB to post-sitting, there were significant reduc-

tions in 1) the proportion of the number of interval differences of
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variability, ISBPB: interscalene brachial plexus block, LF/HF: low-
to-high frequency power ratio, InHF: natural-log transformed high
frequency power, InLF: natural-log transformed low frequency power,
InTP: natural-log transformed total power.
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Fig. 4. Simple linear regression analysis between the adjusted changes
in pupil diameter and the changes in InLF from baseline (pre-ISBPB)
to sitting position (post-sitting). The three red circles indicate the
three patients who developed HBEs. InLF: natural-log-transformed
low-frequency power of HRV, HBEs: hypotensive bradycardic events,
HRV: heart rate variability, ISBPB: interscalene brachial plexus block.

successive RR intervals greater than 50 msec in the total number
of RR intervals (pNN50); 2) standard deviation of the successive
differences of the RR intervals (SDSD); 3) root mean square of the
successive differences of the RR intervals (rMSSD); 4) difference

between the first and the third quartiles of the successive differ-
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ences in the RR intervals (IRRR); 5) median of the absolute values
of the successive differences in the RR intervals (MADRR); 6) the
baseline width of the triangular interpolation of the NN (RR) in-
terval histogram (TINN); 7) ratio of total number of RR intervals
to the number of RR intervals in a 7.8125 msec-long bin with the
most RR intervals (HRV index); and 8) standard deviation of the
points perpendicular to the line of identity in the Poincaré plot
(SD1) (Table 2). The standard deviation of the NN (RR) interval
(SDNN), IRRR, TINN, HRV index, and standard deviation along
the line of identity in the Poincaré plot (SD2) decreased signifi-
cantly from pre-ISBPB to post-ISBPB. Although the mean arterial
blood pressure and diastolic blood pressure increased significantly
from baseline (pre-ISBPB), the heart rate did not change over the
three time points. Pulse wave transit time, SPI, and peripheral ox-
ygen saturation were significantly reduced from pre-ISBPB to
post-ISBPB, while the PPG amplitude significantly increased (Ta-
ble 3).

Three patients (7.1%), who included a 46-year-old male, a
58-year-old female, and a 52-year-old female, experienced HBEs
27, 96, and 63 min after the beginning of surgery (72, 146, and
163 min after transitioning to the seated position) and were treat-

ed with 10, 10, and 20 mg of ephedrine, respectively. As indicated
by the three red circles in Fig. 4, the three patients’ absolute differ-
ences in InLF and pupil diameter between pre-ISBPB and post-sit-
ting were greater than their mean differences — 0.413 In(ms’*/Hz)
for InLF and 1.51 mm for pupil diameter. The spectrogram from
one of these patients is presented in Supplementary Fig. 2.

Discussion

According to the results of our study, transitioning to the sitting
position following right ISBPB reduced the baseline ipsilateral pu-
pil size, CSNA, and parasympathetic nervous activity but did not
change the sympathovagal balance. The extent of the changes in
pupil size was positively correlated with that of the changes in
SNA before ISBPB and after transition to the seated position fol-
lowing ISBPB.

The ISBPB-induced reduction in pupil size (miosis is one of the
clinical signs of Horner’s syndrome) is attributed to the blockade
of the stellate ganglion, to which local anesthetic placed around
the brachial plexus spreads from the interscalene groove along the

prevertebral fascia [3]. Because the stellate ganglion is a part of the

Table 2. Changes in the Blood Pressure and Time Domain and Nonlinear HRV Parameters

Variable Pre-ISBPB Post-ISBPB Post-sitting Withii_‘;ﬂ‘g;ft’re et
Heart rate (bpm) 65.7 (58.5, 72.0) 655 (612, 71.2) 64.5 (61.9, 72.5) 0.046
SDNN (msec) 39.4(31.1,52.1) 37.3(27.2,50.1)* 38.8 (25.0, 55.9) 0.042
PNN50 (%) 3.6 (0.8, 15.6) 23(0.3,19.7) 2.4 (0.0, 8.6)* 0.019
SDSD (msec) 25.0(17.7,37.3) 20.3 (13.7,39.7) 202 (12.5,32.4)" 0.002
rMSSD (msec) 25.0(17.7,37.2) 20.3 (13.7, 39.6) 20.2 (12.5,32.4)" 0.002
IRRR (msec) 47.5 (40.0, 68.8) 43.3(33.3,62.7) 45.0 (30.0, 65.0)" 0.002
MADRR (msec) 16.7 (11.3,23.3) 13.3(10.0, 26.7) 13.3(6.7,20.4)" 0.001
TINN (msec) 137.6 (116.7, 190.5) 119.0 (93.1, 166.6)* 118.3 (894, 162.9)" 0.003
HRYV index 8.8(7.5,12.2) 7.6 (6.0,10.7)* 7.6 (5.7,10.4)" 0.003
SD1 17.7 (12.5,26.4) 14.4 (9.7,28.1) 14.3 (8.9,22.9)" 0.002
SD2 52.1 (41.1,69.8) 47.8 (37.1, 66.0)* 52.7 (34.4,76.4) 0.042
SD1/SD2 0.31(0.25,0.43) 0.31 (0.25, 0.46) 0.32(0.22, 0.40) 0.234
Sample entropy 1.42 £ 0.32 142 £ 0.34 1.38 £ 0.38 0.721
Approximate entropy 1.04 + 0.10 1.04 £ 0.11 1.02 £ 0.12 0.463
Systolic blood pressure (mmHg) 121.0(110.8, 136.3) 125.5(114.8,142.3) 126.0 (114.0, 142.5) 0.050
Diastolic blood pressure (mmHg) 74.5 (66.8, 85.8) 76.5 (69.0, 87.3)* 78.0 (70.8, 85.3)" 0.001
Mean arterial blood pressure (mmHg) 92.0 (85.0,103.8) 95.0 (87.8,109.3)" 97.5 (88.0, 108.0)* < 0.001

Values are presented as median (Q1, Q3) or mean + SD. *P < 0.05 and "P < 0.01 compared to pre-ISBPB. ISBPB: interscalene brachial plexus block,
SDNN: standard deviation of the NN (RR) interval, pNN50: the proportion of the number of interval differences of the successive RR intervals
greater than 50 msec in the total number of RR intervals, SDSD: standard deviation of the successive differences of the RR intervals, rMSSD:
root mean square of the successive differences of the RR intervals, IRRR: difference between the first and the third quartiles of the successive
differences in the RR intervals, MADRR: median of the absolute values of the successive differences in the RR intervals, TINN: the baseline width
of the triangular interpolation of NN (RR) interval histogram, HRV: heart rate variability, HRV index: the ratio of total number of RR intervals to
the number of RR intervals in a 7.8125 msec-long bin with the most RR intervals, SD1: standard deviation of the points perpendicular to the line
of identity in the Poincaré plot, SD2: standard deviation along the line of identity in the Poincaré plot.
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Table 3. Pulse Plethysmography Data

Korean J Anesthesiol 2023;76(2):116-127

Variable Pre-ISBPB Post-ISBPB Mean difference (95% CI) P value
Pulse wave transit time (msec) 152.7 £ 21.6 131.3 + 244 -21.4 (-24.6,-18.1) < 0.001
Amplitude (arbitrary unit) 1.27 £ 0.70 5.08 £ 1.86 3.81(3.23,4.38) < 0.001
Infrared amplitude (%) 55% 3.0 9.1 %35 3.5(2.5,4.6) < 0.001
SPI 39.6 £ 143 314 £ 8.6 -8.2(-13.2,-3.1) 0.002
Peripheral oxygen saturation 96.1 £ 1.5 946 £ 1.6 -14(-1.8,-1.1) < 0.001

Values are presented as mean + SD. ISBPB: interscalene brachial plexus block, SPI: surgical pleth index.

second-order (preganglionic) neuron of the oculosympathetic
pathway, its blockade blocks the terminal branches (the long cili-
ary nerves) of the third-order neuron at the anterior segment of
the ipsilateral eye. As a result, the iris dilator muscle is relaxed by
the unopposed parasympathetic action on the iris sphincter mus-
cle, consequently leading to miosis of the pupil (anisocoria) [33].

The stellate ganglion also gives off the postganglionic fibers that
travel to the heart via the cardiac sympathetic pathways [4]. The
inferior cervical and 1" thoracic (T1) ganglia from the stellate
ganglion form synapses with the inferior cervical and T1 cardiac
nerves, respectively. The two sympathetic postganglionic fibers
form the cardiac plexuses with other sympathetic postganglionic
fibers from the superior and middle cervical ganglia and the 2™ to
5" thoracic paravertebral ganglia, as well as parasympathetic pre-
ganglionic fibers (branches of the vagal and recurrent laryngeal
nerves) [4]. In particular, sympathetic neurons project from the
craniomedial aspect of the right stellate ganglion and travel to the
sinoatrial node, which regulates the heart rate [34]. Because peri-
odic impulse formations by the sinoatrial node contribute to the
HRV derived from RR intervals (heart rate) [35,36], a right SGB
causes specific changes in the HRV parameters.

In the current study, the incidence of Horner’s syndrome was
97.6%, and InLE, InHE and InTP were decreased with no change
in LF/HF after transitioning to the sitting position following a
right ISBPB, which was similar to the results in a previous study
where the incidence of Horner’s syndrome was not reported [31].
However, when the patients were in the supine position 30 min
after the placement of the right ISBPB (prior to the sitting posi-
tion), the decreases in the spectral power of HRV were not statis-
tically significant. In another previous study, the incidence of
Horner’s syndrome was 35.7%, and that study reported significant
decreases in InLF and InHF in patients in the supine position [37].
Regrettably, the two abovementioned studies [31,37] did not use
objective tools to determine the development of Horner’s syn-
drome. Hence, the incidence might be underestimated, so the ef-
fects of ISBPB-induced SGB on the HRV parameters are unclear.
In contrast, we quantitatively measured the pupil diameter using

pupillometry to determine if the patient developed Horner’s syn-

https://doi.org/10.4097/kja.22324

drome and found that most patients developed Horner’s syn-
drome. Therefore, we could measure the changes in autonomic
nervous activity according to the various degrees of Horner’s syn-
drome.

InLE InHE and InTP were reduced 30 min after a direct block
of the right stellate ganglion using 8 ml of 1% mepivacaine in su-
pine patients [38]. In contrast, our study showed no significant
changes in those spectral domain HRV parameters, with some
decreases in the time domain HRV parameters, which represent
both SNA and parasympathetic nervous activity, between 25 and
30 min after ISBPB in the supine position. We assume that the in-
determinate amount of a local anesthetic with a slow onset (ropiv-
acaine) leaking outside the interscalene groove to the stellate gan-
glion and to the adjacent vagal nerve [39] produced a combined
sympathetic and parasympathetic blockade, albeit incompletely.

Head-up tilt or the change from the supine to the sitting posi-
tion after a right SGB caused no significant changes in the HRV
parameters, unlike the normal physiologic response of autonomic
nervous activity to positional changes (a reduction in HF and an
increase in LF/HF) [9,10]. In our study, a change from the supine
to the sitting position even reduced both the InLF and InHF from
baseline without changing the LE/HE, possibly indicating that the
incomplete sympathetic and parasympathetic blockade (30 min
after ISBPB placement) became more intense more than 40 min
after ISBPB placement (far past the onset of ropivacaine).

Because the reduction in CSNA by ISBPB-induced SGB has
been assumed to be associated with the development of HBEs in
the sitting position [31,40,41], an immediate measurement of
CSNA is of utmost importance for patient safety. However, the
conventional methods for the measurement of SNA require ex-
pensive equipment and technical support and therefore are not
useful in intraoperative settings [13]. As one of the intraoperative
standard monitoring parameters, ECG can be used for HRV anal-
ysis to noninvasively measure cardiac autonomic nervous activity.
However, HRV analysis cannot provide instantaneous informa-
tion about CSNA because at least 4 min are required to obtain LF
values [18]. In addition, at least 10 min of acclimation time stabi-

lizing the patients’ autonomic nervous activity is required to ob-
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tain reliable HRV parameters [31]. Furthermore, ECG waveforms
are prone to artifacts that are caused by patient movement [42] or
the use of electrocauterization to prevent bleeding [43]. The cal-
culation of HRV variables with preprocessing of ECG waveforms
is also time consuming. In contrast, the measurement of pupil di-
ameter using a pupillometer is more feasible because it requires
only 2 s (in this study) and is resistant to artifacts [19]. In addi-
tion, because pupil size reaches a plateau within seconds in a dark
condition, its measurements require a few seconds of adaptation
[44]. Given that SGB acts on both the oculosympathetic and car-
diac sympathetic pathways, we expected that the changes in the
pupil diameter reflected those in CSNA and found a significant
linear correlation between them. Therefore, as an alternative to
LE pupillometry can be useful to assess the changes in CSNA after
assuming the sitting position under the influence of an ISBPB-in-
duced SGB.

An increase in the PPG amplitude is consistent with an increase
in the blood flow of the ipsilateral upper limb after ISBPB [45,46].
However, because SGB alone can also increase the blood flow of
the ipsilateral upper limb [47], we could not differentiate the ef-
fects of ISBPB and SGB on blood flow. In addition, the pulse wave
transit time was reduced after ISBPB, which is contrary to the re-
sults of previous studies that showed that it increased after axillary
brachial plexus block [48] and SGB [49]. Therefore, further stud-
ies are warranted to investigate the difference in the results be-
tween the previous study and ours.

Some limitations should be considered in this study. First, the
pupil sizes were not measured while recording the ECG wave-
forms because the placement of a pupillometer on the eye would
affect cardiac autonomic nervous activity by making the patients
nervous, leading to ineffective assessments of the effects of ISBPB
on cardiac autonomic nervous activity. Second, HRV analysis
cannot assess the authentic effects of ISBPB-induced SGB on car-
diac autonomic nervous activity because, in addition to the stel-
late ganglion, the superior and middle cervical ganglia and the 2™
to 5" thoracic paravertebral ganglia also contribute to CSNA.
Therefore, the effects of ganglia other than the stellate ganglion on
CSNA might have generated some significant errors that reduced
the predictability of the regression model derived from the pupil
size and InLF changes. In this regard, the use of pupil size is limit-
ed in the assessment of how CSNA is affected by ISBPB-induced
SGB. Nonetheless, we tried to exclude the effects of the above-
mentioned ganglia by giving patients sufficient acclimation time
to stabilize their autonomic nervous activity. However, further
studies are warranted to exclude the effects of ganglia other than
the stellate ganglion and inconsistencies in the timing of measure-

ment between pupil size and HRV. Third, due to the low incidence
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of HBEs in this study (3 out of 42 patients), the clinical usefulness
of pupillometry to detect the development of HBEs could not be
assessed. However, all three patients who developed HBEs had
relatively large reductions in both the pupil size and InLF. We
hope that these three cases inspire further studies to investigate
the usefulness of pupillometry to detect the development of HBEs.
Last, a Bland-Altman agreement analysis could not be used to
determine the agreement between the two methods (HRV and
pupillometry) that measured the CSNA because they have differ-
ent units — In(ms’/Hz) versus mm. Therefore, we alternatively
performed a simple linear regression to compare the two methods
[50].

Our results showed that the changes in pupil size were linearly
proportional to the changes in CSNA before ISBPB and after sit-
ting following ISBPB. In conclusion, as an alternative to HRYV,
pupillometry can be used to measure the changes in CSNA after

patients are placed in a sitting position after ISBPB.
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