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Clinical Research Article

Background: Prophylaxis for cerebral desaturation events (CDEs) during anesthesia in the 
beach chair position (BCP) for shoulder surgeries has not been evaluated. We systemati-
cally analyzed the effectiveness of various prophylactic measures used in this clinical set-
ting. 
Methods: We performed a meta-analysis (PROSPERO; no. CRD42020167285) of trials 
reporting CDEs and regional cerebral oxygen saturation (rSO2) and jugular venous oxygen 
saturation (SjvO2) values in anesthetized patients undergoing shoulder surgery in BCP. 
Considering the type of prophylactic measures used (pharmacological or non-pharmaco-
logical), a subgroup analysis was planned. Outcomes included (1) rSO2 and SjvO2 data 
with and without prophylactic measures for CDEs, recorded for different time intervals, 
and (2) the number of patients experiencing CDEs and hypotension. 
Results: Twelve studies (786 patients) were included in the analysis. We observed lower 
absolute rSO2 values for early and all-time periods for vasoactive agent prophylaxis. The 
lowest achieved rSO2 values were also lower for vasoactive agent prophylaxis. Risk of CDEs 
was higher with vasoactive agent prophylaxis. Subgroup analysis identified targeted mild 
hypercarbia as effective in preserving cerebral oxygenation. Similarly, targeted mild hyper-
carbia prevented the fall in rSO2 with position change. Meta-regressions revealed statisti-
cally significant highest estimates for vasoactive agent prophylaxis in contrast to targeted 
mild hypercarbia. Likelihood of not developing CDEs was higher for targeted mild hyper-
carbia. In contrast to rSO2, most prophylactic methods reduced hypotensive episodes. 
Conclusions: Targeted mild hypercarbia can reduce BCP-related CDEs. Evidence does not 
favor prophylactic use of vasoactive agents for the prevention of cerebral desaturations ir-
respective of whether their use interferes with cerebral oximetry readings.  

Keywords: Arthroscopy; Oximetry; Prophylaxis; Randomized controlled trial; Shoulder; 
Sitting position; Statistics; Systematic review.

Introduction 

Beach chair position (BCP) surgeries are associated with significant cerebral desatura-
tion events (CDEs) in as many as 80% of patients [1,2]. Cerebral oxygenation is depen-
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dent on a combination of multiple factors such as cerebral blood 
flow (CBF), mean arterial blood pressure (MAP), partial pressure 
of oxygen, cardiac output, and hemoglobin levels. A reduction in 
MAP during anesthesia in BCP may decrease the CBF [3–5]. A 
strong association of the hypotensive response with decrease in 
regional cerebral oxygen saturation (rSO2) and jugular venous ox-
ygen saturation (SjvO2) has been observed [6–8]. In such situa-
tions, pharmacological agents such as ephedrine and phenyleph-
rine, which rapidly increase MAP, are frequently used to obtain 
indirect benefits on cerebral oxygenation. Alternatively, prophy-
lactic measures have been successfully used to prevent CDEs, in-
cluding non-pharmacological techniques such as preloading with 
crystalloids/colloids or the use of sequential compression devices 
(SCDs) [9–11]. Vasoactive agents administered prophylactically 
can theoretically achieve a rapid increase of MAP and conse-
quently the increase of CBF, however, the decline observed in 
rSO2 suggests otherwise [12]. The association between the use of 
prophylactic compression stockings and reduced occurrence of 
CDEs is unclear, as similar incidences were also reported in pa-
tients with their use [13]. We could not find any analysis of pooled 
data in the available literature to support or refute this association. 

Our study attempted to determine whether any particular phar-
macological or non-pharmacological technique is useful for re-
ducing CDEs during BCP surgeries. Confirming an association 
between the two would improve predictability, provide insight 
into the possible underlying pathophysiological mechanisms, and 
guide the anesthesiologist on the most efficacious method of pre-
venting these undesirable events. Therefore, we performed a sys-
tematic review and meta-analysis to summarize the existing evi-
dence on the ability of prophylactic measures to prevent CDEs in 
this clinical setting. 

Materials and Methods 

Registration and protocol 

This meta-analysis was reported in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-analyses 
[14] and was registered with PROSPERO (https://www.crd.york.
ac.uk/PROSPERO, no. CRD42020167285). 

Eligibility criteria 

We included prospective randomized clinical studies or ran-
domized controlled trials (RCTs) with adult patients (>  18 years) 
who underwent elective shoulder surgeries in BCP. Reporting of 
monitored cerebral oxygen saturation-related data and at least one 

prophylactic method used to prevent CDEs were mandatory for 
inclusion. Publications in all languages were considered. The pa-
tients received one of the following anesthetic modalities: (1) 
planned general anesthesia (GA) or (2) regional anesthesia (RA), 
viz interscalene brachial plexus block or similar block in combi-
nation with GA. We excluded studies wherein patients underwent 
surgeries under RA alone, at <  45° BCP, or with American Soci-
ety of Anesthesiologists physical status >  3. 

Information sources 

An electronic literature search, specifically restricted to ran-
domized studies or RCTs of BCP, was conducted in MEDLINE, 
CINAHL (EBSCO host), Google Scholar, and the Cochrane Cen-
tral Register of Controlled Trials. The bibliography of the re-
trieved manuscripts was searched for additional studies pertain-
ing to data encompassing our primary outcome of interest. These 
included studies reporting incidence of CDEs, maximum and 
minimum average cerebral oxygen saturations, serial average ce-
rebral saturation values overtime periods, critical CDEs, and the 
percentage change of cerebral saturations, with a caveat that both 
supine, pre-BCP and BCP data are available. Similar to cerebral 
saturation, SjvO2 was documented whenever data were available. 
Twenty-first-century literature, that is, literature published only 
after January 1, 2000, was scanned because anesthesia protocols 
have remained uniform during this period. Cohorts with matched 
controls, retrospective studies, reviews with inadequate informa-
tion on primary outcomes of interest, abstracts, and letters to the 
editor were not included. The detailed search strategy is shown in 
Supplementary Material 1, which depicts the keyword-based 
search inclusion terms. 

Study selection and data collection 

A collection of studies was conducted by TPT and HK. The 
manuscripts meeting the inclusion criteria were assessed, and data 
were extracted following a standardized format by the same au-
thors. The extracted items comprised study characteristics, risk of 
bias domains [15], participant disposition, and study outcomes. 
The PICO inclusion criteria comprised the following elements, 
focusing on patients, interventions, comparisons, and outcomes, 
and were used to identify components of clinical evidence. Pa-
tients who underwent shoulder surgery under anesthesia in BCP 
with cerebral oxygen saturation monitoring using any type of ce-
rebral oximetry device were considered. They were categorized 
according to the type of surgery or anesthesia, number of patients, 
the position adopted for surgery, and monitoring for CDEs. Inter-
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ventions referred to prophylactic measures used to prevent CDEs. 
These patients must have had at least one type of prophylactic 
method to prevent cerebral desaturation in the sitting position. 
With regard to the type of intervention, study authors could con-
sider any type of pharmacological or non-pharmacological meth-
od deployed before the CDE. The comparison of variables was 
between ‘with and without’ prophylactic measures. This is an al-
ternative to intervention–placebo, different drugs, measures, or 
therapy. Outcomes were classified as primary or secondary. The 
former included cerebral oxygen (de)saturation data with and 
without the use of prophylactic measures at various time intervals 
using rSO2 and SjvO2 cerebral oximetry values. The latter included 
the incidence of CDEs and hypotension episodes, associations 
with MAP, and the use of vasoactive agents with CDEs. 

Data synthesis and analysis of outcomes 

Data relevant to the outcomes of interest were extracted from 
each study in this meta-analysis. The rSO2 or SjvO2 data included 
continuous data documented as pooled averages or sequential 
data at various intervals for a study. Data were collected as a single 
or combined value in the form of mean and standard deviation 
(SD) or median and interquartile range (IQR), respectively. If 
multiple datasets were available, they were converted into pooled 
statistical averages. The other dichotomous data included the 
number of patients experiencing CDEs. 

The data were tabulated before induction (baseline) and 
post-induction (relating to pre-BCP and BCP categories after sta-
bilization of vital signs). The BCP rSO2 or SjvO2 data were pooled 
for the time periods mentioned in the respective publications. If 
the recorded data timings were non-specific, they were approxi-
mated to a specific time by a mutual discussion with the authors. 
Publications with unreported or inconclusive data that could not 
be obtained after attempts to contact the authors were excluded 
from this review. 

To analyze cerebral saturation data, four categories of rSO2 or 
SjvO2 values were considered from the study (i.e., prophylactic 
measures used) and control (i.e., no prophylactic measures used) 
groups. The absolute values, which are mentioned as percentages, 
for both groups with respect to time (i.e., early or entire period of 
BCP) or for the type of outcome studied (i.e., rSO2/SjvO2) were 
recorded. These data were synthesized as pooled data that includ-
ed (1) the early BCP period (rSO2/SjvO2 values, for immediate, 
the first 15 min of BCP), (2) the entire BCP period (all-time over-
all rSO2/SjvO2 values, until the reported time period or the end of 
surgery) referring to the pooled average values of those at all time 
points during BCP, (3) the lowest observed at BCP rSO2/SjvO2 

values. When the right and left cerebral hemispheres were moni-
tored separately (with either single or two different methods), the 
lowest value was included (4) the baseline values, which refer to 
the supine, pre-BCP rSO2 values after induction of anesthesia. 

The data presented in tables, text, and images were used as the 
primary sources for extraction. Graph digitizing software (En-
gauge Digitizer version 10.10, @Mark Mitchell) was used to effi-
ciently extract and estimate raw numerical data whenever textual 
numerical data were unavailable. When range and IQR were 
available, SD was estimated using the formulas SD =  range / 4 
and SD =  IQR / 1.35, as described by the Cochrane Handbook 
for Systematic Reviews of Interventions [16]. Data are reported as 
95% CI. The median value was used to estimate the mean if the 
value was not reported. Whenever the standard error of the mean 
(SEM) was reported, SD was obtained as SD =  SEM ×  √N [16]. 
To account for drop-out cases over time or termination of BCP 
before the time specified in the meta-analysis, patient numbers 
were approximated to the nearest values for pooled data estima-
tion. If the exact time point was not specified in the manuscript, 
then the approximated time point was considered by the authors’ 
judgment. 

Individual definitions for CDEs and hypotension were accepted 
as described by each study. Dichotomous data such as the occur-
rence of CDEs and hypotension were converted into incidence (n/
N) for early and overall time periods. All analyses were performed 
assuming no incidences of CDEs in the supine position under an-
esthesia. CDE occurrence was counted whenever the event was 
reported at least once, based on the original study authors’ defini-
tions. Complications were analyzed on an ‘intention to treat’ basis 
since in some subgroups, patients were repositioned back to supine 
following BCP-induced hemodynamic disturbances or CDEs [17]. 

With regard to MAP, data evaluation and synthesis were similar 
to those applied for CDEs or rSO2/SjvO2 values. The incidence of 
hypotension was counted whenever the events were reported at 
least once either individually or sequentially for each patient. 

Pre-defined sources of heterogeneity 

To explore the potential causes of heterogeneity that could in-
fluence the primary outcomes, we pre-identified certain aspects of 
individual study groups. These included (1) anesthetic technique 
(GA vs. combined GA and RA); (2) induction agent (propofol vs. 
thiopentone); (3) maintenance anesthetic agent (propofol vs. in-
halational agents); (4) prophylactic measures (vasoactive agents 
vs. preloading vs. SCD vs. targeted mild hypercarbia techniques 
vs. compression stockings vs. others), and (5) maintenance vaso-
pressors (phenylephrine vs. ephedrine vs. others). 
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Meta-analysis was conducted using Review Manager (RevMan 
5.4.1, Cochrane Collaboration, Denmark, 2014). A random-effects 
model was used for all analyses. Heterogeneity was measured and 
expressed as I2. For continuous variables (rSO2/SjvO2), mean dif-
ferences (MDs) were compared using the inverse-variance (I-V) 
method. For dichotomous variables (incidence of CDEs and hy-
potension), odds ratio (OR) or risk ratio (RR) was computed us-
ing the Mantel-Haenszel (M-H) or I-V method. Natural log trans-
formation was adopted [18], as the outcomes for incidences were 
expected to be non-normally distributed. 

Meta-regression analysis 

Because of overlapping of use (i.e., more than one) of different 
prophylactic measures, a meta-regression analysis was planned to 
estimate the effectiveness of the individual prophylactic measures. 
Pre-BCP (supine, after anesthesia induction) and BCP (all-time 
overall, absolute [%], and pooled) cerebral saturation values were 
considered for meta-regression. Meta-regression data inputs were 
different from the data of conventional meta-analysis, where the 
former included the MDs from baseline to all-time overall fall of 
rSO2 values. Meta-regression was performed using JASP software 
(Version 0.9.2, BibTeX, University of Amsterdam, the Nether-
lands). The effect size (estimate) and standard error (SE) were 
used for meta-regression. A priori defined prophylactic measures 
were used across the study groups. We included all prophylactic 
measures that were identified among study groups, such as com-
pression stockings, SCDs, targeted mild hypercarbia, crystalloid 
loading, hydroxyethyl starch (HES), regional ischemic precondi-
tioning technique (RIPC), and vasoactive agents for meta-regres-
sions. Meta-regressions were also performed for ‘the number of 
patients experiencing CDEs’, in which baseline supine, pre-BCP 
CDEs were assumed as ‘zero’ for the analysis. All meta-regressions 
were performed using the restricted maximum likelihood method 
and random effects. An omnibus test of the model coefficients 
and tests for heterogeneity were used for the model. Simultaneous 
to Egger's regression tests for funnel plot asymmetry evaluations, 
a visual inspection of the funnel plot was carried out to rule out 
publication bias. The influence of such studies on the model was 
also assessed. The parameter covariance was assessed for the com-
bined effects of prophylactic measures. Statistical significance was 
set at P <  0.05 (2-tailed). 

Grading of Recommendations Assessment, Development 
and Evaluation 

The certainty of the evidence was summarized using the Grad-

ing of Recommendations Assessment, Development and Evalua-
tion (GRADE) [19] approach for individual outcomes. The 
strength of recommendations reduces the potential to facilitate 
critical appraisal and improves the communication of judgments. 
GRADEpro GDT (GRADEpro Guideline Development Tool 
[Software], McMaster University, 2020 [developed by Evidence 
Prime, Inc.]) was used to facilitate the development of evidence 
summaries and recommendations. 

Results 

Literature identification and study characteristics 

From 2,297 studies that were initially screened, 56 potentially 
relevant manuscripts were selected based on abstracts (Supple-
mentary Material 2). Of these, 12 trials provided the data for anal-
ysis (Supplementary Material 3) [7,13,20–29] including Jadad 
scores. Data from 786 patients were included in the analysis. 

Cerebral oxygenation monitoring was performed using IN-
VOS™ 5100 B/C (Medtronic, Ireland) cerebral oximetry monitor-
ing devices [7,13,20–27,29] (near-infrared reflectance spectrosco-
py) in all included studies in this review, except in a single study 
[28] in which the FORE-SIGHT™ device (Edwards Lifesciences, 
USA) was used. All the studies reported baseline data with respect 
to rSO2 including pre- and post-induction values, except for a sin-
gle study [24] in which only the mean (SD) maximum fall of cere-
bral saturation values was reported. The physiologic principles to 
prevent CDEs followed in each included study, however, were dis-
similar. Because rSO2 values can be affected by a variety of factors, 
the mechanisms used by the authors in the prevention of falls in 
rSO2 varied. Vascular tone, cardiac output, and cerebrovascu-
lar-mediated mechanisms were considered by the authors to pre-
serve cerebral oxygenation. To simplify, we classified the included 
heterogeneous studies based on whether the study authors used 
pharmacological (PPMs) or non-pharmacological prophylactic 
measures (NPPMs). For the prevention of MAP-dependent cere-
bral desaturations, PPMs were used in four RCTs (vasoactive 
agents; vasopressin [20,21,25], n =  3 and phenylephrine [7], n =  
1) and NPPMs in eight (preloading with colloid [HES 130/0.4 
[22], n =  1]; SCD use on legs [26], n =  1; compression stockings 
[13,24], n =  2; targeted mild hypercarbia [27,28], n =  2; or re-
duced BCP angle for surgery [23] [low BCP angle, ≤  60°, n =  1] 
or RIPC [29], n =  1]). However, overlapping prophylactic mea-
sures were observed among the study groups. Eight study groups 
[13,20,21,24] used compression stockings and five used SCDs 
[23,24,26] as a prophylactic measure. Crystalloid loading 
[7,21,22,29] and HES preloading [22,26,27] were used in 10 and 5 
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study groups, respectively. Vasoactive agent prophylaxis 
[7,20,21,25] was used in seven, whereas targeted mild hypercarbia 
[27,28] was used in two study groups. Similarly, low BCP angle 
[13,23,24] during surgery was used in five study groups. However, 
the RIPC technique was used in only a single study [29] group. 

CDE was uniformly defined as >  20% decrease from baseline 
values and critical desaturation as <  55% (absolute value, Supple-
mentary Material 3). Four studies [20,21,25,27] mentioned a du-
ration of cerebral desaturation of >  15 s, whereas others had no 
duration stated. One study [29] additionally defined CDE as a fall 
in absolute values <  40% from baseline if it occurred for at least 1 
min. Deliberate hypotension was accepted in one study [23]. All 
studies considered pharmacological agents for treating BCP-in-
duced hypotension or treating CDEs via blood pressure elevation. 
The rest of the data related to treatment and prophylactic mea-
sures are depicted in Supplementary Material 3. 

Primary outcomes 

Absolute values of rSO2 for an early period 
Pooled absolute rSO2 (comparisons with controls, Figs. 1A and 

1B) values (in %) were obtained for the first 15 min of BCP. These 
were recorded from 10 studies; three used vasopressin as a PPM 
[20,21,25] and seven used NPPM techniques [13,22,23,26–29] to 
prevent CDEs. PPMs were associated with lower absolute rSO2 
values than those without (controls). PPMs thus produced unfa-
vorable results (vs. controls; MD: –13.58%, 95% CI [–16.03, 
–11.4], I2 =  0%, P =  0.97) in contrast to NPPMs (vs. controls; 
MD: 2.76%, 95% CI [0.62, 4.89], I2 =  56%, P =  0.03). Among 
NPPMs, the SCD and RIPC measures had statistically significant-
ly higher rSO2 values than in those without their use. 

Absolute values of rSO2 for all-time period 
Pooled absolute rSO2 (comparisons with controls, Figs. 2A and 

2B) values (in %) were obtained for all-time periods of BCP. These 
were recorded from 10 studies, four of which used PPMs (vaso-
pressin [20,21,25] or phenylephrine [7] infusions) to regulate 
MAP. Preloading with HES [22], reduction of BCP angle [23], 
SCDs [26], and RIPC [29] were used in one study each, and tar-
geted mild hypercarbia [27,28] was used in two RCTs. PPMs were 
associated with lower absolute all-time overall rSO2 values (vs.
controls: MD, –12.23%; 95% CI, –14.59 to –9.87; I2 =  0%, P =  
0.82) in contrast to NPPMs (vs. controls: MD, 2.92%; 95% CI, 0.34 
(vs. controls; MD: –12.23%, 95% CI [–14.59, –9.87], I2 =  0%, P =  
0.82) in contrast to NPPMs (vs. controls; MD: 2.92%, 95% CI 
[0.34, 5.49], I2 =  76%, P =  0.0009). Among NPPMs, the use of 
SCDs, targeted mild hypercarbia, and RIPC measures had statisti-

cally significantly higher rSO2 values than those without their use. 

Lowest achieved absolute rSO2 values 
The lowest achieved rSO2 (comparisons with controls, Figs. 3A 

and 3B) was recorded (in %) from nine studies. Three of these 
used PPMs (vasopressin [20,21,25] infusions), and NPPMs were 
used in others (preloading with HES [22], reduction of BCP angle 
[23], SCDs [26], and RIPC [29] techniques in one study each; tar-
geted mild hypercarbia [27,28] in two). PPMs had lower rSO2 for 
‘lowest achieved’ absolute values during BCP compared to their 
controls (MD: –12.72%, 95% CI [–15.28, –10.15], I2 =  0%, P =  
0.99). However, the use of NPPMs was associated with higher val-
ues than in the control group patients for the same studied pa-
rameter (vs. controls; MD: 4.87%, 95% CI [2.69, 7.05], I2 =  30%, 
P =  0.21). More specifically, use of targeted mild hypercarbia, 
SCDs, and RIPC techniques had favorable effects on rSO2 com-
pared to those without their use. 

Prophylactic measures and SjvO2 
The SjvO2 values (comparisons with controls, Figs. 1C, 2C, and 

3C) were recorded for only the PPM subgroup in three studies 
[20,21,25] (150 patients). Arginine vasopressin (AVP) was used in 
all studies, and both rSO2 and SjvO2 were monitored. The early, 
all-time overall and lowest achieved SjvO2 values were considered 
for analysis. With the use of prophylactic AVP infusions, the study 
group had comparable values to those of the control group pa-
tients, indicating the absence of beneficial effects of AVP in BCP. 
Furthermore, in contrast to rSO2, the negative effects of AVP were 
not observed for the BCP SjvO2 values. 

Meta-regression results for ‘baseline to all-time overall rSO2 
differences’ 

Meta-regression analysis included 11 studies [7,13,20–23,25–
29]. One study [24] did not report baseline values; therefore, the 
study was not considered for meta-regression analysis. Meta-re-
gressions revealed a statistically significant highest estimate (esti-
mate: 7.8, SE: 1.534, 95% CI [4.8, 10.8], P <  0.001) for vasoactive 
agent prophylaxis use (PPMs, higher positive coefficients repre-
sent a greater fall of rSO2 in BCP compared to supine) compared 
to NPPMs (Table 1A). The use of SCDs, crystalloid loading, tar-
geted mild hypercarbia, HES, and RIPC had beneficial effects (vi-
sual analysis of coefficients, Table 1A). The use of compression 
stockings and maintenance of a low BCP angle during surgery 
failed to demonstrate these benefits. 

In contrast, targeted mild hypercarbia, HES, and RIPC tech-
niques had statistically significant coefficients (Omnibus P <  
0.001, test for heterogeneity P =  0.646, Egger’s P =  0.514, Table 2; 
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Fig. 1. Forest plots depicting (A) absolute values of rSO2 for early period (first 15 min of BCP) for vasoactive agents and targeted mild hypercarbia 
techniques, (B) absolute values of rSO2 for early period (first 15 min of BCP) based on whether prophylactic measures are pharmacological or 
non-pharmacological, and (C) absolute values of SjvO2 for an early time period for PPMs. The mean differences between individual trials and 95% 
CIs are shown for prophylactic measures. Absolute values are expressed in %. The overall effects for each prophylactic measure and the differences 
between the subgroups are shown. The 95% CIs are shown as lines for individual studies and as diamonds for pooled estimates. IV: inverse 
variance, NPPM: non-pharmacological prophylactic methods, PPM: pharmacological prophylactic methods, rSO2: regional cerebral oxygen 
saturation, SjvO2: jugular venous oxygen saturation.
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Fig. 2. Forest plots depicting (A) absolute values of rSO2 for an all-time period for vasoactive agents and targeted mild hypercarbia techniques, 
(B) absolute values of rSO2 for an all-time period based on whether prophylactic measures are pharmacological or non-pharmacological, and (C) 
absolute values of SjvO2 for all-time period for PPMs. The mean differences between individual trials and 95% CIs are shown for prophylactic 
measures. Absolute values are expressed in %. The overall effects for each prophylactic measure and the differences between the subgroups 
are shown. The 95% CIs are shown as lines for individual studies and as diamonds for pooled estimates. IV: inverse variance, NPPM: Non-
Pharmacological Prophylactic Methods, PPM: Pharmacological Prophylactic Methods, rSO2: regional cerebral oxygen saturation, SjvO2: jugular 
venous oxygen saturation.
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Fig. 3. Forest plots depicting (A) absolute values for lowest achieved rSO2 for vasoactive agent, compression stockings, and targeted mild 
hypercarbia techniques, (B) subgroup analysis for lowest achieved rSO2, based on whether prophylactic measures are pharmacological or non-
pharmacological, and (C) SjvO2 changes for lowest achieved values for PPMs. The mean differences between individual trials and 95% CIs are 
shown for prophylactic measures. Absolute values are expressed in %. The overall effects for each prophylactic measure and the differences 
between the subgroups are shown. The 95% CIs are shown as lines for individual studies and as diamonds for pooled estimates. IV: inverse 
variance, NPPM: non-pharmacological prophylactic methods, PPM: pharmacological prophylactic methods, rSO2: regional cerebral oxygen 
saturation, SjvO2: jugular venous oxygen saturation.

Study or Subgroup

Study or Subgroup

Study or Subgroup

1.7.1 Vaso-active agents, PPMs

1.8.1 Pharmacological methods, PPMs

1.9.1 Pharmacological methods

1.8.2 Non-Pharmacological Methods, NPPMs

1.7.2 Compression Stockings, NPPMs

1.7.3 Targeted mild hypercarbia, NPPMs

Jang et al., 2017A
Cho et al., 2013
Cho et al., 2015
Jang et al., 2017B
Subtotal (95% CI)

Jang et al., 2017A
Cho et al., 2013
Cho et al., 2015
Jang et al., 2017B
Subtotal (95% CI)

Cho et al., 2013
Cho et al., 2015
Jang et al., 2017A
Jang et al., 2017B
Subtotal (95% CI)

Woo et al., 2018
Golz et al., 2020
Kwak et al., 2011
Murphy et al., 2014
Oh CS et al., 2019
Kwak et al., 2017
Subtotal (95% CI)

Woo et al., 2018
Golz et al., 2020
Subtotal (95% CI)

Murphy et al., 2014
Kwak et al., 2017
Subtotal (95% CI)

Heterogeneity: Tau2 = 0.00; Chi2 = 0.11, df = 3 (P = 0.99); I2 = 0%
Test for overall effect: Z = 9.72 (P < 0.00001)

Heterogeneity: Tau2 = 0.00; Chi2 = 0.11, df = 3 (P = 0.99); I2 = 0%
Test for overall effect: Z = 9.72 (P < 0.00001)

Heterogeneity: Tau2 = 0.00; Chi2 = 2.75, df = 3 (P = 0.43); I2 = 0%
Test for overall effect: Z = 0.66 (P = 0.51)

Heterogeneity: Tau2 = 2.13; Chi2 = 7.11, df = 5 (P = 0.21); I2 = 30%
Test for overall effect: Z = 4.37 (P < 0.0001)

Heterogeneity: Tau2 = 0.00; Chi2 = 0.61, df = 1 (P = 0.43); I2 = 0%
Test for overall effect: Z = 0.14 (P = 0.89)

Heterogeneity: Tau2 = 0.00; Chi2 = 0.98, df = 1 (P = 0.32); I2 = 0%
Test for overall effect: Z = 4.44 (P < 0.00001)

Test for subgroup differences: Chi2 = 100.27, df = 2 (P < 0.00001), I2 = 98.0%

Test for subgroup differences: Chi2 = 104.82, df = 1 (P < 0.00001), I2 = 99.0%

Favors [control]

Favors [control]

Favors [control]

Favors [prophylaxis]

Favors [prophylaxis]

Favors [prophylaxis]

–10

–20

–20

–5

–10

–10

0

0

0

5

10

10

10

20

20

52
53.1

52.17
56

52
53.1

52.17
56

44.2
46.31
47.1
65.1

66.33
-24.3
73.8
73.8

61
71.8

66.33
–24.3

73.8
71.8

5
7

7.1
7

5
7

7.1
7

20.2
12.92
10.98
12.9

8.9
14.4
6.9
5.6

9
7.5

8.9
14.4

5.6
7.5

15
15
45
15
90

15
15
45
15
90

15
45
15
15
90

19
9

33
34
34
20

149

19
9

28

34
20
54

65
66.1
65.1

68

65
66.1
65.1

68

52.99
43.98
43.1

64.02

68
-27.6
69.8
68.8

54
64

68
–27.6

68.8
64

8
9.8
8.8

7

8
9.8
8.8

7

17.04
12.1
10.1
13.1

10.97
7.9
6.3
8.3

8
6.8

10.97
7.9

8.3
6.8

15
15
15
15
60

15
15
15
15
60

15
15
15
15
60

19
9

33
36
29
20

146

19
9

28

36
20
56

28.9%
17.7%
27.2%
26.2%

100.0%

28.9%
17.7%
27.2%
26.2%

100.0%

10.4%
35.8%
32.5%
21.4%

100.0%

9.8%
3.9%

25.9%
24.9%
18.4%
17.1%

100.0%

74.1%
25.9%

100.0%

64.4%
35.6%

100.0%

–13.00 [–17.77, –8.23]
–13.00 [–19.09, –6.91]
–12.93 [–17.84, –8.02]
–12.00 [–17.01, –6.99]

–12.72 [–15.28, –10.15]

–13.00 [–17.77, –8.23]
–13.00 [–19.09, –6.91]
–12.93 [–17.84, –8.02]
–12.00 [–17.01, –6.99]

–12.72 [–15.28, –10.15]

–8.79 [–22.16, 4.58]
2.33 [–4.86, 9.52]

4.00 [–3.55, 11.55]
1.08 [–8.22, 10.38]
1.45 [–2.85, 5.76]

–1.67 [–8.02, 4.68]
3.30 [–7.43, 14.03]

4.00 [0.81, 7.19]
5.00 [1.70, 8.30]

7.00 [2.80, 11.20]
7.80 [3.36, 12.24]
4.87 [2.69, 7.05]

–1.67 [–8.02, 4.68]
3.30 [–7.43, 14.03]

–0.38 [–5.85, 5.09]

5.00 [1.70, 8.30]
7.80 [3.36, 12.24]
6.00 [3.35, 8.65]

Prophylactic measures

Prophylactic measures

Prophylactic measures

Control

Control

Control

Mean Difference

Mean Difference

Mean Difference

Mean Difference

Mean Difference

Mean Difference

Mean

Mean

Mean

Mean

Mean

Mean

SD

SD

SD

SD

SD

SD

Total

Total

Total

Total

Total

Total

Weight

Weight

Weight

IV, Random, 95% CI

IV, Random, 95% CI

IV, Random, 95% CI

IV, Random, 95% CI

IV, Random, 95% CI

IV, Random, 95% CI

A

B

C

429https://doi.org/10.4097/kja.21069

Korean J Anesthesiol 2021;74(5):422-438



for publication bias [30], Supplementary Material 4A). Among all 
NPPMs, the targeted mild hypercarbia technique had the lowest 
estimates (estimate: –5.5, SE: 1.408, 95% CI [–8.2, –2.7], P <  
0.001), indicating its superior beneficial effects over others (Wald 
test, P <  0.001). 

Secondary outcomes 

Number of patients developing CDEs 
Ten studies reporting patients with CDEs [7,13,20–24,27–29] 

were included, and two [7,29] of these declared only patients with 
critical CDEs. Meta-analysis (Fig. 4A) revealed that use of PPMs 
showed a significantly higher risk of developing CDEs than that 
of the control groups (vs. controls; RR: 4.01, 95% CI [1.82, 8.81], 
I2 =  0%, P =  0.75). In contrast, there was no difference observed 
between NPPMs and their respective controls (vs. controls; RR: 
0.44, 95% CI [0.18, 1.10], I2 =  75%, P =  0.001). 

Incidence of hypotension 
Ten studies [7,13,20–22,25–29] reported episodes of hypoten-

sion. Both methods (PPMs and NPPMs) effectively reduced the 
incidence of hypotension (for PPMs vs. controls; OR: 0.13, 95% 
CI [0.06, 0.28], I2 =  0%, P =  0.42, and for NPPMs vs. controls; 
OR: 0.27, 95% CI [0.10, 0.74], I2 =  54%, P =  0.07) (Fig. 4B). 

Vasopressor consumption 
Phenylephrine was used in five studies [20,21,23,24,29], and 

ephedrine in nine [13,20,21,24–29] (combined use in five studies 
[21,23,24,27,29]), as vasopressors for the treatment of BCP-in-
duced hypotension. The diversity in pattern and dose of individu-
al vasopressor use precluded any analysis of their effect on altering 
the CDEs. 

A few studies compared cerebral desaturations with respect to 
time-person observations, such as time from induction or time 
from upright positioning to the onset of CDE, and average cumu-
lative CDE durations. However, the data were inadequate for ad-
ditional analyses. Serious adverse neurological outcomes (as re-
ported by all studies) and postoperative cognitive dysfunction (as 
reported by three studies [20,21,25]) were not observed. One 
study [28] reported nausea and vomiting with low incidence in 

Table 1. Meta-regression Analysis

Prophylactic measure Estimate (SE, 95% CI) P value Model fit
A. All-time overall rSO2

  Intercept 7.8 (0.892, 6.1 to 9.6) <  0.001 Omnibus P <  0.001
  Compression stocking (Y) 0.2 (1.491, –2.8 to 3.1) 0.921 Heterogeneity P =  0.646
  Sequential compression device (Y) –1.6 (1.184, –3.95 to 0.7) 0.167 Egger's P =  0.514
  Low BCP angle (Y) 1.2 (1.525, –1.8 to 4.2) 0.438 Log-likelihood, –37.9
  Regional ischemic preconditioning (Y) –2.5 (1.018, –4.5 to –0.5) 0.014 Deviance, 75.8
  Crystalloid loading (Y) –0.9 (0.99, –2.8 to 1.1) 0.387 AIC, 104.1
  Hydroxyethyl starch (Y) –3.5 (1.043, –5.5 to –1.5) <  0.001
  Targeted mild hypercarbia (Y) –5.5 (1.408, –8.2 to –2.7) <  0.001
  Vasoactive agents (Y) 7.8 (1.534, 4.8 to 10.8) <  0.001
B. Number of patients developing CDEs
  Intercept 20.3 (6.487, 7.6 to 32.99) 0.002 Omnibus P =  0.459
  Compression stocking (Y) 0.5 (6.335, –11.9 to 12.9) 0.937 Heterogeneity P <  0.01
  Sequential compression device (Y) –10.2 (8.375, –26.6 to 6.3) 0.225 Egger's P =  0.299
  Low BCP angle (Y) 3.025 (8.235, –13.1 to 19.2) 0.713 Log-likelihood, –50.2
  Regional ischemic preconditioning (Y) –2.527 (12.641, –27.3 to 22.3) 0.842 Deviance, 100.3
  Crystalloid loading (Y) –10.752 (6.848, –24.2 to 2.7) 0.116 AIC, 120.3
  Hydroxyethyl starch (Y) –8.924 (8.193, –24.98 to 7.1) 0.276
  Targeted mild hypercarbia (Y) –12.31 (10.14, –32.2 to 7.6) 0.225
  Vasoactive agents (Y) 5.734 (7.632, –9.2 to 20.7) 0.452
Meta-regression analysis of prophylactic measures used across the study groups. (A) Pre-BCP (supine, after anesthesia induction) and BCP (all-
time overall, absolute, and pooled) cerebral saturation values were considered for meta-regression depending on the use of prophylactic measures 
(yes vs. no). (B) Meta-regressions of ‘number of patients experiencing CDEs’, where baseline supine, pre-BCP CDEs were assumed as ‘zero’ for the 
analysis. All meta-regressions were performed using the restricted maximum likelihood method and random effects. AIC: Akaike information 
criterion, BCP: beach chair position, CDE: cerebral desaturation event, rSO2: regional cerebral oxygen saturation, SE: standard error, Y: yes.
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the study group (nausea/vomiting, 3/0 vs. 12/1, P <  0.05). 

Meta-regression results for ‘number of patients experiencing 
CDEs’ 

Meta-regression analysis of the number of patients experienc-
ing CDEs (Table 1B) included 10 studies [7,13,20–24,27–29]. Two 
studies [25,26] did not report the incidence with respect to the 
number of patients; therefore, they were not considered in the 
meta-regression analysis. Meta-regressions revealed statistically 
significant highest estimate (estimate: 5.73, SE: 7.632, 95% CI 
[–9.2, 20.7], P =  0.452) for vasoactive agent prophylaxis use 
(PPMs, positive coefficient represents a higher number of patients 
experiencing CDEs) compared to that for NPPMs. Among all 
NPPMs, the targeted mild hypercarbia techniques had the lowest 
estimates observed, indicating its maximal effects over others (es-
timate: –12.31, SE: 10.14, 95% CI [–32.2, 7.6], P =  0.225). Howev-
er, to statistically confirm the observations, poor model fit and 
high heterogeneity were limitations. We observed no statistically 
significant P values for any of the prophylactic measures used 
(Omnibus test for model coefficient P =  0.459; fit measure 
log-likelihood =  –50.15, AIC =  120.3; Table 1B; for publication 
bias [30], see Supplementary Material 4B). 

Subgroup analysis of PPMs, targeted mild hypercarbia, and 
compression stockings 

Two studies [27,28] included 110 patients for the targeted mild 
hypercarbia techniques. End-tidal CO2 values of 40–42 and 30-35 
mmHg were used during BCP in the study and control patients, 
respectively. Subgroup analysis revealed targeted mild hypercarbia 
as an effective measure in preserving cerebral oxygenation ([vs. 
controls; MD: 4.93%, 95% CI [2.45, 7.41], I2 =  0%, P =  0.83, Fig. 
2A] and [vs. controls; MD: 6.00%, 95% CI [3.35, 8.65], I2 =  0%, P 
=  0.32, Fig. 3A], for all-time overall and lowest achieved absolute 
rSO2, respectively). Similar to the above results, targeted mild hy-
percarbia successfully prevented the fall of rSO2 values from su-
pine-baseline values to BCP (supine vs. BCP; MD: 1.56%, 95% CI 
[–0.71, 3.83], I2 =  6%, P =  0.30, n =  108). This is in contrast to 
control patients without targeted mild hypercarbia use, in whom 
a significant fall of rSO2 values from supine-baseline to BCP was 
observed (supine, pre-BCP vs. BCP; MD: 6.14%, 95% CI [3.08, 
9.2], I2 =  36%, P =  0.21, n =  112). Furthermore, the number of 
patients not developing CDE was 13 times higher than for those 
not using targeted mild hypercarbia techniques at BCP (OR, non-
event: 13.18, 95% CI [3.84, 45.24], I2 =  0%, P =  0.94, n =  110). 
Use of compression stockings [13,24] (n =  104) failed to demon-

Table 2. Summary of Results with GRADE of Evidence

No. Outcomes Studies Number of  
participants

Relative effect; MDs (%) or 
RR/OR (95% CI)

Certainty of the  
evidence (GRADE)

1 Absolute values for rSO2 for early period - PPMs 3 150 –13.58 (–16.03, –11.4) ⨁⨁⨁◯, moderate
2 Absolute values for SjvO2 for early period - PPMs 3 150 –0.88 (–5.47, 3.7) ⨁⨁⨁◯, moderate
3 Absolute values for rSO2 for all-time period - PPMs 4 184 –12.23 (–14.6, –9.87) ⨁⨁⨁◯, moderate
4 Absolute values for SjvO2 for all-time period - PPMs 3 150 –0.23 (–4.67, 4.21) ⨁⨁⨁◯, moderate
5 Absolute values for lowest rSO2 achieved - PPMs 3 150 –12.72 (–15.28, –10.15) ⨁⨁⨁◯, moderate
6 Absolute values for lowest SjvO2 achieved - PPMs 3 150 1.45 (–2.85, 5.76) ⨁⨁⨁◯, moderate
7 Number of patients developing CDEs - PPMs (event) 3 124 RR 4.01 (1.82, 8.81) ⨁⨁◯◯, low
8 Number of patients developing hypotension episodes - PPMs 4 184 OR 0.13 (0.06, 0.28) ⨁⨁◯◯, low
9 Number of patients developing hypotension episodes - NPPMs 6 316 OR 0.27 (0.10, 0.74) ⨁⨁◯◯, low
10 Effect of targeted mild hypercarbia techniques (all-time overall 

for absolute rSO2 values)
2 110 4.93 (2.45, 7.41) ⨁⨁⨁◯, moderate

11 Effect of targeted mild hypercarbia techniques (lowest achieved 
absolute rSO2 values)

2 110 6.0 (3.35, 8.65) ⨁⨁⨁◯, moderate

12 Effect of targeted mild hypercarbia techniques (Pre-BCP to 
BCP fall in absolute rSO2 values)

2 108 1.56 (–0.71, 3.83) ⨁⨁⨁◯, moderate

13 Effect of targeted mild hypercarbia techniques (number of  
patients developing fall in rSO2, event)

2 110 RR 0.15 (0.05, 0.42) ⨁⨁⨁◯, moderate

14 Effect of compression stockings (lowest achieved absolute rSO2 
values)

2 56 –0.38 (–5.85, 5.09) ⨁⨁◯◯, low

15 Effect of compression stockings (number of patients developing 
CDEs, event)

2 104 RR 1.20 (0.75, 1.93) ⨁⨁◯◯, low

CDE: cerebral desaturation event, GRADE: Grading of Recommendations Assessment, Development and Evaluation, MD: mean difference, 
NPPMs: non-pharmacological prophylactic methods, OR: odds ratio, PPMs: pharmacological prophylactic methods, RR: risk ratio, rSO2: regional 
oxygen saturation, SjvO2: jugular venous oxygen saturation.
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Fig. 4. Forest plots depicting numbers of patients who developed (A) CDEs and (B) hypotension. The individual trials’ RRs or ORs, SEs, and 
the pooled estimates are shown. The 95% CIs are shown as lines for individual studies and as diamonds for pooled estimates. Natural log 
transformation was adopted, as the outcomes for incidences were expected to be non-normally distributed for CDE incidences. CDE: cerebral 
desaturation event, M-H: Mantel-Haenszel, NPPMs: non-pharmacological prophylactic methods, OR: odds ratio, PPMs: pharmacological 
prophylactic methods, RR: risk ratio, rSO2: regional cerebral oxygen saturation, SE: standard error, SjvO2: jugular venous oxygen saturation.
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strate benefits, as the odds ratio remained less than 1 (OR, non-
event: 0.77, 95% CI [0.33, 1.77], I2 =  0%, P =  0.45). Furthermore, 
the lowest achieved rSO2 was not different from that of control 

patients when compression stockings were used as a prophylactic 
measure (vs. controls; MD: –0.38%, 95% CI [–5.85, 5.09], I2 =  0%, 
P =  0.43, n =  56). 
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Fig. 5. Risk of bias summary (A) and graph (B).

Risk of bias and heterogeneity 
The risk of bias summary and graph are presented in Figs. 5A 

and 5B, respectively. Selection bias (biased allocation to interven-
tions) due to inadequate generation of a randomized sequence 
was noted in one study [23], and selection bias due to inadequate 
concealment of allocations prior to the assignment occurred in a 
few studies [20,21,23]. Blinding is difficult [13,23,28] in BCP sur-
geries, although most studies were double-blinded. Therefore, 
performance bias and detection bias due to knowledge of the allo-
cated interventions by participants and personnel during the 
study were observed in a few studies [13,28]. Further, we observed 
selective reporting (reporting bias) in a few [7,24], with incom-
plete outcome data such as reporting only ‘critical’ desaturations 
and mentioning ‘maximum fall’ of rSO2 from baseline values. The 
observed low heterogeneity for PPMs precluded further analysis, 
as opposed to that of NPPMs. As described earlier, the latter 
group included the use of different prophylactic techniques. 
Therefore, the results of subgroup analyses of NPPMs are uncer-

tain because of the uneven covariate distribution among groups. 
Furthermore, an insufficient number of studies per group was ob-
served. Therefore, all these factors necessitated additional me-
ta-regression analysis. To explore the potential causes of heteroge-
neity that could influence primary outcome results, anesthetic 
factors such as the type of anesthesia and induction or mainte-
nance agents were not considered separately, primarily due to in-
adequate data. 

GRADE evidence 

The relevant summary results are presented in Table 2 with 
GRADE evidence. The certainty of the evidence is summarized as 
‘moderate’ for the outcome of ‘early, all-time overall, and lowest 
achieved rSO2/SjvO2 values’ since the risk of bias was ‘serious’ in 
nature. The certainty of the evidence is similar for the targeted 
mild hypercarbia technique. For the rest of the studied outcomes, 
the certainty of the evidence is described as ‘low’ since ‘inconsis-
tency’ and ‘imprecision’ were ‘serious’. 

Discussion 

In our meta-analysis, we evaluated the efficacy of different pro-
phylactic measures employed to prevent cerebral desaturation 
during shoulder surgeries performed in BCP. We observed that 
not all prophylactic measures were successful, and the methods 
did differ in efficacy. Our current study provides concrete evi-
dence that PPMs cannot effectively prevent cerebral desaturation. 
The benefits of a few NPPM techniques, such as targeted mild hy-
percarbia, for maintaining cerebral oxygenation during BCP are 
also evident. However, a few trials have confirmed the protective 
effects of HES preloading, and studies of SCDs or RIPC are scarce. 
Our meta-analysis unequivocally confirmed the negative effect of 
vasoactive agents on rSO2 values (but not on SjvO2), highlighting 
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their failure in protecting patients from CDEs despite their ability 
to prevent hypotension. 

A pervasive issue in the pharmacologic prophylaxis portion of 
this meta-analysis is the extracranial contribution (contamina-
tion) [31] to cerebral oximetry, which must be acknowledged. 
This can be explained to a large extent as a ‘paradoxical effect’ of 
vasopressors on oximetry values when given to support blood 
pressure. Our analysis demonstrated that prophylactic vasoactive 
agents can decrease rSO2 values. However, to confirm whether 
this decrease truly reflects cerebral desaturation, additional analy-
sis was needed. SjvO2-metry is a more accurate assessment of the 
balance between oxygen supply and demand in the brain, albeit 
globally. Therefore, we simultaneously analyzed the effects of 
PPM on both rSO2 and SjvO2. The discrepancy between rSO2 and 
SjvO2 necessarily describes the effects of PPMs on regional oxim-
etry values. The other finding of this study is the inefficacy of va-
soactive agent prophylaxis in preventing fall of cerebral oxygen 
saturation. Despite the higher SjvO2 recorded over rSO2, AVP 
failed to demonstrate any beneficial effect, in that its use did not 
prevent the fall in SjvO2 during BCP. In contrast to rSO2, the SjvO2 
values of the PPM subgroup were similar to those of the control 
groups, in both the supine, pre-BCP and BCP periods. A single 
phenylephrine study was included in the PPM subgroup. Howev-
er, in the absence of SjvO2 monitoring in the same study, we were 
unable to describe the extracranial effects of phenylephrine on 
rSO2 monitoring. The association of AVP, CDEs, and postopera-
tive cognitive dysfunction have also been reported in the past [32]. 
While some NPPMs were superior to vasoactive agent prophylax-
is with respect to CDE incidence, their role in preventing cogni-
tive dysfunction was not evaluated in our study. Reports on the 
effect of AVP on cerebral oxygenation in animal models have 
been conflicting [12,33]. Beyond auto-regulation values of MAP, 
AVP improves CBF via nitric oxide-mediated cerebral vasodilata-
tion [34], and this was the rationale for its use in some of our in-
cluded studies. 

In this review, the effectiveness of individual prophylactic mea-
sures (especially NPPMs) was analyzed through a separate analy-
sis. Drawing conclusions on NPPMs was not possible, as we have 
lumped together with a disparate and diverse group. Importantly, 
since no study authors used a single measure to prevent cerebral 
desaturation, analyzing a single method (such as NPPMs) could 
be misleading. Therefore, the more appropriate method of me-
ta-regression analysis was performed. Our analysis confirmed the 
beneficial effects of a few NPPMs, such as targeted mild hypercar-
bia, HES, and RIPC. Targeted mild hypercarbia during these pro-
cedures must be performed with caution and must not be per-
formed to the exclusion of blood pressure support. Hypercarbia 

impairs cerebral autoregulation and puts the patient at a higher 
risk for cerebral hypoperfusion, should hypotension occur at the 
same time. Additional subgroup analysis established stronger evi-
dence for targeted mild hypercarbia use. Few prospective studies 
[35] investigating the effects of targeted mild hypercarbia on rSO2 

during major surgery have confirmed similar effects. 
One of the interpretations of this meta-analysis is that NPPMs 

in combination can be effectively deployed during BCP surgery to 
enhance rSO2; this conclusion could be relevant to clinicians in 
maintaining cerebral oxygenation. For example, targeted mild hy-
percarbia of 40–42 mmHg during controlled ventilation, appro-
priate preloading (HES), and concomitant use of SCDs can sig-
nificantly reduce CDEs. The routine use of RIPC as a prophylactic 
measure has not yet been recommended. While a previous pro-
spective cohort study [9] demonstrated the efficacy of compres-
sion stockings in reducing the incidence of CDEs, our meta-re-
gression results failed to confirm this. Confounding factors such 
as MAP, hemoglobin level, cardiac output, angle of BCP main-
tained, and partial pressures of oxygen and carbon dioxide, which 
can influence rSO2 values, were kept constant in the RCTs includ-
ed. We believe that the study authors excluded patients with car-
diopulmonary disease or anemia because of possible negative ef-
fects on rSO2 values.  

While PPMs were inferior to a few NPPMs in the prevention of 
CDEs (coefficient evaluation), both exhibited similar effects with 
respect to lowering the incidence of hypotension (vs. controls). 
Thus, PPMs were unable to achieve the ultimate therapeutic ben-
efit, despite maintaining MAP. The association of episodic de-
crease in MAP with the incidence of cerebral desaturation and its 
direct correlation with cerebral oximetry values remain uncon-
firmed [36,37]. Several studies have demonstrated no direct cor-
relation between blood pressure and cerebral (de)saturation val-
ues (Supplementary Material 5) [13,38–43]. However, cardiac 
output has been claimed as a factor that correlates well with rSO2 
values in BCP-neurosurgical patients [40]. Targeting MAP alone 
may not be the ideal approach to prevent CDEs in BCP surgeries. 

Over 80% of the patients in this meta-analysis were treated with 
ephedrine for BCP-related hypotension. Phenylephrine and 
ephedrine are commonly used for this indication. While treating 
hypotension in a non-BCP setting, the former was shown to de-
crease cerebral oxygen saturation even with correction of arterial 
blood pressure [44]. According to cardiac output rather than arte-
rial blood pressure, it has been concluded that treating hypoten-
sion using vasoconstrictors to avoid cerebral hypoxia actually ac-
complished the opposite result [44,45]. In contemporary practice, 
approximately 70% of BCP-related hypotension episodes are still 
treated with phenylephrine. It would be prudent to choose a dif-
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ferent vasopressor and to use the more physiological NPPMs. Ad-
ditionally, while targeting cardiac output to maintain cerebral ox-
ygenation, the use of NPPMs with ephedrine (as a vasopressor of 
choice to treat hypotension) could possibly be a desirable combi-
nation. Currently, the use of cerebral oximetry in patients with 
BCP is limited in availability. Under these circumstances, espe-
cially in susceptible patients, this combination is gaining signifi-
cance. 

Our study had some limitations. Higher heterogeneity values 
represent different NPPM methods applied over cohorts. The 
type of anesthesia, maintenance anesthetics, Fraction of inspired 
oxygen concentration, and other co-variables could have partially 
influenced the outcomes. The definition of ‘event’ could vary ac-
cording to the authors’ perception, and this could have a bearing 
on the incidence reporting. The range of rSO2 values may be sig-
nificantly larger when measured with INVOS™ devices compared 
to FORE-SIGHT™, but the exact underlying reasons for these dif-
ferences remain unknown [46]. The use of phenylephrine to treat 
hypotension episodes in subgroups of NPPMs could have possibly 
influenced the CDEs in a few studies, which is an inherent contra-
diction in the analysis. The difference in the timing of the applica-
tion of NPPMs poses significant analytical challenges. Moreover, 
none of the included NPPMs reported SjvO2 data. The use of 
pooled data and presuming the baseline data of rSO2 values to be 
uniform for all patients may be another limitation. Non-availabili-
ty of raw patient data and non-reporting of time-person observa-
tions for groups or lowest achieved cerebral desaturation data for 
many trials precluded conducting individual patient meta-analy-
sis or correlations. 

In conclusion, the evidence favors the prophylactic use of tar-
geted mild hypercarbia techniques to effectively reduce BCP-
CDEs and best preserve cerebral oxygenation. Evidence does not 
favor the use of prophylactic vasoactive agents for the prevention 
of cerebral desaturations, irrespective of whether their use inter-
feres with cerebral oximetry readings. One may use a combina-
tion of a few NPPMs as prophylactic measures; however, an RCT 
investigating the effect of combined use of all NPPMs could con-
clusively demonstrate the benefits. At the same time, comparisons 
of prophylactic as well as therapeutic effects of different vasoactive 
agents (such as phenylephrine vs. ephedrine) for BCP-CDEs 
could set the direction for future research in this field.  
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Supplementary Materials 

Supplementary Material 1. The search strategy. The search terms 
were used to search MEDLINE, CCRCT (Cochrane Central Reg-
ister of Controlled Trials), CINHAL (Cumulative Index to Nurs-
ing and Allied Health Literature, EBSCO host), and Google 
Scholar (modified to suit each specific database with abstract, 
keywords, and text with the removal of duplicates).
Supplementary Material 2. The flow chart for literature identifica-
tion and study selection. BCP: beach chair position, CDE: cerebral 
desaturation event, CCRCT: Cochrane Central Register of Con-
trolled Trials, CINHAL: Cumulative Index to Nursing and Allied 
Health Literature, n: number of studies, rSO2: regional cerebral 
oxygen saturation.
Supplementary Material 3. The study characteristics. ASA PS: 
American Society of Anesthesiologists physical status, AVP: argi-
nine vasopressin, BCP: beach chair position, BL: baseline, BP: 
blood pressure, CBF: cerebral blood flow, CDE: cerebral desatura-
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tion event, CS: compression stockings, DM: diabetes mellitus, 
Eph: ephedrine, GA: general anesthesia, HES: hydroxyethyl 
starch, HR: heart rate, HTN: hypertension, ICB: infraclavicular 
block, ISB: interscalene block, MAP: mean arterial pressure, MBP: 
mean blood pressure, N2O: nitrous oxide, NA: not applicable, NE: 
norepinephrine, NP: not provided, O2: oxygen, Phe: phenyleph-
rine, rSO2: regional saturation of oxygen in the brain, SCD: se-
quential compression device, TIVA: total intravenous anesthesia.
Supplementary Material 4. Publication bias. The funnel plots for 
(A) pre-BCP (supine, after anesthesia induction) and BCP (all-
time overall, absolute, and pooled) cerebral saturation values, (B) 
the number of patients experiencing the CDEs during meta-re-
gressions of prophylactic factors to prevent cerebral desaturation. 
The regression test for funnel plot asymmetry (Egger's test) P val-
ues were >  0.05; however, poor model fit – fit measures were re-
corded for funnel plot B.
Supplementary Material 5. Studies depicting associations between 
MAP and rSO2. Correlation analysis was used in most of the stud-
ies to establish the associations. BCP: beach chair position, BL: 
baseline, CDE: cerebral desaturation event, CO: cardiac output, 
DBP: diastolic blood pressure, ETCO2: end-tidal carbon dioxide, 
eTMAP: estimated temporal mean arterial pressure, L: left-sided 
measurement, MAP: mean arterial pressure, MBP: mean blood 
pressure, NIBP: noninvasive blood pressure, NIRS: near-infrared 
reflectance spectrometry, R: right-sided measurement, r: correla-
tion coefficient, rSO2: regional cerebral oxygen saturation, SBP: 
systolic blood pressure, *INVOS™ (Somanetics, Troy, MI, USA) 
and **FORE-SIGHT™ (Cas Medical Systems Inc., Branfort, CT, 
USA), the names of cerebral oximeter equipments that measured 
the regional cerebral oxygen saturation.
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