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Obesity results in an inflammatory microenvironment in adipose tissue, leading to the deterioration of tissue protective mecha-
nisms. Although recent studies suggested the importance of type 2 immunity in an anti-inflammatory microenvironment in adi-
pose tissue, the regulatory effects of T helper 2 (Th2) cytokines on systemic metabolic regulation are not fully understood. Recently, 
we identified the roles of the Th2 cytokine (interleukin 4 [IL-4] and IL-13)-induced adipokine, growth differentiation factor 15 
(GDF15), in adipose tissue in regulating systemic glucose metabolism via signal transducer and activator of transcription 6 
(STAT6) activation. Moreover, we showed that mitochondrial oxidative phosphorylation is required to maintain these macro-
phage-regulating autocrine and paracrine signaling pathways via Th2 cytokine-induced secretion of GDF15. In this review, we dis-
cuss how the type 2 immune response and Th2 cytokines regulate metabolism in adipose tissue. Specifically, we review the systemic 
regulatory roles of Th2 cytokines in metabolic disease and the role of mitochondria in maintenance of type 2 responses in adipose 
tissue homeostasis. 
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INTRODUCTION

The mammalian immune response can be roughly divided 
into two categories. The type 1 immune response is an acute, 
highly inflammatory program intended to activate phagocytic 
cells, such as neutrophils, T helper type 1 (Th1) cells, and type 
1 macrophages (M1) to destroy the targets, and is often associ-
ated with tissue damage [1]. The type 1 immune response is 
strongly facilitated by interleukin 2 (IL-2), interferon γ (IFN-γ), 
and lymphotoxin-α secreted by Th1 lymphocytes. In contrast, 
the type 2 immune response is a more long-lived program that 
plays a major role in barrier defenses, such as intestinal motili-
ty and mucus barriers, and tissue remodeling, including fibro-
sis and wound healing [2]. The type 2 immune response is 
characterized by T helper 2 (Th2) cells, eosinophils, mast cells, 
basophils, type 2 innate lymphoid cells (ILC2s), IL-4 and/or 

IL-13-induced macrophages, immunoglobulin E (IgE), and 
the cytokines IL-4, IL-5, IL-9, and IL-13 [2,3]. When the Th1–
Th2 dichotomy was first described [4], type 2 immunity was 
generally considered a regulatory function, not as an impor-
tant response to pathological conditions, and its primary func-
tion was to limit the injurious consequences of type 1-mediat-
ed immunity [5]. Although this original limited definition re-
mains accurate, recent studies have found that the role of type 
2 immunity includes acting as a major effector response that 
has many important host-protective and pathogenic activities, 
in addition to suppressing type 1 immunity and type 1-driven 
inflammation [6]. In addition, these cell populations also show 
protective activity by reducing inflammation in the process of 
tissue regeneration [7].

Many recent studies have focused on the immune regulation 
of adipose tissue (AT) to achieve systemic glucose homeostasis 

Review
Pathophysiology 

https://doi.org/10.4093/dmj.2019.0157
pISSN 2233-6079 · eISSN 2233-6087

Diabetes Metab J 2019;43:549-559

http://crossmark.crossref.org/dialog/?doi=10.4093/dmj.2019.0157&domain=pdf&date_stamp=2019-10-08


Kang YE, et al.

550 Diabetes Metab J 2019;43:549-559  http://e-dmj.org

in metabolic disease. AT can be broadly divided into two cate-
gories: brown adipose tissue (BAT), which is a highly catabolic 
tissue that undergoes high levels of thermogenesis, and white 
adipose tissue (WAT), an anabolic tissue that serves as a pri-
mary long-term nutrient storage site [8,9]. AT is comprised of 
stromal and vascular cells, including innate and adaptive im-
mune cells, fibroblasts, and endothelial cells in addition to adi-
pocytes, and recent research has focused on immune media-
tors as a major axis of metabolic regulation [10-12]. Previously, 
AT in the obese state was shown to promote inflammation 
mediated by type-1 signals, including infiltration and expan-
sion of M1 macrophages with secretion of inflammatory cyto-
kines, such as tumor necrosis factor-α (TNF-α), IL-6, and IL-
1β. However, more recent studies have identified the pivotal 
role of type 2 immunity, including regulatory T (Treg) cells, 
Th2 cells, and ILC2 cells, which suppress inflammatory re-
sponses by production of the anti-inflammatory cytokine, IL-
10, and contribute to the development of insulin resistance 
[13-16]. There is emerging evidence that the IL-33–driven 
ILC2/eosinophil axis plays a role in browning of WAT, and eo-
sinophils in AT are involved in metabolic homeostasis via 
IL-4/IL-13–mediated reconstitution of macrophages, thereby 
preventing development of obesity [17,18]. Although there has 
been pioneering work on the regulatory role of the ILC2 popu-
lation in AT, such as the recovery of ILC2 in obesity by injec-
tion of IL-33 in obese mice [19], the mechanisms underlying 
the loss of ILC2 by metabolic stress have not been identified 
[20]. Although ILC2-derived cytokines have been shown to 
induce browning of WAT, how ILC2-derived cytokines affect 
systemic glucose metabolism is not well understood [21,22].

 In this review, we discuss how the type 2 immune response 
and Th2 cytokines regulate metabolism in AT, its most well-
studied context. Specifically, we review the systemic regulatory 
roles of Th2 cytokines in metabolic disease and the role of mi-
tochondria in maintenance of type 2 responses in AT homeo-
stasis. We also briefly discuss the pathological consequences of 
their dysfunction.

ROLE OF TYPE 2 IMMUNE CELLS IN 
ADIPOSE TISSUE HOMEOSTASIS

Recent observations have shown that obesity results in an in-
flammatory microenvironment in AT, leading to the deteriora-
tion of tissue-protective mechanisms that reduce the negative 
outcomes of immunopathology. Although AT in lean mice and 

humans contains a higher proportion of immune cells associat-
ed with type 2 immunity, type 2 immune cells are reduced in 
number during the development of obesity [23,24]. Recent 
studies have suggested the importance of ILC2s as central regu-
lators of type 2 immunity in an anti-inflammatory microenvi-
ronment in AT [25,26]. However, the regulatory effects of ILC2-
derived Th2 cytokines with systemic metabolic regulation are 
not fully understood. In this section, we review the role of type 
2 immune cells, including anti-inflammatory macrophages, 
ILC2, and eosinophils, in physiological AT homeostasis.

M2 macrophages
Adipose tissue macrophages (ATMs) are abundant immune 
cells in human and murine AT [27,28]. ATMs, which have sub-
stantial functional heterogeneity, actively participate in various 
aspects of nutrient metabolism within AT [29]. Macrophages 
identified in lean AT are anti-inflammatory “M2”, or alterna-
tively activated (M2-like) macrophages, which typically ex-
press the mannose receptor CD206 and secrete anti-inflamma-
tory cytokines (Fig. 1) [30,31]. AT in lean mice and humans 
contains a higher proportion of M2/M1 macrophages, which 
are associated with local production of Th2 cytokines by eosin-
ophils [18,32]. Initially, the involvement of the immune re-
sponse in AT homeostasis was understood only in the context 
of type 1 immunity, represented by the increased proinflam-
matory M1 macrophages and production of IFN-γ and chemo-
kines, such as CCL2 released from CD8+ and Th1-polarized 
lymphocytes, as well as their ability to exacerbate metabolic 
dysfunctions, such as type 2 diabetes mellitus and obesity [33]. 

M2 macrophages play a role in nutrient storage in adipocytes 
by promoting insulin sensitivity through the secretion of IL-10 
[34], and suppress type 1 immune responses of leukocyte pop-
ulations by processing excess iron, disposing of dead cells and 
debris, and promoting vascularization and tissue matrix re-
modeling [35,36]. The regulatory key mediators of macrophage 
polarization were recently identified [37]. M1 macrophages 
have huge metabolic demands depending on glycolysis [38,39]. 
M2 macrophages meet their energy requirements using mito-
chondrial oxidative phosphorylation (OXPHOS) pathways, 
and have increased ability to uptake free fatty acid and for fatty 
acid oxidation (FAO) to facilitate the tricarboxylic acid cycle 
(TCA) cycle, and drive inflammasome activation in inflamma-
tory macrophages [37,40]. Inhibition of FAO in M2 macro-
phages with the carnitine palmitoyltransferase 1 (CPT1) inhib-
itor, etomoxir, limits M2 activation in response to IL-4 [34]. 
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Peroxisome proliferator-activated receptor γ/δ (PPAR-γ/δ), 
which can be driven by adipocyte derived IL-4 and IL-13, is a 
crucial transcription factor in M2 macrophage polarization 
[41,42]. In contrast, M1 macrophages increase energy produc-
tion through glycolysis. M1 macrophages also have a “broken” 
TCA cycle, resulting in accumulation of citrate and succinate. 
Increased succinate results in secretion of the proinflammatory 
cytokine, IL-1β, via activation of hypoxia-inducible factor 1α 
(HIF1α) (Fig. 1) [40,43,44]. Blocking oxidative metabolism not 
only impairs the development of an M2-like phenotype but 
also drives the cells toward an M1-like state [45]. In addition, 
failure of alternative M2 activation, which is associated with re-
duced oxidative function, leads to classical macrophage activa-
tion, elevated weight gain, and obesity with concurrent adipose 
inflammation and insulin resistance [46,47]. However, it is un-
clear whether the oxidative function of macrophages is reduced 
under these conditions, and it is not known whether treatments 

capable of increasing the oxidative function of macrophages 
would reverse insulin resistance and adipose inflammation.

ILC2
ILC2s are a recently identified innate immune cell lineage re-
lated to lymphocytes and natural killer cells with emerging 
roles in mediating immune responses and regulating tissue 
homeostasis and inflammation [48]. The group 2 ILC popula-
tion is comprised of ILC2s, which express IL-5 and IL-13 and 
require GATA-binding protein 3 (GATA3) and retinoic acid 
receptor-related orphan receptor α (ROR-α) for their develop-
ment [49]. In a mouse model of intestinal damage and inflam-
mation, the epithelial cytokine IL-33 can promote ILC2 am-
phiregulin (Areg) production, leading to the resolution of coli-
tis and promoting epithelial repair [50]. Indeed, type 2 im-
mune responses are known to promote wound repair and tis-
sue regeneration following infection or injury [1], suggesting 

Fig. 1. Oxidative metabolism controls polarization of macrophages. Classically activated macrophages (M1) induce an aerobic gly-
colytic program. The hypoxia-inducible factor 1α (HIF1α) transcription factor also becomes activated and can drive production of 
proinflammatory cytokines. The key functional consequences are bacterial killing, mostly through the production of reactive oxy-
gen species (ROS) and nitric oxide (NO) from L-arginine. Inflammatory genes are also activated by nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) activation and promoted by interferon γ (IFN-γ), lipopolysaccharide (LPS), and tumor 
necrosis factor-α (TNF-α). Alternative activated macrophages (M2) trigger a metabolic program including the electron transport 
chain as well as fatty acid oxidation, which is orchestrated by signal transducer and activator of transcription 6 (STAT6) and prolif-
erator-activated receptor-γ coactivator 1β (PGC-1β). Arginase also drives the production of polyamines and L-ornithine. IRS, insu-
lin receptor substrate; JNK, c-Jun N-terminal kinases; IKK, IκB kinase; AP1, activator protein 1; iNOS, nitric oxide synthase; IL, in-
terleukin; YM1, chitinase-like 3.
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that ILC2s may be key organizers of these beneficial tissue re-
sponses. Although they have crucial roles in protective type 2 
immunity, the role of these cells in WAT is quite distinct [51]. 
They function to promote WAT homeostasis through several 
defined mechanisms.

ILC2s are present in visceral adipose tissue (VAT), where 
they are the predominant producers of IL-5 and IL-13 follow-
ing prolonged exposure to IL-33 [25,52]. In lean AT, IL-33 
drives the recruitment and/or proliferation of ILC2, but the 
cellular origin of IL-33 and the mechanisms leading to its se-
cretion in homeostasis remain poorly understood. Tissue 
ILC2s are key producers of systemic IL-5 required for homeo-
static eosinophil maintenance [53]. In AT, secretion of IL-5 by 
ILC2 is essential for the recruitment and maintenance of eo-
sinophils and is dependent on IL-33 [53]. In addition, the most 
well-studied mechanism involves their regulatory effect on the 
resident macrophage phenotype from M1 macrophages to M2 
macrophages by IL-4 or IL-13 signaling [54]. The regulatory 
function of these Th2 cytokines is involved in systemic glucose 
homeostasis. IL-4 and IL-13, both induced by type 2 immune 
responses, reduce inflammation in AT and improve systemic 
glucose intolerance by inducing polarization of M2 macro-
phages [18,55,56]. Interestingly IL-33 has been shown to be 
competent to induce macrophage proliferation independently 
of IL-4Ra expression in other non-adipose macrophage popu-
lations [53], but whether IL-33 can directly activate ATMs re-
mains to be investigated.

Eosinophils
Eosinophils are a type of granulocyte that combat parasitic in-
fection and allergic reactions. However, in AT their role is to 
maintain metabolic homeostasis [18]. Initial studies in WAT 
showed that eosinophils are associated with lean healthy WAT 
and promote M2-like polarization of WAT macrophages 
[18,25]. WAT eosinophils decline with weight gain in associa-
tion with increased AT M1-like macrophages and metabolic 
impairments, and eosinophil-deficient mice are more vulnera-
ble to the onset of insulin resistance [18]. Further research has 
shown that WAT eosinophil numbers are maintained by IL-5, 
which is largely secreted by local ILC2s [18,25]. One study 
showed that body weight and glucose control are improved by 
ILC2 and natural killer T cells in a model of high fat diet-in-
duced obesity, which was attributed to the accumulation of eo-
sinophils and M2-like macrophages in visceral WAT [57]. Re-
cently, it was found that resident eosinophils expressing IL-4 

and ILC2s expressing IL-13 are necessary to maintain an anti-
inflammatory state in WAT [18,25]. During cold exposure, eo-
sinophils may induce WAT beiging by polarizing M2-like 
macrophages [58,59]. These results suggest that ILC2s, eosino-
phils, and M2-like macrophages influence metabolic health 
through the regulation of AT inflammation, beiging capacity, 
and insulin resistance by facilitating a network of immune cell 
interactions (Fig. 1). In the simplest terms, AT M2-like macro-
phages, eosinophils, and ILC2s are positively correlated with 
AT health. 

Treg cells
Treg cells are abundant in the visceral AT of lean mice, where 
they have a distinct transcriptome and antigen-receptor reper-
toire [60]. Similar to ILC2s, Treg cells rapidly populate AT after 
birth. AT Treg cells express high levels of CD25 and IL-10, as 
well as the transcription factors GATA3 and PPAR-γ, and the 
IL-33 receptor [15]. They uniquely depend on these molecules, 
since mice lacking IL-33, IL-33R, or PPAR-γ expression in Treg 
cells are deficient in Treg cells specifically within AT and ex-
hibit evidence of increased AT inflammation [32,52]. In addi-
tion, IL-33-driven expansion of ILC2s and/or Treg cells has 
been shown to revert the chronic inflammatory processes that 
drive obesity and improve insulin resistance in mouse models 
[61]. 

THE LOCAL EFFECTS OF TH2 CYTOKINES, 
ILC2, AND M2 MACROPHAGES IN ADIPOSE 
TISSUE INFLAMMATION 

Recent findings support a regulatory role for type 2 immunity 
in AT and systemic metabolism, although the precise mecha-
nisms remain to be determined. The possible mechanisms for 
the effects of type 2 immunity on AT metabolism include local 
effects, such as AT browning, AT remodeling, and limiting ex-
cessive type 1 inflammatory response, and systemic effects 
through the production of adipocytokines. In this section, we 
discuss the local effects of type 2 immunity in AT inflammation.

Obesity is associated with local adipose inflammation, which 
is characterized by dysregulated immune cell function [62]. 
CD8+ T cells play a critical role in high-fat diet-induced obesity 
and adipose inflammation via macrophage recruitment and 
activation [63]. ATMs secrete inflammatory cytokines, such as 
TNF-α and IL-6. Secretion of TNF-α, plasminogen activator 
inhibitor-1, IL-6, IL-1β, and other inflammatory cytokines by 
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ATs is higher in obese patients than in lean individuals [64,65]. 
As discussed below in the section on AT homeostasis, emerg-
ing evidence suggests that obesity is related to weakening of the 
type 2 immune response, since transitioning of the macro-
phage phenotype is likely a key mechanism by which IL-4 and/
or IL-13 protect against metabolic syndrome. Accordingly, 
other pathways that promote M2 macrophages are also associ-
ated with metabolic homeostasis, such as the fatty acid-sensing 
PPAR-γ/PPAR-δ, adenosine receptor 2B, and Krüppel-like fac-
tor 4 (KLF4) pathways [66-68]. Macrophage-specific deletion 
of PPAR-γ or PPAR-δ increases obesity, decreases glucose tol-
erance, and increases insulin resistance in mice fed high-fat di-
ets [46]. Consequently, oxidative functions of ATMs control 
the polarization of M1-like and M2-like phenotypes, but 
whether reduced macrophage oxidative function causes sys-
temic insulin resistance in vivo is not fully understood.

Recent studies have suggested a role for IL-4/IL-13–mediat-
ed reconstitution of macrophages by eosinophils in AT [18]; 
furthermore, administration of recombinant IL-4 to mice also 
reduces weight gain and has a protective effect against diet-in-
duced obesity [55]. Importantly, IL-4 improves the metabolic 
indices of insulin resistance and improves the action of insulin 
in the liver and muscle in a signal transducer and activator of 
transcription 6 (STAT6)-dependent manner [55]. Although 
the increase in WAT eosinophils by recombinant IL-5 treat-
ment is not related to lipid and glucose metabolism, IL-33/IL-
25 upregulates WAT ILC2, which recruits eosinophils via IL-5, 
resulting in increased M2 macrophages and improved WAT 
homeostasis [57], suggesting a pivotal role for ILC2 in glucose 
homeostasis [69]. In addition, cold or exogenous IL-33 stimu-
lates ILC2 and eosinophil production of IL-13 and IL-4, re-
spectively, which drive the proliferation and commitment of 
adipocyte precursors to beige fat [59,70]. IL-33-activated ILC2s 
produce methionine-enkephalin peptides, which act directly 
on adipocytes to stimulate beige adipogenesis independently 
of eosinophils [17]. These results suggest that type 2 immunity 
has a regulatory role in beige adipogenesis via Th2 cytokines, 
influencing the generation and maturation of adipocyte pre-
cursors for beige adipocyte differentiation, and supporting 
thermogenic activation to improve energy metabolism. 

THE REGULATION OF ADIPOKINES BY TH2 
CYTOKINES IN ADIPOSE TISSUE 

Emerging evidence supports a role of Th2 cytokines as a surro-

gate factor to stimulate the proliferation of M2 macrophages 
associated with low-grade inflammation in AT and differentia-
tion of adipose precursors in metabolic homeostasis. A num-
ber of studies have established other effects of Th2 cytokines, 
including IL-33, IL-4, and IL-13, on adipokine secretion by ad-
ipocytes.

Accordingly, adipokines are considered to be regulators of 
whole-body homeostasis [71]. In addition to leptin, TNF‐α, 
IL‐6, resistin, FGF21, and adiponectin, which have been exten-
sively reviewed, and a number of other key adipokines are in-
volved in the regulation of inflammation [72-75]. We showed 
that growth differentiation factor 15 (GDF15) is a useful pre-
dictive biomarker of cardiovascular risk in newly diagnosed 
T2D patients [76-78]. In addition, we identified the signifi-
cance of neuregulin 4 (Nrg4) as a biomarker that is positively 
correlated with serum glucose level and insulin resistance in 
type 2 diabetes mellitus patients [77]. Kang et al. [78] reported 
significant increases in proinflammatory cytokine levels, such 
as monocyte chemoattractant protein-1 and TNF-α, in the 
VAT of patients with modest obesity and early metabolic dys-
function. Serum levels of adiponectin and leptin were signifi-
cantly associated with insulin resistance and obesity. However, 
there were no obvious changes in macrophage phenotype or 
macrophage infiltration in patients with modest obesity or ear-
ly metabolic dysfunction [78]. We showed that the expression 
of CD163/CD68, a marker of macrophage infiltration, was sig-
nificantly related to mitochondrial biogenesis-associated 
genes, such as proliferator-activated receptor-γ coactivator 1α 
(PGC-1α), PGC-1β, and OXPHOS. Previous studies have also 
suggested that alternative activation of FAO and mitochondrial 
biogenesis in macrophages by PGC-1β may be related to obe-
sity [79,80]. Consequently, these findings suggest that the reg-
ulation of M2 macrophages in obesity may be closely linked to 
mitochondrial biogenesis, and that changes in the production 
of inflammatory biomolecules precede increased immune cell 
infiltration and induction of a macrophage phenotype switch 
in modest obesity in humans.

To explore the effects of Th2 cytokines on adipokines in AT 
homeostasis, we examined Th2 cytokine-mediated release of 
adipokines [81]. In vivo administration of α-galactosylceramide 
or IL-33 increased IL-4 and IL-13 production, thereby increas-
ing GDF15 levels in AT and plasma in a STAT6-dependent 
manner using a STAT6 knockout mouse model. In addition, 
we found that administration of recombinant IL-13 to wild-
type mice fed a high-fat diet improved glucose intolerance. Us-
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ing GDF15-knockout mice, we showed that this effect was de-
pendent on GDF15 expression. We found that Th2 cytokines 
regulate GDF15, and our results suggested that GDF15 is re-
quired for Th2 cytokine-induced improvement of glucose in-
tolerance in metabolic disease [81].

GDF15, also known as macrophage-inhibiting cytokine 1, 
belongs to the transforming growth factor-β superfamily and 
is highly expressed in the heart, liver, kidneys, and colon [39]. 
Recently, the metabolic effects of GDF15 were found to include 
regulation of appetite by the orphan receptor, GFRAL [82,83]. 
Moreover, recent evidence supports an important role of 
GDF15 in peripheral organs, including the liver, WAT, and 
muscle; GDF15 regulates systemic glucose tolerance as a mito-
chondrial unfolded protein response-associated critical cell 
nonautonomous myomitokine by promoting oxidation and li-
polysis [84-87]. Further research is needed to identify periph-
eral receptors of GDF15 to elucidate the previse role of GDF15 
in metabolic homeostasis. 

THE ROLE OF MITOCHONDRIAL 
OXIDATIVE FUNCTION IN REGULATION OF 
MACROPHAGE POLARIZATION AND 
SYSTEMIC ENERGY HOMEOSTASIS

Increased glycolysis has been observed in lipopolysaccharide-
stimulated macrophages [83]. A series of recent studies dem-
onstrated that commitment to Warburg metabolism equips 
macrophages to fulfill their effector functions, such as produc-
tion of reactive oxygen species (ROS) or nitric oxide, phagocy-
tosis, and secretion of inflammatory mediators in the context 
of bacterial infection [40]. Upon activation with proinflamma-
tory stimuli, such as lipopolysaccharide or IFN-γ, macrophages 
undergo metabolic reprogramming and exhibit increased rates 
of glycolysis and decreased OXPHOS. By diverting adenosine 
triphosphate generation from OXPHOS to glycolysis, mito-
chondria become available for ROS production [88]. 

The type 2 cytokines, IL-4 and IL-13, promote maturation 
into alternatively activated macrophages, and this effect is de-
pendent on STAT6 activation [5]. Upon IL-4 stimulation, mac-
rophages increase fatty acid uptake, β-oxidation, and OX-
PHOS; these metabolic rearrangements are initiated by STAT6 
and peroxisome PGC-1β [88]. Moreover, STAT6 and its asso-
ciated transcription factors, including PPAR-γ, PPAR-δ, and 
PGC-1α, critically influence M2-like macrophages by increas-
ing oxidative metabolism and mitochondrial biogenesis 

[67,89]. Studies in mice with macrophage-specific deletion of 
PPAR-γ have shown that PPAR-γ is required for maturation of 
alternatively activated macrophages [89]. Inhibition of FAO in 
M2 macrophages with the CPT1 inhibitor, etomoxir, limits M2 
activation in response to IL-4 [90]. Blocking oxidative metabo-
lism not only impairs the development of an M2-like pheno-
type, but also drives the cells toward an M1-like state [45]. 

A recent study showed that blockade of lysosomal lipolysis 
during Heligmosomoides polygyrus infection results in defec-
tive clearance of the pathogen and inhibits commitment to OX-
PHOS by macrophages [90]. While changes in β-oxidation are 
the most striking metabolic adaptations in response to IL-4, 
metabolomic studies have revealed that glycolysis and glutami-
nolysis also contribute to TCA activity [91]. Recent research has 
focused on whether the oxidative function of macrophages is 
reduced under these conditions, and if so, whether such im-
pairment induces insulin resistance. Using a mouse model, we 
found that defective oxidative function in macrophages due to 
myeloid-specific loss-of-function of the CR6-interacting factor 
1 (Crif1) gene, an essential mitoribosomal factor required for 
biogenesis of OXPHOS subunits, results in systemic insulin re-
sistance associated with adipose inflammation [92]. Moreover, 
macrophages from these mice are deficient in the release of 
GDF15, which is required for oxidative metabolism in M2-like 
macrophages stimulated with IL-4 and the PPAR-γ agonist, 
rosiglitazone. In addition, GDF15-deficient macrophages un-
derwent polarization into an M1-like phenotype, and reintro-
duction of GDF15-null macrophages into high-fat diet-fed 
mice in which macrophages were depleted with clodronate re-
sulted in glucose intolerance. We found that the mitochondrial 
oxidative function of macrophages has an important role in 
GDF15 secretion, and dysfunction of mitochondria in macro-
phages causes systemic insulin resistance and AT inflammation 
due to macrophage-regulated autocrine and paracrine signaling 
that promotes anti-inflammatory responses in WAT (Fig. 2).

CONCLUSIONS AND PERSPECTIVES

We have highlighted the role of type 2 immunity in metabolic 
disease. Recent studies have suggested that glucose intolerance 
and obesity induce the dysregulation of type 2 immunity. In 
addition, many studies have shown that type 2 immunity has a 
major influence on AT metabolism, including local effects, 
such as regulating AT browning, AT remodeling, and limiting 
excessive type 1 inflammatory responses, as well as systemic 
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effects mediated via adipocytokines. Th2 cytokines, including 
IL-33, IL-4, and IL-13, have been identified as surrogate factors 
that stimulate the proliferation of M2 macrophages associated 
with low-grade inflammation in AT and differentiation of adi-
pose precursors in metabolic homeostasis. Recently, we identi-
fied the roles of the Th2 cytokine (IL-4 and IL-13)-induced ad-
ipokine, GDF15, in AT in regulating systemic glucose metabo-
lism via STAT6 activation. Moreover, we showed that mito-
chondrial OXPHOS is required to maintain these macro-
phage-regulating autocrine and paracrine signaling pathways 
via Th2 cytokine-induced secretion of GDF15. However, less is 
known regarding the mechanism of action of GDF15 in meta-
bolic organs, such as muscle, liver, and AT. Interactive roles of 
Th2 cytokines and GDF15 must be further clarified by identifi-
cation of the molecular action and signaling pathways of 
GDF15. 
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gers systemic insulin resistance.
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