
I. Introduction

The openEHR project is an open-source software, not-for-
profit organization that has published a series of design
specifications and an implementation of a future-proof in-
teroperable Electronic Health Record (EHR) system [1]. The
ISO/CEN 13606 standards are based on the architecture of
this project, which is characterized by two-level modeling
that separates clinical concerns from the computable infor-
mation structure, and is the result of more than 15 years of
research and development in Australia and European Union
countries [1]. The original implementation was in Eiffel and
C#, and a Java implementation was later provided by a Swed-
ish team [2]. However, the TIOBE index (TIOBE Software,
Eindhoven, The Netherlands), which lists the most popular
computer languages, indicates that Java, C# and Eiffel only

Archetype Model-Driven Development Framework
for EHR Web System
Shinji Kobayashi, MD, PhD1, Eizen Kimura, PhD2, Ken Ishihara, MD, PhD2

Departments of 1Bioreguratory Medicine and 2Medical Informatics, Graduate School of Ehime University, Ehime, Japan

Objectives: This article describes the Web application framework for Electronic Health Records (EHRs) we have developed
to reduce construction costs for EHR sytems. Methods: The openEHR project has developed clinical model driven archi-
tecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain
model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been
formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting lan-
guages had been more popular because of their higher efficiency and faster development in recent years, they had not been
involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile
development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results: We
implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from ar-
chetype. Although some problems have emerged, most of them have been resolved. Conclusions: We have provided an agile
EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype
model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the
construction of EHR systems.

Keywords: Electronic Health Records, Internet, Computing Methodologies, Automatic Data Processing

Healthc Inform Res. 2013 December;19(4):271-277.
http://dx.doi.org/10.4258/hir.2013.19.4.271
pISSN 2093-3681 • eISSN 2093-369X

Original Article

Submitted: Octoeber 15, 2013
Revised: December 2, 2013
Accepted: December 4, 2013

Corresponding Author
Shinji Kobayashi, MD, PhD
Department of Bioreguratory Medicine, Graduate School of Ehime
University, Shitsukawa, Toon, Ehime, Japan. Tel: +81-89-960-5695,
Fax: +81-89-960-5696, E-mail: skoba@moss.gr.jp

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

ⓒ 2013 The Korean Society of Medical Informatics

272 www.e-hir.org

Shinji Kobayashi et al

http://dx.doi.org/10.4258/hir.2013.19.4.271

account for about 26% of software developers [3]. Additional
implementations are needed to appeal to a wider range of us-
ers. Scripting languages are becoming increasingly popular
among Web developers because of their inherently stream-
lined programming processes and dynamic behaviour. Ruby
is an object-oriented scripting language [4] that was recently
recognized for its efficient Web development frameworks,
such as Ruby on Rails (RoR) [5]. The efficiency of RoR was
proved with a demonstration video, in which a weblog sys-
tem was created within 15 minutes [6]. A group of Japanese
doctors who specialize in medical information system pro-
gramming were inspired by the design concept behind the
openEHR project, and proposed the implementation of a
Ruby version as open-source software. The mission goal is a
rapid development environment for creating an EHR system
based on the ISO/CEN 13606 standards. The Ruby imple-
mentation project began in October 2007.
 In this paper, we discuss the validity of the Ruby implemen-
tation and examine the universality of the openEHR specifi-
cations.

II. Methods

The Ruby implementation of openEHR was developed with
Ruby 1.9.3 or later as a platform (2.0.0 recommended), us-
ing related libraries, such as RoR 4.0 and the Treetop parser
library.
 One of the principles of the Ruby implementation is to be
faithful to the openEHR specifications while applying Ruby’s
unique characteristics to make the programming experience
a more pleasant one. We used the Web-based redmine sys-
tem for task management and git for the source code reposi-
tory. More information on the Ruby implementation project
and source code are available at http://openehr.jp/ref-impl-
ruby. In addition, these resources are available under the
openEHR open-source software license (Mozilla tri-license),
as is the case for the other implementations of the openEHR
project. Developers can choose the GNU General Public
License (GPL), the Lesser GNU GPL (LGPL), or the Mozilla
Public License (MPL), according to their needs.
 Because the current Ruby implementation policy mainly
involves agile programming, we made it a rule that unit tests
should be written prior to the working code. At first, we
used the test/unit package for unit tests, but switched to the
RSpec2 package for its narrative descriptive feature. All tests
are automatically performed by spork and the guard pack-
age.
 The reference model of openEHR defines basic concepts,
data types, data structures and support information to man-

age an EHR system. These models were first defined in Eiffel
via contraction patterns and explicit rules of invariant asser-
tion. The handling of invariance and checking is one of the
difficulties of this implementation, and this was also noted
in the Java implementation [2]. Because Ruby does not have
strict typing or generics, the Design by Contract pattern is
not supported in native. Retaining the Ruby look-and-feel
makes the code familiar to other Ruby developers, and in-
volves the use of conventional naming and common Ruby
idioms. However, the DataValue package classes in Ruby
were designed with check routines to assure the validity of
assigned data, as in other static typing language implementa-
tions using dynamic typing.
 Some of the original forms were considered for the nomen-
clature of the classes, but we decided to use camel case with
the Rails convention because other projects (such as Java
adopted camel case nomenclature and the Rails convention)
are also written in camel case.
 The Archetype model is constructed in parts to describe
archetypes. It includes definition, ontology, profile, assertion
and constraint rules. These on-memory archetypes are se-
rialized to an archetype definition language, and archetypes
are also generated from serialized definitions. The compo-
nents also support object validation and creation on a single
archetype constraint level.
 The Archetype Definition Language (ADL) parser was
originally developed using the racc parser library, which is
a standard yacc type LALR(1) parser generator included in
the Ruby standard library. This parser can parse ADL files,
but it performs poorly and has a problem handling V_C_
DOMAIN_TYPE. To achieve better performance, the ADL
parser was re-implemented with the Treetop library, which is
an implementation of the Packrat parsing algorithm [7]. Per-
formance tests were conducted to compare the Ruby ADL
parser and the Java ADL parser, whose runtime is available
as open-source software. The two runtime environments
were Ruby 1.9.2p290 and Diablo JDK 1.6.0 (64-bit server
version), installed on a 3.3 GHz Intel Core i5 processor with
16 GBytes of RAM, running FreeBSD 8.2. The ADL parser
was chosen for the performance tests because it executes not
only the parser library, but also multiple related packages
that generate numerous instances.
 An RoR related library to utilize openEHR archetype and
Web service application programming interface (API) has
been development preliminary as another package.

III. Results

We implemented most of the openEHR specifications and

273Vol. 19 • No. 4 • December 2013 www.e-hir.org

Model-Driven Development for EHR System

utilities including the ADL parser to generate a Web system
by RoR (Table 1). The core libraries are compact in compari-
son with other implementations (Table 2).

1. ADL Parser
An archetype is a formal definition of a distinct domain-level
concept in the form of structured and constrained combina-
tions of reference model classes [8].
 While the latter will remain stable, the former must be flex-
ible enough to express medical concepts that will evolve with
medical practice and knowledge. The primary objective is
to provide a formal expression of clinical knowledge in an
interoperable and reusable way. An archetype is composed
of four main parts: a header section, a description section, a
definition section, and an ontology section.
 The description section includes metadata information,
such as audit information, life cycle status, or purpose. The
definition section is a basic formal definition of the arche-
type, containing restrictions arranged in a tree-like structure
created from the reference information model. The ontology
section includes the terminological definitions and bindings
that link the data structures and content to the knowledge

resources.
 ADL is a formal language for expressing such archetypes.
It is also composed of four parts, corresponding to the
structure of an archetype, and uses two main types of syntax
(cADL and dADL). cADL is used to express archetype defi-
nitions, and it enables constraints on data defined by object-
oriented information models to be expressed in archetypes
or other knowledge definition formalisms [9]. On the other
hand, dADL is used to express data appearing in the lan-
guage, description, ontology, and revised_history sections.
It provides a formal means of expressing instance data based
on an underlying information model [9].

1) Semantics of the ADL parser
According to the two-level modeling approach, the ADL
parser produces in-memory representations of Archetype
Model (AM) instances built upon Reference Model (RM)
components. The AM defines the semantics of an archetype,
and in particular, the relationships that must hold true be-
tween the parts of an archetype in order for it to be valid as a
whole [9].
 Thus, the principal roles of the semantics of ADL are to
construct an AM based on underlying RM classes and to
validate the numerous constraints imposed on an archetype.
The validation should mainly be performed on complex
objects and primitive types, in the invariant, specialization,
and ontology sections. There are three types of constraints
on complex objects: complex object structures, internal
references, and archetype slots. The invariant section in an
ADL archetype introduces assertions that relate to the entire
archetype and can be used to make statements that are not
possible within the block structure of the definition section.
It is a type of first-order predicate logic with equality and
comparison operators [9]. In the ontology section, the codes

Table 1. Packages implemented by Ruby

Package name Brief description

AssumedTypes Basic type to describe data
RM::Support Support information model for ID or

terminology
RM::Security (not well defined)
RM::Integration Item definition for composition
RM::EHR EHR structure information
RM::Demographic Description for personal or group data
RM::DataTypes::Basic Base component to represent data types

RM::DataStructures Data structure definition

RM::Composition Data structure and rules

RM::Common Common component to regulate
EHR system, such as versioning

AM::Archetype Archetype object validation and con-
struction

AM::Archetype::Profile Implementation of domain data
types

Parser Generates archetype object from ADL

Ruby on Rails plugin Generates EHR Web system skeltons
from archetype definition

RM: Reference Model, AM: Archetype Model, EHR: Electronic
Health Record, ADL: Archetype Definition Language.

Table 2. Effective stepsa of openEHR libraries

Language AM RM Total

Eiffel 10,145 8,258 18,403
C# 5,472 17,488 22,960
Java 11,603 3,642 15,245
Ruby 945 3,358 4,303

EHR: Electronic Health Record, AM: Archetype Model, RM:
Reference Model.
aProgram steps were counted excluding comments or blank
lines. Because each project has its own utility library extended
from standard specifications, we compared core libraries under
faithful conditions.

274 www.e-hir.org

Shinji Kobayashi et al

http://dx.doi.org/10.4258/hir.2013.19.4.271

representing node IDs or bindings to terminologies should
be linked to the appropriate entities.
 Specialization is expressed using object-oriented inheri-
tance relationships, but its semantics differs from that of
inheritance, because of the constrained nature of archetypes
[1]. Any data created via a specialized archetype must thus
conform to both the archetype and its parent.

2) An implementation of the ADL parser in Ruby
The main goal of the library we have developed is to facilitate
the conversion of ADL to AM objects that will be suitable
building blocks for Ruby applications, including Web appli-
cations built on RoR.
 Because Ruby applications are provided as gem packages,
it is easy to embed archetype-enabled functionality in them.
For example, when an EHR system is developed as an RoR
Web application, the clinical content of the application can
be expressed as archetypes. Moreover, communication be-
tween these applications should be facilitated via ADL. One
part of the ADL parser that was difficult to implement was
its scanners. cADL and dADL use slightly different sets of
tokens, and they switch back and forth as the parsing pro-
cess proceeds. The Java implementation project encountered
this problem and implemented the ADL parser by LL(1) [2],
using the JavaCC parser generator library. The old version
of the Ruby ADL parser is also dependent upon a combina-
tor parser library called yaparc and racc, which is a LALR(1)
parser generator. This parser functions well, but has poor
performance. To achieve better performance, we changed
the parser algorithm from LALR(1) to parsing expression
grammar (PEG)/Packrat parsing [7].
 At first, this new parser failed to parse the cADL section,
because cADL has a left-recursive rule that the Packrat pars-
er does not support directly. Fortunately, a left-recursive rule
can always be rewritten as an equivalent right-recursive rule
[10]. After we modified the grammar of the left-recursive
rule, the new parser successfully parsed the cADL section
and exhibited better performance.
 Regarding ADL semantics, the ADL parser must implement
semantic functions for numerous validations (as described
in the previous section), such as ADL specialization or asser-
tion. We are currently investigating a design and implemen-
tation of these facilities to fit the specifications.

3) ADL parser performance test
Language performance benchmarks have proved that Ruby
is slower than most other languages [11,12]; hence, the Ruby
ADL parser performed more slowly than that of Java. Nev-
ertheless, although Ruby process execution took 3.72 times

more CPU time than the Java parser for 100 trials, this cost
decreased as the number of trials increased (Figure 1).

2. Archetype Model
AM functions as an instance of the semantic information
model of openEHR. We implemented most of the specifica-
tions. The ADL parser generates an AM instance to manage
a clinical model dynamically described by ADL.
 The AM package also supports validation of the gener-
ated archetype rules based on constraint validation. Almost
all specifications have been compliantly implemented with
Ruby.

3. Reference Model
RM is used to describe the actual health data in openEHR.
We implemented most of the specifications. The mapping
between the assumed library in openEHR and the Ruby na-
tive library was perfect. Because we changed the test package
from test/unit to RSpec2 while implementing the reference
models, and because RSpec2 allows narrative descriptions of
code behavior, the codes were refined and elevated in their
readability. Eventually, the codes were tested via two other
methods, which also helped to refine the codes and elevate
their readability.
 Our achievements cover most of the packages shown in
Table 1. Because the detailed specifications of some packages
are not determined, we could not implement those packages.
Other projects have had the same problem. For example,
RM::Support::Measurement and RM::DataTypes::TimeSpeci
fication have not been implemented in Java or Eiffel.

Figure 1. Archetype Definition Language (ADL) parser perfor-
mance test comparing the Ruby and Java implementa-
tions. The Ruby parser requires more CPU time than
the Java parser.

275Vol. 19 • No. 4 • December 2013 www.e-hir.org

Model-Driven Development for EHR System

4. Web Framework
Clinical Knowledge Manager (CKM) is an archetype reposi-
tory of the openEHR project. It provides qualified archetypes
to share the development process and Web service API. We
implemented the CKM access library to query archetypes via
Web service.
 RoR-related components have been implemented to gener-
ate Web page skeletons, database models, and controllers by
RoR convention from an AM. The RoR generator works as
Ruby application template from archetype. The generator
makes the following artefacts from archetype definition in
one step.
 (1) Database schema
 (2) HTML, JavaScripts and Stylesheets
 (3) Controller modules
 (4) Multi-lingual translation

IV. Discussion

Archetypes of openEHR specifications and the ISO 13606
standard have been discussed in terms of their feasibility for
interoperability, and their suitability for EHR systems has
been demonstrated [13,14]. Therefore, using archetype to
design EHR systems is promising to prove its interoprability.
 The openEHR specifications were first implemented in Ei-
ffel; thus, the openEHR modeling concept is influenced by
Eiffel. Table 3 shows the features of the languages used for

openEHR specifications. All of the languages have object-
oriented designs, but the ideas behind the designs are dif-
ferent, especially regarding inheritance and typing. Because
the complexity of multiple inheritance often causes fatal cor-
ruption, Java and Ruby do not permit multiple inheritance
of objects as a language specification. Java does permit mul-
tiple inheritance in interfaces, and Ruby allows reuse of the
method of multiple modules as a ‘mix-in’. For example, the
DATE_TIME class in the openEHR assumes that the types
library was implemented in Ruby as a class that combines
the methods of the DATE module and the TIME (Figure 2)
via ‘mix-in’. Thus, Ruby can program multiple inheritances
while maintaining its simplicity. In other languages, multiple
inheritance is a point of criticism because of its complexity
[15]. Using delegation instead of inheritance is an alternative
idea to avoid breaks in encapsulation [15,16]. Because the
openEHR specifications are not finalized, re-factoring of the
classes might be necessary.
 For example, the ARCHETYPE class depends on the AR-
CHETYPE_ONTOLOGY class, and the ARCHETYPE_ON-
TOLOGY class depends on the ARCHETYPE class. Figure 3
shows a simple diagram illustrating this relationship. In the
openEHR mailing list, Thomas Beale suggested using closure
to resolve this issue, but Java does not yet have closure. How-
ever, Ruby does have closure in its syntax, which may solve
the problem in this implementation. In addition, the Ruby
statement ‘require’ loads another library only once (Figure 4).
Therefore, the Ruby implementation is not affected by this
problem. On the other hand, circular import is a significant
problem for Java, suggesting that this specification might be
re-factored.
 Typing of languages is a controversial theme with a long
history of discussion [17]. Whereas the other implementa-
tions of the openEHR specifications are based on strong

Table 3. Specifications of the languages used in openEHR imple-
mentations

Name Typing Inheritance Runtime

Eiffel Strong Multiple Compiler
C# Strong Single Compiler/CLI
Java Strong Single Compiler/VMs
Ruby Weak Single Interpreter
EHR: Electronic Health Record, CLI: Common Language Infra-
structure, VM: virtual machine.

Figure 2. Example of a Ruby mix-in of the DATE_TIME class in
the Assumed Types Library.

Figure 3. Sample circular import code in Java. Class A imports
Class B and Class B imports Class A circularly.

Figure 4. Sample noncircular import code in Ruby. After class A
requires class B, both classes are loaded in memory.
In this situation, even if class A is required by class B,
Ruby does not load class A again.

276 www.e-hir.org

Shinji Kobayashi et al

http://dx.doi.org/10.4258/hir.2013.19.4.271

typing languages, our implementation was accomplished
with Ruby, a weak (duck) typing language. Duck typing was
especially useful for implementing the data value packages.
 As noted above, Ruby has a smart and simple program-
ming syntax. Therefore, we were able to implement a core
library with fewer steps than the other languages (Table 2).
While program steps do not directly indicate programming
efficiency, fewer code steps do reflect reduced programmer
effort. This implementation of the openEHR specifications
suggests that Ruby might provide an efficient development
environment for an EHR system. Moreover, Web genera-
tors can provide many artefacts instantly, which should be
generated by many steps by hand as usual. This suggests this
implementation may reduce EHR Web system development
costs, too.
 Unfortunately, however, Ruby is also a slow language, and
it has been proven so by benchmark tests [11,12]. These tests
have demonstrated that Ruby process execution takes from
2 to 1,000 times as much CPU time as Java. The ADL parser
performance test also highlighted this disadvantage of the
Ruby implementation (Figure 1), but the time factor was
only 3.72, which is much smaller than those of the bench-
mark tests. Moreover, as the number of trials increased, the
difference in execution time decreased. One possible rea-
son for this is that the Packrat parser algorithm used in the
Ruby parser performs better than LL(1), the JavaCC parsing
algorithm. Although execution speed sometimes critically
influences system performance, Ruby is used for enterprise
systems because of its high development efficiency. When
a Web vendor adopts Ruby to launch a new service quickly,
a clinical information system sometimes needs to launch a
new service in a short time to meet clinical demands. This
Ruby implementation would be suitable for such a situation.
 The development of the ADL parser library still has some
issues to be resolved. First, the current parser produces
coarse-grained AM objects, in that almost all validations are
missing in the current parser. Second, the current ADL pars-
er is capable of handling only the openEHR version of the
reference model. Third, there is no Ruby implementation of
the ADL serializer, which will convert AM to ADL, and the
archetype template mechanism has not been implemented at
this stage of the development.
 We are currently developing an EHR system using these
libraries and RoR. The CKM access module is one of them
to build Web applications on the archetype clinical model.
At the present time, most EHR developers are not familiar
with Ruby, and the healthcare industry has had less experi-
ence with Ruby than with other languages. However, the
number of Ruby developers has been increasing worldwide.

Therefore, our Ruby implementation of openEHR has the
potential to be a next-generation e-Health platform, and we
are undertaking a new project to construct an EHR system
using this library and RoR.

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgments

We thank the openEHR Foundation and community. Finan-
cial support for this study was provided by JSPS Grant-in-
Aid for Scientific Research (C) number 24590614.

References

1.	 Beale T. Archetypes: constraint-based domain models
for future-proof information systems. In: Proceedings of
the 11th OOPSLA Workshop on Behavioral Semantics:
Serving the Customer; 2002 Nov 4; Seattle, WA. p. 16-
32.

2.	 Chen R, Klein G. The openEHR Java reference im-
plementation project. Stud Health Technol Inform
2007;129(Pt 1):58-62.

3.	 TIOBE Software. TIOBE Programming Community
Index [Internet]. Eindhoven, The Netherlands: TIOBE
Software; c2013 [cited at 2013 Oct 2]; Available from:
http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html.

4.	 Matsumoto Y. Ruby programming language [Internet].
[place unknown: publisher unknown]; c1993 [cited at
2013 Oct 2]. Available from: https://www.ruby-lang.org/
en/.

5.	 Thomas D, Hansson DH, Breedt L. Agile Web develop-
ment with Rails. Raleigh (NC): Pragmatic Bookshelf;
2005.

6.	 Hansson DH. How to build a blog engine in 15 minutes
with Ruby on Rails [Internet]. [place unknown: pub-
lisher unknown]; 2005 [cited at 2013 Oct 1]. Available
from: http://www.youtube.com/watch?v=Gzj723LkRJY.

7.	 Bryan Ford B. Packrat parsing: simple, powerful, lazy,
linear time, functional pearl. ACM SIGPLAN Not
2002;37(9):36-47.

8.	 International Organization for Standardization. Health
Informatics: electronic health record communication.
Part I. Reference model. Geneva, Switzerland: Inter-
national Organization for Standardization; 2008. (ISO

277Vol. 19 • No. 4 • December 2013 www.e-hir.org

Model-Driven Development for EHR System

13606-1:2008).
9.	 Beale T, Heard S. Archetype Definition Language [Inter-

net]. London: The openEHR Foundation; 2007 [cited at
2013 Sep 10]. Available from: http://www.openehr.org/
releases/1.0.1/architecture/am/adl.pdf.

10.	 Aho AV, Sethi R, Ullman JD. Compilers, principles, tech-
niques, and tools. Reading (MA): Addison-Wesley; 1986.

11.	 Corlan AD. Programming language benchmarks [In-
ternet]. [place unknown: publisher unknown]; c2013
[cited 2013 Oct 3]. Available from: http://dan.corlan.
net/bench.html.

12.	 Fulgham B. The computer language benchmarks game
[Internet]. [place unknown: publisher unknown]; c2013
[cited 2013 Oct 3]. Available from: http://shootout.ali-
oth.debian.org/.

13.	 Costa CM, Menarguez-Tortosa M, Fernandez-Breis JT.

Clinical data interoperability based on archetype trans-
formation. J Biomed Inform 2011;44(5):869-80.

14.	 Marcos M, Maldonado JA, Martinez-Salvador B, Bosca
D, Robles M. Interoperability of clinical decision-sup-
port systems and electronic health records using arche-
types: a case study in clinical trial eligibility. J Biomed
Inform 2013;46(4):676-89.

15.	 Truyen E, Joosen W, Jorgensen BN, Verbaeten P. A
generalization and solution to the common ancestor di-
lemma problem in delegation-based object systems. In:
Proceedings of the 2004 Dynamic Aspects Workshop;
2004 Mar 23; Lancaster, UK. p. 103-19.

16.	 Bloch J. Effective Java 2nd ed. Reading (MA): Addison-
Wesley; 2008.

17.	 Pierce BC. Types and programming languages. Cam-
bridge (MA): MIT Press; 2002.

