
Introduction

The previous article ‘Survival analysis: Part I – analysis of 
time-to-event’ introduced the basic concepts of a survival analy-
sis [1]. To decrease the gap between the data from a clinical case 
and a statistical analysis, this article presents several extended 

forms of the Cox proportional hazards (CPH) model in-series.
The most important aspect of the CPH model is a propor-

tional hazard assumption during the observation period. The 
hazard of an event occurring during an observation cannot 
always be remained constantly, and the hazard ratio cannot be 
maintained at a constant level. This is the main obstacle for a 
clinical data analysis using a CPH model. 

The basic concepts required to understand and interpret the 
results of a survival analysis were covered in a previous article 
[1]. Part 2 of this article, described herein, focuses on the ana-
lytical methods applying clinical data and coping with problems 
that can occur during an analysis. Such methods for validating a 
proportional hazard assumption apply clinical data and several 
extended Cox models to overcome the problem of a violated 
proportional hazard assumption. This article also includes the R 
codes used for estimating several Cox models based on clinical 
data. For those familiar with a statistical analysis, the R codes 
can easily enable an extension of the Cox model estimation.1) 

Statistical Round

As a follow-up to a previous article, this review provides several in-depth concepts regarding a survival analysis. Also, 
several codes for specific survival analysis are listed to enhance the understanding of such an analysis and to provide an 
applicable survival analysis method. A proportional hazard assumption is an important concept in survival analysis. Val-
idation of this assumption is crucial for survival analysis. For this purpose, a graphical analysis method and a goodness-
of-fit test are introduced along with detailed codes and examples. In the case of a violated proportional hazard assump-
tion, the extended models of a Cox regression are required. Simplified concepts of a stratified Cox proportional hazard 
model and time-dependent Cox regression are also described. The source code for an actual analysis using an available 
statistical package with a detailed interpretation of the results can enable the realization of survival analysis with person-
al data. To enhance the statistical power of survival analysis, an evaluation of the basic assumptions and the interaction 
between variables and time is important. In doing so, survival analysis can provide reliable scientific results with a high 
level of confidence.
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Proportional Hazard Assumption

Refer to the previous article [1] for a description of diagnos-
tic methods applied to a CPH model. Here, we consider only 
a proportional hazard assumption. A hazard is defined as the 
probability of an event occurring at a time point (t). The surviv-
al function of a CPH model is an exponential function, and the 
hazard ratio (λ) is constant during an observation; thus, a sur-
vival function is defined in the exponential form of the hazard 
ratio at a time point (equation 1) [1]. 

s(t) = exp−λt… … … …equation 1.
    s(t): survival function based on the CPH model
    t: specific time point
    λ: hazard ratio

To estimate hazard ratio, which is included in the survival 
function, hazard function (h) is required and it contains a specif-
ic explanatory variable (X) which indicates a specific treatment 
or exposure to a specific circumstance. At the time point of t, 
the hazard function of the control group is defined as the basal 
hazard function (h0 (t)), and hazard function of the treatment 
group as the combined form of the basal hazard function and a 
certain function with the explanatory variable (X). The hazard 
ratio is the value of the hazard functions of treatment over con-
trol groups (equation 2) [2]. 

hC (t) = h0 (t)
hT (t) = h0 (t) × exp βX

λ = hT (t) = h0 (t) × expβX

= expβX … … … … equation 2.hc (t) h0 (t)
hC (t): Hazard function of control group
hT (t): Hazard function of treatment group
λ: Hazard ratio
h0 (t): Baseline hazard function at time t
t: specific time point
X: explanatory variable
β: coefficient for X

As shown in equation 2, the CPH model processes the 
analysis under the constant hazard ratio assumption with the 
explanatory variable, which is not affected by the time [3]. The 
hazard ratio remains constant, and the hazards of each group at 

any time point remain at a distance and never meet graphically 
during an observation. However, this does not guarantee the 
satisfaction of the proportional hazard assumption. In a clinical 
setting, one hazard could remain lower or higher than the oth-
ers, and their ratio cannot be constant because the treatment 
effect may vary owing to various factors. Therefore, we need a 
statistical method to prove the satisfaction or violation of the 
proportional hazard assumption.

Validation of Proportional Hazard 
Assumption

There are three representative validation methods of a pro-
portional hazard assumption. One is a graphical approach, an-
other is using the goodness of fit (GOF), and the last is applying 
a time-dependent covariate [4,5].

Graphical analysis for validation of proportional 
hazard assumption 

As mentioned in the previous article, a log minus log plot 
(LML plot) is one of the most frequently used methods for the 
validation of a proportional hazard assumption [1]. The log 
transformation is applied twice during a mathematical process 
for estimating the survival function. The first log transformation 
results in negative values because the probability values from the 
survival function lay between zero and 1, and such values should 
be made positive to conduct a second log transformation. The 
name of the LML plot implies this process. A survival function 
is the exponential form of a hazard ratio, and the hazard ratio is 
constituted with the hazard function, which is an exponential 
form of an explanatory variable. As a result of an LML transfor-
mation, the survival function is converted into a linear function-
al form, and the difference from the explanatory variable creates 
a distance on the y-axis at a time point. Ultimately, survival 
functions that are log transformed twice become parallel during 
the observation period. Deductively, two curves on an LML plot 
also become parallel, which indicates that the hazard ratio re-
mains constant during the observation period [4].

There is a risk of subjective decision regarding the validation 
of a proportional hazard assumption using an LML plot because 
this method is based on a visual check. It is recommended that 
the interpretation be as conservative as possible except under 
strong evidence of a violation, including instances in which the 
curves are crossing each other or apparently meet. A continu-
ous explanatory variable should be converted into a categorical 
variable of two or three levels to produce an LML plot. When 
doing so, the data thin out and a different result can be reached 
according to the criteria used for dividing the variable [5].

1)Sample data (Survival2_PONV.csv) and the R console output of entire 
code are provided as supplemental information. Refer to online help or 
R statistical textbooks for detailed explanations of the argument. The 
included R code covers the process beginning with the survival analysis 
introduced in [1]. A detailed description of a violation of a proportional 
hazard assumption is provided in [14].
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�R codes for Kaplan–Meier survival analysis under the 
assumption of a proportional hazard

The sample data ‘Survival2_PONV.csv’ contains the imagi-
nary data of 104 patients regarding the first onset time of post-
operative nausea and vomiting (PONV). All patients received 
one of two types of antiemetics (Drugs A or B). The columns 
represent the patient number (No), types of antiemetics (Anti-
emetics), age (Age), body weight (Wt), amount of opioid used 
during anesthesia (Inopioid), the first PONV onset time (Time), 
and whether PONV occurred (PONV). To load such data into 
R software 3.5.2 (R Development Core Team, Vienna, Austria, 
2018), the following code can be used. In this code, the loca-
tion of the CSV file on the hard drive is ‘d:\’, and users should 
adequately modify the path. This code provides the first several 
lines of data (Table 1).

# Read data
PONV.raw <- read.csv ("d:/Survival2_PONV.csv", 
                                                 TRUE, sep = ","
                                                 )
# Check imported data
head(PONV.raw) 

To conduct a survival analysis using R, two R packages are 
required, ‘survival’2) and ‘survminer’.3) When these packages 
are not supplied as a default, manual installation is not difficult 
when using the command ‘install.packages(“package name”)’. 
These packages are then called.

#Load Package: survival, survminer 
library (survival)
library (survminer)

Then, a Kaplan–Meier survival analysis is applied. The fol-
lowing code covers a Kaplan–Meier analysis, comparing the 

PONV using a log-rank test, and the LML plot introduced in 
part I of this article [1]. Small modifications of this code can en-
able a survival analysis with the user’s own data. 

### Kaplan-Meier Estimation (KME)

#Add survival object
PONV.raw$Survobj <- with(PONV.raw, 
                                          Surv(Time, PONV == 1)
                                                    )
head (PONV.raw)

## Single KME. The log-log confidence interval is preferred.

km.one <- survfit(Survobj ~1, data = PONV.raw, 
                                      conf.type = "log-log")
# Result of KME
km.one

# Survival table
summary (km.one)
# Survival curve
ggsurvplot (km.one, data = PONV.raw, 
                         conf.int = TRUE, 
                         palette = "grey", 
                         surv.median.line = "hv", 
                         break.time.by = 4, 
                         censor = TRUE, 
                         legend = "none", 
                         xlab = "Time (hour)", 
                         risk.table = TRUE, 
                         tables.height = 0.2, 
                         tables.theme = theme_cleantable(), 
                         risk.table.y.text = FALSE
)

R applies a Kaplan–Meier analysis using the new variable 
‘Survobj’. The results of a Kaplan–Meier analysis and a survival 
table are presented in Table 2. Out of 104 patients, 63 patients 
suffered from PONV, and the median onset time was 10 h. A 
graphical presentation is also possible (Fig. 1). Here, ‘ggsurvplot’ 
produces survival curves with complex arguments, fine-tuning 
the argument options to draw intuitive graphs. 

The next code is for an estimation of the survival curves ac-
cording to two antiemetics and conducting a log-rank test.

### KME by Antiemetics
km.antiemetics <- survfit (Survobj ~ Antiemetics, 
                                                 data = PONV.raw, 
                                                 conf.type = "log-log"
                                                )
# Result of KME by Antiemetics
km.antiemetics

2)Terry M. survival: Survival Analysis. R package version 2.42-4. 2018. 
https://github.com/therneau/survival.

3)Alboukadel K, Marcin K, Przemyslaw B, Scheipl F. survminer: Drawing 
Survival Curves using 'ggplot2', R package version 0.4.3. 2018. http://www.
sthda.com/english/rpkgs/survminer/.

Table 1. First Three Data Imported as PONV.raw

Result of command “head(PONV.raw)

No Antie
metics Age Wt Ino

pioid Time PONV

1 1 0 48 78.5 0 4 0
2 3 0 54 88.3 100 21 0
3 4 0 22 49.4 0 14 0
︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙

From the left, each column contains each coded variable: The first 
column has a number automatically generated by R, variable ‘No’ is a 
coded number in the original data, ‘Antiemetics’ has a value of 0 for 
Drug A and 1 for Drug B, ‘Age’ and ‘Wt’ are the actual patients’ age and 
body weight, ‘Inopioid’ is the amount of opioid used during surgery, 
‘Time’ indicates the onset time of postoperative nausea and vomiting 
(PONV), and ‘PONV’ is coded as 1 when the patient experienced 
PONV. 
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# Survival table of KME by Antiemetics
summary (km.antiemetics)

# KM estimation, log-rank test
survdiff ( formula = Surv(Time, PONV == 1) 
                      ~ Antiemetics, 
                      data = PONV.raw
                      )

# Survival curve of KME by Antiemetics
ggsurvplot ( km.antiemetics, data = PONV.raw, 
          fun = "pct", pval = TRUE,
          conf.int = TRUE, surv.median.line = "hv", 
          linetype = "strata", palette = "grey", 
          xlab="Time (hour)",
          legend.title = "Antiemetics", 
          legend.labs = c("Drug A", "Drug B"),
          legend = c(.1, .2), break.time.by = 4, 
          risk.table = TRUE, 

          tables.height = 0.2, 
          tables.theme = theme_cleantable(),
          risk.table.y.text.col = TRUE, 
          risk.table.y.text = TRUE
)

Table 3 and Fig. 2 show the results of this code. Antiemetics 
are coded as 0 for Drug A and 1 for Drug B, namely ‘Antiemetics 
= 0’ and ‘1’ represent Drugs A and B, respectively in the Table 
and Figure.

As the interpretation of a log-rank test, the survival functions 
of two antiemetics are statistically different (P = 0.009), and the 
median PONV free time is 13 and 6 h for Drugs A and B, re-
spectively.

The log-rank test is also based on the proportional hazard 
assumption, and an LML plot can be used to validate this as-
sumption. The code for this process is as follows, and the output 
graph is shown in Fig. 3.4,5) 

# LML plot
plot (survfit(Surv(Time, PONV == 1) ~ Antiemetics, 
              data = PONV.raw), fun = "cloglog")

Table 2. Results of Kaplan–Meier Estimation and Survival Table

Call: survfit(formula = Survobj ~ 1, data = PONV.raw, conf.type = "log − log")

n Events Median 0.95LCL 0.95UCL

104 63 10 7 16

Call: survfit(formula = Survobj ~ 1, data = PONV.raw, conf.type = "log − log")

Time n.risk n.event Survival std.err Lower 95% CI Upper 95% CI

1 104 8 0.923 0.0261 0.852 0.961
2 96 7 0.856 0.0345 0.772 0.910
3 89 3 0.827 0.0371 0.739 0.887
︙ ︙ ︙ ︙ ︙ ︙ ︙

n: total number of cases, Events: number of patients who experienced PONV, Median: median survival time, 0.95LCL: lower limit of 95% confidence 
interval, 0.95UCL: upper limit of 95% confidence interval, n.risk: number at risk, n.event: number of event, Survival: survival rate, std.err: standard 
error of survival rate, Lower/upper 95% CI: lower/upper limits of 95% confidence interval.

Fig. 1. Kaplan–Meier curve of overall survival status with sample data. 
A 95% confidence interval (estimated from a log hazard) is presented in 
the shadowed area. The dashed line indicates the median survival time.

4)There are several ways to draw an LML plot in R; ‘plot.survfit’ with the 
argument ‘fun = “cloglog”’ provides an LML plot of the log-scaled x-axis. 
Most statistical references describe a log-scaled x-axis LML plot, whereas 
others describe a standard linear-scaled x-axis LML plot. The R code for a 
non-log-scaled LML plot can be created through the following.

# Non-log scaled LML plot
ponvsurv=Surv(PONV.raw$Time, PONV.raw$PONV)
NLML.fun=function(p){return(log(-log(p)))}
plot (survfit(ponvsurv ~ PONV.raw$Antiemetics), fun=NLML.fun)

5)R package ‘survival’ version 2.44-1 (updated in March 2019) has an error 
with an x value of 1 when log scaled using the x-axis. Versions before 2.44-
1 work properly.
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The goodness of fir test (GOF test)

The second method for validating a proportional hazard 
assumption is a GOF test between the observed and estimated 
survival function values. This provides a P value and hence is a 
more objective method than a visual check [5].

A Schoenfeld residual test is a representative GOF test 
for validation of a proportional hazard assumption [6–8]. A 
Schoenfeld residual is the difference between explanatory vari-
ables observed in the real world and estimated using a CPH 
model for patients who experience an event. Thus, Schoenfeld 
residuals are calculated using all explanatory variables included 
in the model. If the CPH model includes two explanatory vari-
ables, the two Schoenfeld residuals come out for one patient at a 
time.6)

Because the hazard ratio is constant during the observation 
period (a proportional hazard assumption), Schoenfeld residuals 

are independent of time. A violation of the proportional hazard 
assumption may be suspected when the Schoenfeld residual plot 
presents a relationship with time. Also, a Schoenfeld residual 
test is possible under a null hypothesis of ‘there is no correlation 
between the Schoenfeld residuals and ranked event time’.7) 

Schoenfeld residual tests cannot be used to validate a propor-
tional hazard assumption in a Kaplan–Meier estimation because 
it is based on estimated values using the CPH model. A Schoen-

Table 3. Results of Kaplan–Meier Estimation between Antiemetics, Survival Tables of Two Antiemetics, and Comparison Results of Log-rank Test

Call: survfit(formula = Survobj ~ Antiemetics, data = PONV.raw, conf.type = "log − log")

n Events Median 0.95LCL 0.95UCL

Antiemetics = 0 51 25 13 9 NA
Antiemetics = 1 53 38 6 4 10

Call: survfit(formula = Survobj ~ Antiemetics, data = PONV.raw, conf.type = "log − log")

Antiemetics = 0

Time n.risk n.event Survival std.err Lower 95% CI Upper 95% CI

1 51 1 0.980 0.0194 0.869 0.997
2 50 2 0.941 0.0329 0.829 0.981
3 48 1 0.922 0.0376 0.804 0.970
4 47 2 0.882 0.0451 0.757 0.945
︙ ︙ ︙ ︙ ︙ ︙ ︙

Antiemetics = 1

Time n.risk n.event Survival std.err Lower 95% CI Upper 95% CI

1 53 7 0.868 0.0465 0.743 0.935
2 46 5 0.774 0.0575 0.636 0.865
3 41 2 0.736 0.0606 0.595 0.834
4 39 6 0.623 0.0666 0.478 0.738
︙ ︙ ︙ ︙ ︙ ︙ ︙

Call: survdiff(formula = Surv(Time, PONV == 1) ~ Antiemetics, data = PONV.raw)

N Observed Expected

Antiemetics = 0 51 25 34.9
Antiemetics = 1 53 38 28.1
Chisq = 6.8 on 1 degrees of freedom, P = 0.009

Antiemetics = 0 and 1 indicate Drugs A and B, respectively. Because the variable ‘Antiemetics’ is coded as 0 for drug A and 1 for drug B, the R output 
only describes these as ‘Antiemetics = 0 and 1’. n: total number of cases, Events: number of patients who experienced postoperative nausea and 
vomiting, Median: Median survival time, 0.95LCL: lower limit of 95% confidence interval, 0.95UCL: upper limit of 95% confidence interval, n.risk: 
number at risk, n.event: number of events, Survival: survival rate, std.err: standard error of survival rate, Lower/upper 95% CI: lower/upper limits of 
95% confidence interval, Chisq: chi-squared statistics.

6)Schoenfeld residual is only for the patient who experienced the event. 
It is the difference between observed value of explanatory variable at a 
specific time and expected value of the explanatory variable (covariate) at 
a specific time which is a weighted-average value by likelihood of event 
from the risk set at that time point.

7)Some statistical software provides a method using scaled Schoenfeld 
residuals. Under a specific circumstance, these two results are different, 
although they mostly produce similar results. Please refer to the following: 
Grambsch, P.M. and Therneau, T.M. 1994. Proportional hazards tests and 
diagnostics based on weighted residuals. Biometrika 81: 515-526.



446 Online access in http://ekja.org

VOL. 72, NO. 5, October 2019Survival analysis part II

feld residual test is lacking in terms of the statistical hypothesis 
testing process. Null hypothesis significance testing applies a 
statistical process to validate ‘no difference,’ and when the null 
hypothesis is not true under a significant level, an alternative 
hypothesis is true except for the probability of the significance 
level, that is, differences exist between comparatives within the 
probability of significance. A Schoenfeld residual test deter-
mines whether a proportional hazard assumption is violated 
based on the probability of the correlation statistics. Correlation 
statistics with a higher probability than the significance level 
result in a satisfaction of the proportional hazard assumption 
without null hypothesis testing. This method cannot guarantee 
sufficient evidence to reject a hypothesis, however. Furthermore, 
the P value is dependent on the sample size, and large sample 
size will produce a high significance with a minimal violation of 
the assumption; an apparent assumption violation may be insig-
nificant with small sample size. Although a Schoenfeld residual 
test is more objective than an LML plot, the use of two methods 
simultaneously is recommended owing to the problems listed 
above [4,5,7].

�R codes for the Cox proportional hazard regression 
model and GOF test

To estimate a CPH model, libraries used in a Kaplan–Meier 
analysis are also required. After importing the data and calling 
the required libraries, the CPH model can be estimated accord-
ing to the antiemetics using the following code.

# Univariate Cox proportional hazard model 
# for a single covariate
cph.antiemetics <- coxph(Surv(Time, PONV == 1) ~ Antiemetics 
                                               , data = PONV.raw
                                               )
summary(cph.antiemetics)

Table 4 summarizes the results. The PONV incidence rate is 
1.9471-fold higher (95% CI, 1.174–3.229, P = 0.010) in the drug 
B groups than in the drug A groups.

Survival2_PONV.csv has four covariates. A multivariate 
analysis is possible using these covariates with a CPH model. 
Multivariate analysis can estimate the most compatible model, 
including significant covariates, through regression diagnostic 
statistics. Still, several controversies remain [9], both directional 
stepwise selection methods are applied in this example.

# Multivariate Cox regression
cph.full <- coxph (Surv(Time, PONV == 1) 
                    ~ Antiemetics + Age + Wt + Inopioid
                    , data = PONV.raw
                    )
summary (cph.full)

# Variables selection
cph.selection <- step( 
                         coxph(Surv(Time, PONV == 1) 
                         ~ Antiemetics + Age + Wt + Inopioid
                         , data = PONV.raw) 
                         , direction = "both"
                         )
summary (cph.selection)

# Final model selected
cph.selected <- coxph(Surv(Time, PONV == 1) 
                                         ~ Antiemetics + Inopioid
                                         , data = PONV.raw
                                         )
summary (cph.selected)

Fig. 2. Kaplan–Meier curves of two antiemetics with sample data. The 
P value is estimated based on a log-rank test. A 95% confidence interval 
(estimated from a log hazard) is presented in the shadowed area. The 
dashed lines indicate the median survival times of groups taking Drugs 
A and B. Drug A is coded as ‘Antiemetics = 0’ and Drug B is coded as 
‘Antiemetics = 1’ in the original data.

Fig. 3. Log minus log plot of Kaplan–Meier estimation with log-rank 
test between two antiemetics. The two curves do not meet during the 
observation period, indicating the satisfaction of the proportional 
hazard assumption. The log-time scale is shown in the x-axis.
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After examining the full model including all covariates 
(summary(cph.full)), the most compatible model is confirmed 
through a covariate selection (summary(cph.selection)), and a 
clean result is finally obtained (summary(cph.selected)). Table 5 
shows the final model. According to the result, the PONV incre-
ment is estimated as 2.021-fold (95% CI, 1.217–3.358, P = 0.007) 
based on the antiemetics, and 1.013-fold (95% CI, 1.008–1.018, 
P < 0.001) based on intraoperative opioid usage.

The next code draws survival curves against the antiemetics 

for the final model (Fig. 4).8)

# Survival curves of the Cox PH model
# grouped by Antiemetics 
new.cph.antiemetics <-with (PONV.raw

Table 4. Results of the Cox Proportional Hazard Model Estimation Using Antiemetics with Sample Data

Call: coxph(formula = Surv(Time, PONV == 1) ~ Antiemetics, data = PONV.raw)

n = 104, number of events = 63

coef exp(coef) se(coef) z Pr(>|z|)

Antiemetics 0.6664 1.9471 0.2581 2.582 0.00983**
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

exp(coef) exp(-coef) Lower .95 Upper .95

Antiemetics 1.947 0.5136 1.174 3.229

Concordance = 0.615 (se = 0.032 )
Rsquare = 0.064 (max possible = 0.993 )
Likelihood ratio test = 6.85 on 1 df, P = 0.009
Wald test = 6.67 on 1 df, P = 0.01
Score (logrank) test = 6.91 on 1 df, P = 0.009

‘Antiemetics’ is coded as 0 for Drug A or 1 for Drug B in the original data. coef: the value of coefficient, exp(coef): exponential value of coefficient, 
se(coef): standard error of coefficient, z: z-statistics, Pr(>|z|): P value of given z-statistics, Signif. codes: codes for significance marking.

Table 5. Multivariate Cox Proportional Hazard Model with Sample Data

Call: coxph(formula = Surv(Time, PONV == 1) ~ Antiemetics + Inopioid, data = PONV.raw)

n = 104, number of events = 63

coef exp(coef) se(coef) z Pr(>|z|)

Antiemetics 0.703650 2.021116 0.258971 2.717 0.00659** 
Inopioid 0.012740 1.012821 0.002417 5.271 1.35e-07***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 

exp(coef) exp(-coef) Lower .95 Upper .95

Antiemetics 2.021 0.4948 1.217 3.358
Inopioid 1.013 0.9873 1.008 1.018

Concordance = 0.694 (se = 0.03 )
Rsquare = 0.284 (max possible= 0.993 )
Likelihood ratio test = 34.69 on 2 df, P = 3e-08
Wald test = 34.09 on 2 df, P = 4e-08
Score (logrank) test = 38.29 on 2 df, P = 5e-09

‘Antiemetics’ is coded as 0 for Drug A or 1 for Drug B in the original data. ‘Inopioid’ is the amount of opioid used during surgery. coef: the value 
of coefficient, exp(coef): exponential value of coefficient, se(coef): standard error of coefficient, z: z-statistics, Pr(>|z|): P value of given z-statistics, 
Signif. codes: codes for significance marking.

8)�The command ‘ggadjustedcurves’ included in the ‘survminer’ library 
easily produces the survival curves of the CPH model. Unfortunately, this 
command still has minor functional errors such as in printing the 95% CI 
or labelling, and a somewhat complex ‘ggsurvplot’ is used in this example.
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                              ,data.frame(Antiemetics = c(0, 1), 
                              Inopioid = c(0,0)
                              ))
new.cph.antiemetics.fit <- survfit(cph.selected
                               , newdata = new.cph.antiemetics
                               )
ggsurvplot(new.cph.antiemetics.fit
                     , data = PONV.raw
                     , conf.int = TRUE 
                     , conf.int.style = "step"
                     , censor = FALSE
                     , palette = "grey" 
                     , break.time.by = 4
                     , linetype = "solid"
                     , axes.offset = FALSE 
                     , xlab = "Time (hour)"
                     , legend = c(0.1, 0.15) 
                     , legend.labs = c("Drug A", "Drug B")
                     , legend.title = "Antiemetics")

The R code for an LML plot is described above. For cate-
gorical variables, an LML plot provides an easy to interpret and 
intuitive validation method for a proportional hazard assump-
tion.9) Validation of the proportional hazard assumption of the 
antiemetics, which is a categorical variable, is possible using an 
LML plot. (Fig. 5) 

#LML for CoxPH
plot (survfit(coxph(Surv(Time, PONV == 1) 
                                             ~ strata(Antiemetics) 
                                             , data = PONV.raw
                                             )
                            ), 
               fun = "cloglog"
               )

The proportional hazard assumption of the antiemetics is not 
violated according to the graphs shown in Fig. 5. The covariate 

“Inopioid” is a continuous type of variable, and an LML plot 
using this variable is impossible to achieve without a categorical 
transformation.

A Schoenfeld residual test is shown below. Here, ‘cox.zph’ in-
cluded in the ‘survminer’ library enables this test. The results are 
listed in Table 6, and graphical output is shown in Fig. 6. 

# Schoenfeld residuals test
sf.residual <- cox.zph(cph.selected) 
print(sf.residual)                      # display the results 
par (mfrow = c(2,1))
plot(sf.residual[1])                   # plot curves
abline (h = coef(cph.selected)[1]
                 , lty = "dotted", lwd = 1)
plot(sf.residual[2]) 
abline (h = coef(cph.selected)[2]
                 , lty = "dotted", lwd = 1)

The P value in Table 6 indicates the significance probability 
of the Schoenfeld residual test for the antiemetics and intraop-
erative opioid used, and such values indicate a violation of the 
proportional hazard assumption. A positive increment of the 
Schoenfeld residual curve for ‘Inopioid’ is shown in Fig. 6. The 
curve for the antiemetics gradually changes toward a negative 

Fig. 5. LML plot of Cox proportional hazards model based on antie
metics with sample data.

Table 6. Results of the Schoenfeld Residual Test

Results of ‘print(sf.residual)’

rho chisq P

Antiemetics −0.275 4.5 0.0340
Inopioid 0.307 5.36 0.0206
GLOBAL NA 10.26 0.0059

‘Antiemetics’ is coded as 0 for Drug A or 1 for Drug B in the original 
data. ‘Inopioid’ is the amount of opioid used during surgery. rho: Spear
man’s ρ statistics, chisq: chi-squared statistics, P: P value.

Fig. 4. Survival curves of antiemetics estimated using the Cox pro
portional hazards regression model. a solid black line indicates Drug A 
(Antiemetics = 0) and a solid grey line indicates Drug B (Antiemetic = 
1). Dashed lines present a 95% CI range. Drug A is coded as ‘Antiemetics = 
0’ and drug B is coded as ‘Antiemetics = 1’ in the original data.

9)�In R, categorical variables should be treated as a stratum for comparison 
using an LML plot of the CPH model.
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value over time, but not continuously. In this way, a Schoenfeld 
residual test provides more objective results than an LML plot, 
which is strictly conservative.

Adding a time-dependent covariate

To validate a proportional hazard assumption in a CPH mod-
el, a time-dependent covariate is intentionally added into the 
estimated model. This covariate can be made using a time-inde-
pendent variable and time, or a function of time. For example, 
the process compares two models, namely, a CPH model that 
assumes the proportional hazard assumption has not been vio-
lated, and another model incorporated with a combined covari-
ate of the explanatory variable and time (or a function of time) 
in the estimated CPH model. A likelihood ratio test or Wald sta-
tistics are used for comparison. This type of method has certain 
advantages, including a simultaneous comparison with multiple 
covariates and various time functions; note that the results may 
change depending on the covariates and types of functions se-
lected [5,10,11].10) 

Cox Proportional Hazard Regression Models 
with Time-dependent Covariates

Covariates violating the proportional hazard assumption in a 
CPH model should be adequately adjusted. This section intro-
duces a stratification and time-dependent Cox regression to deal 
with covariates violating the proportional hazard assumption. 

Stratified Cox proportional hazard model

To fit the CPH model with variables violating the propor-

tional hazard assumption, one method is to apply a stratified 
CPH model. This method makes one integrated result from the 
results of each stratum containing a categorical variable classi-
fied based on a certain criterion. Unlike the Mantel–Haenszel 
method, which is based on the sample size of each stratum, 
stratification in the CPH model sets a different baseline hazard 
corresponding to each stratum, and a statistical estimation is 
then applied to achieve common coefficients for the remaining 
explanatory variables except for the stratified variables.11) This 
provides a hazard ratio of the controlled effects of variables vio-
lating the proportional hazard assumption [12]. 

A stratified CPH model can be applied to control the vari-
ables violating a constant hazard assumption, as well as to 
control the confounding factors that influence the results with 
little or no clinical significance. Stratification always requires 
categorical variables, and conversion into categorical variables 
is required for continuous variables. Under this situation, care 
should be taken that the sample size of each stratum is reduced 
(data thinned out) and information held by the continuous 
variable is simplified. Therefore, conversion into a categorical 
variable should consider as small number of strata as possible, 
setting the range of clinical or scientific meaning, and maintain-
ing a balance among the strata [12]. 

Fig. 6. Schoenfeld residual plot with 
‘Antiemetics’ and ‘Inopioid’. Dotted hori

zontal lines indicate the estimated coef
ficient values of these covariates.

10)�Because various application methods and their variations are available, 
they are not discussed in detail herein.

11)���This is a non-interaction stratified CPH model. Several survival functions 
are estimated through stratification, and if the explanatory variables 
have interactions with each other, the coefficients at each stratum may 
be different. In this case, it is assumed that an interaction model between 
explanatory variables and a likelihood ratio test provide clues to judge 
whether there is an interaction between explanatory variables. That is, if 
two or more variables are included in the model, it is necessary to check 
whether an interaction between them exists.
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R codes for stratified Cox proportional hazard model

In the previous CPH modeling, the variable ‘Inopioid’ vio-
lated the constant hazard assumption based on the Schoenfeld 
residual test (Fig. 6). Here, ‘Inopioid’ is a continuous variable 
that records the dose of intraoperatively used opioid. To apply a 
stratified CPH modeling, continuous variables should be con-
verted into categorical variables. For convenience, the following 
is a code that converts ‘Inopioid’ into a categorical variable of 0 
or 1, when not used or used, respectively.

##### Stratified Cox regression 
### Add categorical variables from Inopioid
PONV.raw <- transform(PONV.raw, 
                               Inopioid_c = ifelse(
                                     Inopioid == 0, 0, 1))
head (PONV.raw)

According to this, the categorical variable ‘Inopioid_c’ is re-
corded as 0 or 1 and is newly added to the dataset (Table 7).

Next, the code for a stratified CPH model is as follows:

### Stratified Cox proportional hazard modeling
cph.strata <- coxph (Surv(Time, PONV == 1) 
                         ~ Antiemetics + strata(Inopioid_c)
                                            , data = PONV.raw)

summary (cph.strata)

ggsurvplot(survfit(cph.strata)
                     , data = PONV.raw
                     , risk.table = TRUE 
                     , palette = c("black","black")
                     , linetype = c("solid","dashed")
)

par( mfrow = c(1,1))
plot (survfit(cph.strata)
           , fun = "cloglog"

Table 7. PONV.raw Added a New Categorical Variable ‘Inopioid_c’ from the Variable ‘Inopioid’

Results of ‘head (PONV.raw)’

No Antiemetics Age Wt Inopioid Time PONV Survobj Inopioid_c

1 1 0 48 78.5 0 4 0 4+ 0
2 3 0 54 88.3 100 21 0 21+ 1
3 4 0 22 49.4 0 14 0 14+ 0
︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙

‘Survobj’ is a variable created by an R command during the process of a Kaplan–Meier estimate, and indicates a survival object. ‘Inopioid_c’ is a newly 
created categorical variable based on ‘Inopioid’, which is coded as 0 for an opioid not used or 1 for an opioid used during operation. From left, each 
column contains each coded variable: The first column has a number automatically generated by R, the variable ‘No’ is a coded number in the original 
data, ‘Antiemetics’ has a value of 0 for Drug A and 1 for Drug B, ‘Age’ and ‘Wt’ are the actual patients’ age and body weight, ‘Inopioid’ is the amount 
of opioid used during surgery, ‘Time’ indicates the onset time of postoperative nausea and vomiting, and ‘PONV’ is coded as 1 when the patient 
experienced postoperative nausea and vomiting. 

Table 8. Results of Stratified Cox Proportional Hazard Model. Stratification with ‘Inopioid_c’

Call: coxph(formula = Surv(Time, PONV == 1) ~ Antiemetics + strata(Inopioid_c), data = PONV.raw)

n = 104, number of events = 63

coef exp(coef) se(coef) z Pr(>|z|)

Antiemetics 0.7282 2.0714 0.2625 2.774 0.00553**
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

exp(coef) exp(-coef) Lower .95 Upper .95

Antiemetics 2.071 0.4828 1.238 3.465
Concordance = 0.634 (se = 0.034 )
Rsquare = 0.074 (max possible = 0.979 )
Likelihood ratio test = 7.96 on 1 df, P = 0.005
Wald test = 7.7 on 1 df, P = 0.006
Score (logrank) test = 8.03 on 1 df, P = 0.005

‘Antiemetics’ is coded as 0 for Drug A or 1 for Drug B in the original data. ‘Inopioid_c’ is a newly created categorical variable based on ‘Inopioid’, 
which is coded as 0 for an opioid not used or 1 for an opioid used during operation. coef: the value of coefficient, exp(coef): exponential value of 
coefficient, se(coef): standard error of coefficient, z: z-statistics, Pr(>|z|): P value of given z-statistics, Signif. codes: codes for significance marking.
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           , main = "Antiememtics"
)

sf.residual.strata <- cox.zph(cph.strata) 
print(sf.residual.strata) 
plot(sf.residual.strata)
abline (h = coef(cph.strata)
                , lty = "dotted"
                , lwd = 1)

This code outputs a stratified CPH model by controlling ‘In-
opioid_c’ (Table 8). The command ‘ggsurvplot’ provides survival 
curves of two strata and prints the LML plot using the last ‘plot’ 
command (Fig. 7). The Schoenfeld residual test using a ‘cox.
zph’ command reveals that ‘Antiemetics’ violates the propor-
tional hazard assumption (rho = −0.265, chisq = 4.26, P = 0.039, 
shown in Fig. 8). It is possible to obtain an adequate CPH model 
by stratifying ‘Inopioid’ and ‘Antiemetics’, although the inter-
pretations may be complex because it is difficult to integrate the 
comparison results among all strata. 

Time-dependent Cox regression

Most clinical situations change over time, and the variables 
affected by a specific treatment also change even when the treat
ment remains constant during the observation period [13]. 
For example, consider an analgesic having a toxic effect on the 
hepatobiliary function for patients with chronic pain. A periodic 

liver function test will be crucial, and all laboratory results will 
vary for every follow-up time. The administration dose may 
also vary according to the laboratory results or analgesic effects. 
Moreover, the laboratory results may not be valid after the 
patients are censored or after an event occurs. These variables 
are common in clinical practice, and the existence of time-de-
pendent variables should be considered and checked before 
starting the data collection for survival analysis. If an adequate 

Fig. 7. Examples of the stratified Cox proportional hazard model and corresponding LML plot. (A) Survival curves of estimated stratified Cox 
proportional hazard model. Stratification is achieved using the categorical variable ‘Inopioid_c’. (B) Log-minus log plot for evaluation of proportional 
hazard assumption against two antiemetics. Note that a non-parallelism of below 2 h is not assured, whereas the overall curves are roughly parallel 
without crossing.

Fig. 8. Schoenfeld residual test for the stratified Cox proportional 
hazard model. For the covariate ‘Antemetics’, the probability was esti
mated as 0.039, and a violation of the proportional hazard assumption 
was strongly suggested under the controlled covariate ‘Inopioid’ (the 
dotted horizontal line shows the estimated coefficient of ‘Antiemetics’).
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measurement method is developed, a time-dependent covariate 
Cox regression will be possible. Another type of time-dependent 
variable is a covariate with a time-dependent coefficient [14]. If 
the analgesics mentioned above produces a level of tolerance, its 
effect decreases over time. This indicates that the risk of break-
through pain occurrence may be higher as time passes, which 
apparently violates the proportional hazard assumption. In this 
case, the effect of the analgesics can be included in the survival 
function, which is expressed as a covariate with a coefficient of 
the function of time. 

As mentioned above, a time-dependent covariate is incorpo-
rated into the analysis as a single value according to the repeated 
observation intervals. For example, a patient under analgesics 
medication takes an initial liver function test, the results of 
which show 40 IU/L and 100 IU/L after four weeks with contin-
ued pain and 130 IU/L at eight weeks with pain, whereas at 12 
weeks after analgesics administration, the pain is subsided and 
medications are discontinued without a further laboratory test. 
The laboratory data input for the time-dependent covariate are 
40 until 4th weeks without an event, 100 from 4th to 8th weeks 
without an event, 130 from 8th to 12th weeks, and an event oc-
curs at 12th weeks.

Clinical studies in the area of anesthesiology often include 
variables related to the response or effect of a specific treatment 
or medication. Depending on the characteristics and measure-
ment methods of the variables, once a specific treatment or 
medication is applied, their effects are gradually decreased over 
time or delayed until the onset time. The effects of treatment 
or medication changes over time, the coefficient of these effects 
can be expressed as a time function, and for Cox regression, a 
step function is frequently applied. A step function is a method 
applying different coefficient values to different time intervals. A 
Cox regression can thus be established and output the integrated 
results [15]. In addition, a continuous parametric function for a 
time-dependent coefficient can be used for analysis instead of a 
step function [14].

�R code for time-dependent coefficient Cox regression 
model: step function

As shown in Fig. 6, the Schoenfeld residuals of ‘Antiemetics’ 
and ‘Inopioid’ turn from positive to negative or vice versa at 
approximately 3 and 6 h. The data are arbitrarily separated using 
these time points.

tdc <- survSplit (Surv(Time, PONV) ~.
                                     , data = PONV.raw
                                     , cut=c(3, 6)
                                     , episode = "tgroup"
                                     , id = "id"
                                     )

head(tdc)

The command ‘survSplit’ separates the patient data according 
to the established time interval, where the value for each interval 
is the measured value on the left side of the interval (start time, 
‘tstart’), and ‘Time,’ which is the end of the interval succeeds 
the next interval. That is, one interval is closed at the left and 
opened at the right, and if an event occurs during the interval, 
the survival function is estimated using the variables measured 
at the left side of the interval (Table 9). It seems that the data be-
ing duplicated at the end and the start of the interval, problems 
do not occur because the divided time does not overlap. It is 
possible to apply a Cox regression and GOF test with these sepa-
rated data.

# Fitting Cox regression
fit.tdc <- coxph(Surv(tstart,Time, PONV) 
                                   ~ Antiemetics:strata(tgroup) 
                                   + Inopioid
                                   , data = tdc)

summary(fit.tdc)

# GOF test
sf.tdc <- cox.zph(fit.tdc)

Table 9. Data Divided by survSplit Function

No Antie
metics Age Wt Inopioid Survobj Inopioid_c id tstart Time PONV tgroup

1 1 0 48 78.5 0 4+ 0 1 0 3 0 1
2 1 0 48 78.5 0 4+ 0 1 3 4 0 2
3 3 0 54 88.3 100 21+ 1 2 0 3 0 1
4 3 0 54 88.3 100 21+ 1 2 3 6 0 2
5 3 0 54 88.3 100 21+ 1 2 6 21 0 3
︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙ ︙

All personal data are separated according to a preset time period (at 3 and 6 h). The same ‘id’ number indicates the same person. For example, data 
with id = 1 are separated into two time periods. The first period starts from time = 0 (tstart = 0) and ends at 3 (Time = 3) and PONV does not occur. 
The second period starts from 3 to 4 (the observation is prematurely ended before 6) and PONV does not occur. The same time period is indicated as 
tgroup (time group) in the last column. The other variables are the same as in Table 7. 



453Online access in http://ekja.org

KOREAN J ANESTHESIOL In and Lee

print (sf.tdc)

par(mfrow=c(2,2))
plot(sf.tdc[1])
abline (h = coef(fit.tdc)[1], lty = "dotted")
plot(sf.tdc[2])
abline (h = coef(fit.tdc)[2], lty = "dotted")
plot(sf.tdc[3])
abline (h = coef(fit.tdc)[3], lty = "dotted")
plot(sf.tdc[4])
abline (h = coef(fit.tdc)[4], lty = "dotted")

Table 10 shows the estimated Cox regression and GOF test 
results, and Fig. 9 presents a plot of the Schoenfeld residuals. 
The risk of the PONV increases 1.0126-fold (95% CI: 1.0078–
1.017, P < 0.001) by one unit of intraoperative opioid. For the 
antiemetics, the group taking drug B showed an increased 
PONV risk of 3.6545-fold (95% CI: 1.2024–11.107, P = 0.022) 
until 3 h post-operation, 3.8969-fold (95% CI: 1.4020–10.831, P 

= 0.009) until 6 h post-operation, with no significant difference 
shown until the end of the observation (risk ratio = 0.9382, 
95% CI: 0.4242–2.075, P = 0.957). The results of the Schoenfeld 
residual test (Table 10 and Fig. 9) indicate that all variables do 
not violate the proportional hazard assumption. These results 
cannot provide a single desired outcome, and it is necessary to 
combine the results.

# Combined results
combine.tdc <- data.frame(tstart = rep(c(0,3,6), 2)
     , Time = rep(c(3,6, 24), 2)
     , PONV = rep(0,12)
     , tgroup= rep(1:3,4)
     , trt = rep(1,12)
     , prior= rep(0,12)
     , Antiemetics = rep(c(0,1), each = 6)
     , Inopioid = rep (c(0,1), each = 3)
     , parameter = rep(0:1, each = 6)
)

Table 10. Results of Time-dependent Coefficient Cox Regression Using Step Function and Schoenfeld Residual Test

Call: coxph(formula = Surv(tstart, Time, PONV) ~ Antiemetics:strata(tgroup) + Inopioid, data = tdc)

n = 250, number of events = 63 

coef exp(coef) se(coef) z Pr(>|z|)

Inopioid 0.012477 1.012556 0.002413 5.172 2.32E-07***
Antiemetics: strata(tgroup)tgroup = 1 1.295949 3.654464 0.567181 2.285 0.02232*
Antiemetics: strata(tgroup)tgroup = 2 1.360185 3.896914 0.521567 2.608 0.00911**
Antiemetics: strata(tgroup)tgroup = 3 −0.063743 0.938247 0.404993 −0.157 0.87494
---

Results of Schoenfeld residual test

rho chisq P

Inopioid 0.29948 5.150327 0.0232
Antiemetics: strata(tgroup)tgroup = 1 −0.02755 0.047411 0.8276
Antiemetics: strata(tgroup)tgroup = 2 −0.00368 0.000845 0.9768
Antiemetics: strata(tgroup)tgroup = 3 0.02486 0.038692 0.8441
GLOBAL NA 5.199691 0.2674

‘Antiemetics’ is coded as 0 for Drug A or 1 for Drug B in the original data. ‘Inopioid’ is the amount of opioid used during surgery. The split time 
periods are presented as Antiemetics:strata(tgroup)tgroup = 1 for the time period from 0 to 3, Antiemetics:strata(tgroup)tgroup = 2 for the time 
period from 3 to 6, and Antiemetics:strata(tgroup)tgroup = 3 for the time period from 6 to the end of the observation. coef: the value of coefficient, 
exp(coef): exponential value of coefficient, se(coef): standard error of coefficient, z: z-statistics, Pr(>|z|): P value of given z-statistics, Signif. codes: 
codes for significance marking.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) Lower .95 Upper .95

Inopioid 1.0126 0.9876 1.0078 1.017
Antiemetics: strata(tgroup)tgroup = 1 3.6545 0.2736 1.2024 11.107
Antiemetics: strata(tgroup)tgroup = 2 3.8969 0.2566 1.4020 10.831
Antiemetics: strata(tgroup)tgroup = 3 0.9382 1.0658 0.4242 2.075
Concordance = 0.67 (se = 0.031 )
Rsquare = 0.152 (max possible = 0.874)
Likelihood ratio test = 41.35 on 4 df, P = 2e-08
Wald test = 38.92 on 4 df, P = 7e-08
Score (logrank) test = 44.61 on 4 df, P = 5e-09



454 Online access in http://ekja.org

VOL. 72, NO. 5, October 2019Survival analysis part II

combine.tdc

cfit.tdc <- survfit(fit.tdc
                                          , newdata = combine.tdc
                                          , id = parameter
)

cfit.tdc

km <- survfit(Surv(Time, PONV) ~Antiemetics
                              , data = PONV.raw
)

summary (km)
km

par( mfrow = c(1,1))
plot(km, xmax= 24, col="Black"
          , lty = c("solid","dashed"), lwd=2
          , xlab="Postoperative hours"
          , ylab="PONV free"
)
lines(cfit.tdc, col="Grey"
                      , lty= c("solid","dashed"), lwd=2)
legend (x = 0.15, y = 0.25
  , c("Drug A, Kaplan-Meier estimation"
  , "Drug B, Kaplan-Meier estimation"
  , "Drug A, Cox regression with time-dependent coefficient"
  , "Drug B, Cox regression with time-dependent coefficient"
  )
  , col = c("black", "black", "grey", "grey")
  , lty = c("solid", "dashed", "solid", "dashed")
  )

To compare the results from two antiemetics, the data divid-
ed by ‘survSplit’ are combined to enable an interpretation (com-
bine.tdc). The results are shown in Table 11. The survival model 
considering the time-dependent coefficient increases the sample 
size because the data of one patient are separated at the estab-
lished time points. Note that the median survival times in this 
model are 31 and 16 h, and the median survival times from the 

Table 11. Comparison Kaplan–Meier Analysis and Survival Analysis 
with Time-dependent Coefficient

Kaplan–Meier analysis

n Events Median 0.95LCL 0.95UCL

Antiemetics = 0 51 25 13 10 NA
Antiemetics = 1 53 38 6 5 12

Survival analysis with time-dependent coefficient

n Events Median 0.95LCL 0.95UCL

0 104 126 31 17 40
1 104 126 16 10 26

Proportional hazard assumed Kaplan–Meier analysis results are pre
sented in the upper part of the table. Note that this result is the same 
as in Table 3. The lower part of this table presents the results of a Cox 
regression with a time-dependent coefficient. The median survival is 
different from the proportional hazard assumed analysis. Antiemetics 
= 0 and 1 indicate Drugs A and B respectively. n: total number of cases, 
Events: number of patients who experienced postoperative nausea and 
vomiting, 0.95LCL: lower limit of 95% confidence interval, or 0.95UCL: 
upper limit of 95% confidence interval.

Fig. 9. Schoenfeld residual graphs of time-dependent coefficient Cox regression.
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Kaplan–Meier analysis are 13 and 6 h. Plotting these two models 
into a single graph enables a visual comparison (Fig. 10). Here, 
although ‘ggsurvplot’ provides comprehensive graphs, it cannot 
draw two graphs simultaneously. Another graphics software is 
required to make a single graph from these graphs (Fig. 11).

## plot using ggsurvplot

ggsurvplot ( km, data = PONV.raw, 
           fun = "pct", pval = TRUE, 
           conf.int = TRUE, surv.median.line = "hv", 
           linetype = "strata", palette = "grey", 
           legend.title = "Antiemetics", 
           legend.labs = c("Drug A", "Drug B"),
           legend = c(.1, .2), break.time.by = 4, 
           xlab = "Time (hour)",
           risk.table = TRUE, tables.height = 0.2,
           tables.theme = theme_cleantable(),
           risk.table.y.text.col = TRUE, 
           risk.table.y.text = TRUE
)
ggsurvplot ( cfit.tdc, data = PONV.raw, 
           fun = "pct",
           conf.int = TRUE, surv.median.line = "hv", 
           linetype = "strata", palette = "grey", 
           legend.title = "Antiemetics", 
           legend.labs = c("Drug A", "Drug B"),
           legend = c(.1, .2), break.time.by = 4, 
           xlab = "Time (hour)",
           risk.table = TRUE, tables.height = 0.2,
           tables.theme = theme_cleantable(),
           risk.table.y.text.col = TRUE, 
           risk.table.y.text = TRUE 
)

Conclusions

Clinical studies in the area of anesthesiology had rarely pre-
sented statistical results using survival analysis. In recent years, 
studies on the survival or recurrence of cancer according to the 
anesthetics have been actively published [16–18]. Survival anal-
ysis has the power to present clear and comprehensive results 
based on studies on pain control or the effects of medications. 
Previous articles have focused on the basic concepts of survival 
analysis and interpretations of the published results [1], and the 
present article covered the process of conducting a survival anal-
ysis using clinical data, finding errors, and achieving adequate 
results. Although this article does not include all existing sur-
vival analysis methods, it introduced several R codes to enable 
an intermediate level of survival analysis for clinical data in the 
field of anesthesiology.12) 

Some clinical papers dealing with a survival analysis have 
presented statistical results without considering a proportional 
hazard assumption or an interaction between the covariates and 
time. The power of a log-rank test, which is commonly used 
to compare two groups, tends to decrease when a proportional 
hazard assumption is violated and can generate an incorrect re-
sult [19,20]. An investigation into the reporting of survival anal-
ysis results in leading medical journals indicated that the use of 
survival analysis has significantly increased, although several 
problems still exist, including descriptions regarding the censor-
ing, sample size calculation, constant proportional hazard ratio 
assumption validations, and GOF testing [21]. Because most 
statistical analyses require several basic assumptions, survival 
analysis also requires some essential assumptions. In a Kaplan–
Meier analysis, the likelihood of an event of interest and censor-
ing occurring should be independent from each other, and the 
survival probabilities of patients who participated in earlier and 
later studies should be similar. A log-rank test also requires the 
previously described and proportional hazard assumptions [22]. 
A CPH model requires a proportional hazard assumption, inde-
pendence between the survival times among different patients, 
and a multiplicative relationship between the predictors and 
hazard [23].

Fig. 10. Graphical comparison between survival models of Kaplan–
Meier and Cox regression with time-dependent coefficient. Black curves 
indicate the model fitted using a Kaplan–Meier analysis, and the gray 
curves are from a Cox regression with a time-dependent coefficient. 
The solid lines indicate Antiemetics = 0 (Drug A), and the dashed lines 
indicate Antiemetics = 1 (Drug B).

12)A clustered event time analysis and an accelerated failure time analysis 
are often applied to survival analysis methods in clinical study. A clustered 
event time analysis is similar with a stratified CPH model, and has certain 
advantages when each stratum has insufficient event cases. It has two 
types of processes, one is a marginal approach that estimates the survival 
function through an overall cluster from the pooled effect of each stratum, 
and another is a conditional approach that estimates the survival function 
from the heterogeneity between clusters. An accelerated failure time 
analysis estimates the model similarly with a linear regression based on a 
Weibull distribution or log-logistic distribution. Unlike a CPH model that 
continuously maintains the risk ratio of the covariates, this model assumes 
that the disease process can be accelerated or decelerated over time.
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When reporting or interpreting the results of survival anal-
ysis, it is important that the identification of the underlying 
assumptions corresponds to the statistical analysis, and it is 
necessary to verify that the assumptions are reasonable and well 
maintained. Statistical results with violated assumptions cause 
deviated decisions because of an increased probability of error. 
Survival analysis will be a powerful tool to achieve a scientific 
conclusion when an appropriate method is chosen with regard 
to the nature of the variables, the relationship with time, and 
other basic assumptions.

Conflicts of Interest 

No potential conflict of interest relevant to this article was 
reported.

Author Contributions 

Junyong In (Conceptualization; Writing–original draft; Writing–
review & editing)
Dong Kyu Lee (Conceptualization; Writing–original draft; Writ-
ing – review & editing)

ORCID 

Junyong In, https://orcid.org/0000-0001-7403-4287
Dong Kyu Lee, https://orcid.org/0000-0002-4068-2363

Supplementary Materials

Futher detailes are presented in the online version of this article
(Available from https://doi.org/10.4097/kja.19183).

References

1.	 In J, Lee DK. Survival analysis: Part I - analysis of time-to-event. Korean J Anesthesiol 2018; 71: 182-91.
2.	Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part I: basic concepts and first analyses. Br J Cancer 2003; 89: 232-8.
3.	Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care 2004; 8: 389-94.
4.	Hancock MJ, Maher CG, Costa Lda C, Williams CM. A guide to survival analysis for manual therapy clinicians and researchers. Man Ther 

2014; 19: 511-6.
5.	Kleinbaum D, Klein M. Evaluating the proportional hazards assumption. In: Survival Analysis. A Self-Learning Text. 2nd ed. New York, 

Springer Science+Business Media, Inc. 2005, pp 131-72.	
6.	Schonfeld D. Partial residuals for the proportional hazards model. Biometrika 1982; 69: 238-41.
7.	Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994; 81: 515-26.
8.	Abeysekera W, Sooriyarachchi R. Use of Schoenfeld’s global test to test the proportional hazards assumption in the Cox proportional 

hazards model: an application to a clinical study. J Natl Sci Found 2009; 37: 41-51.

Fig. 11. Cox regression model with the time-dependent coefficient. Survival curves of Kaplan–Meier analysis (A) and time-dependent coefficient (B) 
using ‘ggsurvplot’ command. Gray solid lines indicate Antiemetics = 0 (Drug A), and the black dashed lines indicate Antiemetics = 1 (Drug B). The 
results of the survival analysis are changed when considering the constant hazard ratio assumption.



457Online access in http://ekja.org

KOREAN J ANESTHESIOL In and Lee

9.	Ekman A. Variable selection for the Cox proportional hazards model: A simulation study comparing the stepwise, lasso and bootstrap 
approach [Master's thesis]. [Umeå]: UMEÅUniversity; 2017. 50 p. Available from http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-130521

10.	Prashant Narayan KC. Extension of Cox PH Model When Hazards are Non-Proportional Applied to Residential Treatment for Drug Abuse. 
[Master's thesis]. [Mankato (MN)]: Minnesota State University; 2016. 51 p. Available from https://cornerstone.lib.mnsu.edu/etds/661/	

11.	Collett D. Testing the assumption of proportional hazards. In: Modelling Survival Data in Medical Research. 2nd ed. Boca Raton, Chapman 
& Hall/CRC. 2003, pp 141-7.

12.	Kleinbaum D, Klein M. The stratified Cox procedure. In: Survival analysis. A Self-learning Text. 2nd ed. New York, Springer 
Science+Business Media, Inc. 2005, pp 173-210.

13.	Collett D. Time-dependent variables. In: Modelling Survival Data in Medical Research. 2nd ed. Boca Raton, Chapman & Hall/CRC. 2003, 
pp 251-72.

14.	Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis-Oudshoorn CG. Time-varying covariates and coefficients in Cox regression 
models. Ann Transl Med 2018; 6: 121.

15.	Thomas L, Reyes EM. Tutorial: survival estimation for Cox regression models with time-varying coefficients using SAS and R. J Stat Softw 
2014; 61: 1-23.	

16.	Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a 
retrospective analysis. Anesthesiology 2016; 124: 69-79.

17.	Tsui BC, Rashiq S, Schopflocher D, Murtha A, Broemling S, Pillay J, et al. Epidural anesthesia and cancer recurrence rates after radical 
prostatectomy. Can J Anaesth 2010; 57: 107-12.

18.	Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer 
recurrence: a retrospective analysis. Anesthesiology 2008; 109: 180-7.

19.	Qiu P, Sheng J. A two‐stage procedure for comparing hazard rate functions. J R Stat Soc Series B Stat Methodol 2008; 70: 191-208.
20.	Li H, Han D, Hou Y, Chen H, Chen Z. Statistical inference methods for two crossing survival curves: a comparison of methods. PLoS One 

2015; 10: e0116774.
21.	Abraira V, Muriel A, Emparanza JI, Pijoan JI, Royuela A, Plana MN, et al. Reporting quality of survival analyses in medical journals still 

needs improvement. A minimal requirements proposal. J Clin Epidemiol 2013; 66: 1340-6.
22.	Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 2010; 1: 274-8.
23.	George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol 2014; 21: 686-94.


