
I. Introduction

Various artificial intelligence techniques have been used for 
decision making in medical activities, such as diagnosis and 
therapy recommendations [1]. However, these techniques 
can be useful when the physician’s knowledge is well repre-
sented in terms of computer realization and use. However, a 
large number of parameters such as medical symptoms and 
laboratory test results make it difficult for these techniques 
to be implemented using computers [2]. To overcome this 
problem, over the past few decades, various methods, e.g., 
neural networks [3,4], Bayesian networks [5], ontology [6,7], 
fuzzy cognitive maps (FCMs) [2,8,9], have been proposed 

Design of Activation Functions for Inference of Fuzzy 
Cognitive Maps: Application to Clinical Decision 
Making in Diagnosis of Pulmonary Infection
In Keun Lee, PhD1, Hwa Sun Kim, RN, PhD2, Hune Cho, PhD1

1Department of Medical Informatics, Kyungpook National University School of Medicine, Daegu; 2Department of Medical Information Technology, Daegu 
Haany University, Daegu, Korea

Objectives: Fuzzy cognitive maps (FCMs) representing causal knowledge of relationships between medical concepts have 
been used as prediction tools for clinical decision making. Activation functions used for inferences of FCMs are very impor-
tant factors in helping physicians make correct decision. Therefore, in order to increase the visibility of inference results, we 
propose a method for designing certain types of activation functions by considering the characteristics of FCMs. Methods: 
The activation functions, such as the sinusoidal-type function and linear function, are designed by calculating the domain 
range of the functions to be reached during the inference process of FCMs. Moreover, the designed activation functions were 
applied to the decision making process with the inference of an FCM model representing the causal knowledge of pulmonary 
infections. Results: Even though sinusoidal-type functions oscillate and linear functions monotonously increase within the 
entire range of the domain, the designed activation functions make the inference stable because the proposed method notices 
where the function is used in the inference. And, the designed functions provide more visible numeric results than do other 
functions. Conclusions: Comparing inference results derived using activation functions designed with the proposed method 
and results derived using activation functions designed with the existing method, we confirmed that the proposed method 
could be more appropriately used for designing activation functions for the inference process of an FCM for clinical decision 
making.

Keywords: Decision Making, Computer Reasoning, Fuzzy Cognitive Maps, Activation Function

Healthc Inform Res. 2012 June;18(2):105-114. 
http://dx.doi.org/10.4258/hir.2012.18.2.105
pISSN 2093-3681  •  eISSN 2093-369X  

Original Article

Submitted: May 9, 2012
Revised: June 21, 2012
Accepted: June 21, 2012

Corresponding Author 
Hune Cho, PhD
Department of Medical Informatics, Kyungpook National University 
School of Medicine, 680, Gukchaebosang-ro, Jung-gu, Daegu 700-
842, Korea. Tel: +82-53-420-4899, Fax: +82-53-423-1242, E-mail: 
hunecho@knu.ac.kr

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

ⓒ 2012 The Korean Society of Medical Informatics



106 http://dx.doi.org/10.4258/hir.2012.18.2.105www.e-hir.org

In Keun Lee et al

to represent a physician’s knowledge and to support clinical 
decision making. In particular, FCMs [2,8-13] can efficiently 
handle complex modeling problems when assessing clinical 
decision making tasks [2]. FCMs represent causal knowledge 
between events and are used as tools that can predict results 
for current states of events by inference. FCMs have been 
used in not only clinical decision making but also system 
control, game theory, information analysis, etc. [10]. The ad-
vantages of FCMs are that FCMs can be represented in a ma-
trix form and their inference process involves numerical ma-
trix computations. During the inference process, the value of 
nodes in FCMs could be out of the range of [0, 1]; therefore, 
activation functions are used to keep the value of the nodes 
within the range. Therefore, the activation function used for 
the inference of FCMs is an important factor in determining 
the results of the inference. 
  Several research efforts have been conducted on activation 
functions for the inference process of FCMs [12-14] where 
a sigmoid function, hyperbolic tangent function, step func-
tion, and threshold linear function have been considered as 
activation functions, and [13] showed that the sigmoid func-
tion offers significantly greater advantages than the other 
functions. Moreover, Lee and Kwon [12] suggested a method 
for determining the λ  value of a sigmoid function, as shown 
in Equation (1), to design an activation function that adapts 
to an FCM model.   

	 ( )( ) 1 1 xf x e λ−= + .	 (1)

  During inference, the concept values of FCMs are restricted 
to v∈(0, 1) by the sigmoid function. One of the character-
istics of a sigmoid function is that its domain is ( −∞ ,∞ ), 
whereas the range of the function is (0, 1), i.e., we cannot 

obtain a “0” or “1” as a concept value after inference. More-
over, while a sigmoid function using λ = 5 [13] is known to 
be a good degree for normalization in [0, 1], the slope of a 
function of around x = 0 is greatly different from that of x
= 1. Therefore, a sigmoid function is not suitable for use as a 
normalization function. 
  As shown in Figure 1, the sinusoidal-type function shown 
in Equation (2) at interval [ /2, /2]βπ βπ− , and the linear 
function shown in Equation (3) are better normalization 
functions than a sigmoid function. Moreover, the range of 
a sinusoidal-type function is [0, 1], where the domain is 
restricted to the interval [ /2, /2]βπ βπ− , and therefore, we 
can obtain “0” and “1” as the concept values after inference.

	 ( )( ) 0.5 sin( ) 1f x xβ= + 	 (2)

	 ( ) 0.5 0.5f x xα= + 	 (3)

  Therefore, in this paper, we propose a method for design-
ing activation functions for the inference of FCMs, which is 
different from the method suggested in [12]. Moreover, we 
apply the designed function to a clinical decision regarding 
the prediction of a pulmonary infection model [2].

II. Methods

1. Model Description and Preliminaries
For convenience, we will use the following notations and 
definitions throughout this paper.
  Notations. N, R , nR , and n m×R  denote a set of natural 
numbers, a real number space, a real n-space, and a set of 
real n m× matrices, respectively. The superscript “T” de-
notes a vector and matrix transposition (i.e., if n∈u R , then 

T
1[ ]i i nu ≤ ≤=u , and if [ ] n m

ij n ma ×
×= ∈A R , then TA = [ ]ji m na × , 

where 1 i n≤ ≤ , 1 j m≤ ≤ , and ,n m∈N ). For all n∈u R , let || ||u  
denote the Euclidean vector norm (i.e., T 1/2|| || ( )= ⋅u u u ). For 
all n m×∈A R , let || ||A  denote the spectral norm (i.e., || ||A = 
(the maximum eigenvalue of T ⋅A A ) 1/2 ). If T

1[ ]i i nu ≤ ≤=u is a 
state vector of a system, then * * T

1[ ]i i nu ≤ ≤=u  denotes an equi-
librium state vector of the system. If :f →R R , then ' ( )f ⋅  
and 1( )f − ⋅  are the first derivative and inverse function of 

( )f ⋅ , respectively. If 1 2[ , ]u u u∈  for any 1 2, ,u u u ∈R , then 
max ( )I u  and min ( )I u  stand for the maximum and minimum 

values of u , respectively, i.e., max 2( )I u u=  and min 1( )I u u= .
  The following descriptions show mathematical models 
representing the characteristics and inference process of an 
FCM as defined in [9,12,15]. 
  Definition 1 (Components of FCM). (refer to [15]) Sup-
pose iC  and jC  are concepts in an FCM, and iv  and jv  are 

Figure 1. Graph of sigmoid function, where λ = 5; sinusoidal-
type function, where β =1.5708; and linear function, 
where α = 1.



107Vol. 18  •  No. 2  •  June 2012 www.e-hir.org

FCM-based Clinical Decision Making

the values of iC  and jC  belonging to [0, 1], respectively, 
when ,i j N∈ = {1,2, , n } and n∈N  is the number of con-
cepts. Then, weight ijw  is defined as a real number in [–1, 
1]. We deem the weight as positive, negative, or having no 
causality from iC  to jC  when 0ijw > , 0ijw < , and 0ijw = , 
respectively.
  Definition 2 (Inference process of FCM). (refer to [15]) For 
every i N∈  and any j N∈ , let iC  be the causal concepts that 
influence concept jC .  Then, for every j N∈ and all iteration 
steps of 0k≥  during inference process of the FCM,

         
( )( 1) ( ) ( )

1 2
1

n
k k k

j j lj l
l

v f v w vρ ρ+

=

 
= + 

 
∑ ,

	
(4)

where 1 2, (0, 1]ρ ρ ∈  and ( ) [0, 1]k
jv ∈  represents the value 

of jC  at the k -th iteration step. Moreover, :f →R R  is an 
activation function to restrict ( 1)k

jv +  into the interval [0, 1]. 
Equation (4) is also represented in vector form as

          ( )( 1) ( ) T ( )
1 2

k k kf ρ ρ+ = + ⋅v v w v ,	 (5)

where ( ) ( )( ) ( ) T
1 2[ ]k kk k

nv v v=v   and [ ]ij n nw ×=w , where 
1 ,i j n≤ ≤ , and are called a state vector and weight matrix, 
respectively. Moreover, 

T( ) ( ) ( )
1( ) ( ) ( )k k k

nf f v f v =  v  .

  As in [12], we transform the model from Equations. (4) and 
(5) into the form described in the following definition.
  Definition 3 (Transformation). (refer to [12]) For every 
j N∈  and all 0k ≥ , let ( )( ) ( ) ( )

1 2 1
nk k k

j j lj llx v w vρ ρ == + ∑  and 
( 1) ( )( )k k
j jv f x+ =  in Equation (4); then,

 

          

( 1) ( 1) T ( 1)
1 2

( ) T ( )
1 2( ) ( )

k k k

k kf f

ρ ρ

ρ ρ

+ + += + ⋅

= + ⋅

x v w v

x w x ,           	  
(6)

where ( ) ( )( ) ( ) T
1 2[ ]k kk k

nx x x=x  .
  We also consider unipolar, nonlinear, and continuous func-
tions as activation functions of FCMs. Therefore, we assume 
that the activation functions satisfy the following conditions:
  Assumption 1. The function :f →R R  is bounded; i.e., 
0 ( )f u M≤ ≤  for all u∈R  and any M∈R  such that 0M > .
  Assumption 2. The function :f →R R  satisfies the Lip-
schitz condition with a Lipschitz constant, 0L > ; i.e., 

1 2 1 2( ) ( ) Lf u f u u u≤− −  for all 1 2,u u ∈R .
  Lee and Kwon [12] suggested a bound of L  of activation 
functions satisfying Assumptions 1 and 2, as shown in Equa-
tion (7), which guarantees the global exponential stability of 
Equation (5) during an inference process of an FCM. 

                                    1 2

10 L
ρ ρ

< <
+ w 	

(7)

  Moreover, as shown in Equation (8), the bound of λ  was 
derived using Equation (7) and the property in which the 
maximum value of the derivative of a sigmoid function oc-
curs when x = 0. 

                                    1 2

40 λ
ρ ρ

< <
+ w               	

(8)

  Consequently, the λ  value are determined by adapting the 
weight matrix w  as an FCM model and the sigmoid func-
tion whose λ  value satisfies inequality (8) guarantees the 
stability of Equation (5).

2. Design of Sinusoidal-Type Activation Functions 
As mentioned in the introduction, a sinusoidal-type function 
may not be appropriate to an activation function because it is 
oscillated in the bound of domain (−∞ ,∞ ). From another 
viewpoint, the sinusoidal-type function, shown in Equation 
(2), within the bound of domain [ /2, /2]βπ βπ− , could be 
better than a sigmoid function as a normalization function, 
because a sinusoidal-type function is a monotonous increase 
function that has a gentler slope than a sigmoid function 
does. Also, the range of a sinusoidal-type function is [0, 1], 
which is different than a sigmoid function whose range is 
(0, 1). Therefore, we need to find the value of β . Intuitively, 

/2βπ  and /2βπ−  may be the maximum and minimum 
values that x  can reach during inference, respectively. Con-
sequently, finding the maximum and minimum values of 
x  is a way to find the value of β . Since a sinusoidal-type 

function will be used as an activation function for Equation 
(5) in this paper, the domain values will be the elements of 
vector ( )kv  in Definition 3. To find the bound of ( )kx  as the 
result of inference of an FCM using Equation (5), we give 
following lemmas.
  Lemma 1. Let ( )kx  and M  be the same as in Definitions 3 
and Assumption 1, respectively. Then, for all 0k≥ , the fol-
lowing inequality is satisfied.

                              ( ) 1/2( )
1 2

k n Mρ ρ≤ + wx 	 (9)

  Proof. Let the right term of inequality (6) be ( )xϕ  as follows:

                         ( ) ( )T( ) ( )
1 2( ) k kf fϕ ρ ρ= + ⋅x wx x .	 (10)

  If we use the Euclidean norm for both terms of Equation 
(10), we can then derive the following inequality.
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( ) ( )

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )
( )

T( ) ( )
1 2

( ) ( )
1 2

( )
1 2

1/22( )
1 2 1

1/2
2

1 2 1

1/2
1 2

( )

( )

k k

k k

k

n k
ll

n

l

f f

f f

f

f x

M

n M

ϕ ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

=

=

= + ⋅

≤ +

= +

= +

≤ +

= +

∑

∑

x wx x

wx x

w x

w

w

w
 
Therefore, we have
                          
                          ( ) 1/2( 1)

1 2
k n Mρ ρ+ ≤ + wx .	 (11)

  If we suppose there exists ( 1)−x  such that ( )(0) ( 1)f −=v x , then 
inequality (11) is represented as Equation (9) because of 

( 1)0 ( )jf x M−≤ ≤  from Assumption 1. □

  Lemma 2. Let 
T( ) ( )
1

k k
j j n

x
≤ ≤

 = x  be the same as in Definition 

3. Then, for all 1 j n≤ ≤ , ( ) 1/2( )
1 2

k
j n Mx ρ ρ≤ + w .

  Proof. Consider a vector ( )k =x
T( )0, ... , ,... , 0k

jx   . Then, 
( ) ( )k k
jx = x .  Here ,  ( )k

jx  i s  t he  maximum abs olute 
value among other elements within the unit circle in 
the vector norm. Thus, from inequality (11), we have 

( ) 1/2( )
1 2

k
j n Mx ρ ρ≤ + w . □

  We can know the domain range of a sinusoidal-type activa-
tion function used in the inference process of FCMs through 
Lemmas 1 and 2. Therefore, we give following theorem for 
the design of the sinusoidal-type activation function.

  Theorem 1. Let 
T( ) ( )
1

k k
j j n

x
≤ ≤

 = x  and M  be the same as 
in Definition 3 and Assumption 1. If there exists an inverse 
function, ( )1f − ⋅ , of an activation function, ( )f ⋅ , the follow-
ing equation is satisfied for all 0k≥  and any j N∈ .

                  ( ) ( )1 1/2( 1)
1 2

k
jf n Mv ρ ρ− + ≤ + w 	 (12)

  Proof. If ( )k
jx  is the j -th element of ( )kx , by Lemma 2 we 

know the range of ( )k
jx  to be ( ) 1/2( )

1 2
k

j n Mx ρ ρ≤ + w . 
Also, ( 1) ( )( )k k

j jv f x+ =  can be represented as ( )1 ( )( 1) kk
jjf xv− + =  

because ( )f ⋅  is invertible. Therefore, we finally have 
( ) ( )1 1/2( 1)

1 2
k

jf n Mv ρ ρ− + ≤ + w . □

  Note 1. If we know the range of ( )k
jx  and ( 1)k

jv +  for all 0k≥  
and j N∈ , we can design activation functions satisfying As-
sumptions 1 and 2 by assigning ( )( )

max
k

jI x  and ( )( )
min

k
jI x  to 

( )( 1)
max

k
jI v +  and ( )( 1)

min
k

jI v + , respectively.

  The following corollary shows how to actually design a 
sinusoidal-type activation function using Theorem 1. 
  Corollary 1. Let β  be the same as in Equation (2) and 1ρ ,  

2ρ , w , n, and M  be the same as in Theorem 1. Then, in the 
designed sinusoidal-type activation function, the value of β  
is 
 
                             ( ) 1/2

1 2

1.5708
n M

β
ρ ρ

=
+ w

.	 (13)

  Proof. We can easily derive the following equation, which is 
the inverse function of Equation (2).

                     
( ) ( )1 ( ) 1( 1) ( 1)1 sin 2 1kk k

jj jf xv v
β

− −+ += = −

  Thus, we have
 
                                

( )1 ( 1)
( )

1 sin 2 1k
jk

j

v
x

β − += − .

  If ( )( )
max

k
jI x  and ( )( )

min
k

jI x  are assigned to ( )( 1)
max 1k

jI v + =  
and ( )( 1)

min 0k
jI v + = , respectively, then β  is computed as 

 
       ( ) ( )

1 1
( ) ( )

max min

1 1sin (2 1) sin (0 1)
k k

j jI Ix x
β − −= − = −

           ( ) 1/2
1 2

1.5708
n Mρ ρ

≈
+ w

.
  
□

  The following corollary shows that the designed sinusoidal-
type activation function guarantees the global exponential 
stability of the inference process of an FCM.
  Lemma 3. (refer to [12]) If ( )k

jx  is the same as in Definition 
3, and L  is a Lipschitz constant as shown in Assumption 2, 
then for all j N∈ , 

( )'( )k
j Lf x ≤ .

  Corollary 2. The inference process of an FCM using Equa-
tion (5) is globally exponentially stable when the activation 
function is a sinusoidal-type, as in Equation (2), where 

( ) 1/2
1 21.5708 nβ ρ ρ= + w .

  Proof. The sinusoidal-type function of Equation (2) satisfies 
Assumption 1, and the maximum value of the first derivative 
of the function occurs when 0x= . Therefore, the range of 
β  is calculated using inequality (7) and Lemma 3 as follows:

         
1'( ) cos( )
2

f x xβ β=

        1 2

1 1 1cos(0)'(0)
2 2

Lf β β
ρ ρ

= = ≤ <
+ w

                                                         1 2

20 β
ρ ρ

< <
+ w

.
	 (14)
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  This guarantees the global exponential stability of Equation 
(5). If M = 1 in inequality (13), we finally have 

( ) 1/2
1 21 2

1.5708 20
n ρ ρρ ρ

< <
++ ww

.

  This inequality is satisfied for all n∈N. Therefore, Equation 
(2), where ( ) 1/2

1 21.5708 nβ ρ ρ= + w , also guarantees the 
global exponential stability of Equation (5). □
  We next give an example that confirms the stability of the 
inference process using the designed sinusoidal-type activa-
tion function.
  Example 1. Let 1 2 1ρ ρ= =  and 1M =  in Definition 2 and 
Assumption 1. Also, suppose that weight matrix w and ini-
tial state vector (0)v  are 

 1.0 0.8
0.95 0.7

− 
=  
 

w
, 

(0) 0.5
0.7
 

=  
 

v .

  The following three kinds of sinusoidal-type activation 
functions with different values of β  are considered in this 
example:
(i) 1β = 0.4652, calculated by the proposed method, where 
n = 2:

( )1 1/2
1 2

1.5708 1.5708 0.4652
3.3766n M

β
ρ ρ

≈ ≈ ≈
+ w

.

(ii) 2β = 0.8376, which is within the range of β  calculated 
by inequality (14), and guarantees the global exponential 
stability of the inference process,

0< β <0.83766392031338.
(iii) 3β = 1.0870, which is out of the range of β , and does 
not guarantee the global exponential stability of the infer-
ence process.
  Using the designed sinusoidal-type activation functions, 
the inferences in Equation (5) based on w  and (0)v  are per-
formed. After inference, the following results are obtained: 
vectors saturated to (i) *

1v = [0.9501 0.5346] and (ii) *
2v = 

[0.9369 0.6396], and vectors oscillated between (iii) ( )
3
kv = 

[0.7706 0.9451] and ( 1)
3
k+v = [0.7355 0.9401]. 

  Figure 2 shows the designed activation functions and trajec-
tories of the concept values during inference. The results in 
(i) and (ii) are stable, but some oscillation is observed at the 
start of the trajectory in the result in (ii), as shown in Figure 
2D. Otherwise, the result in (iii) is not stable. Comparing the 
result in (i) with those in (ii) and (iii), it is reasonable to con-
clude that this oscillation in the trajectories is caused by the 

activation functions, which are ( )( )( ) ( )
max

k k
j jI f x x< , where 

j∈ {1, 2}.

3. Design of Linear Activation Functions 
A linear function, as shown in Equation (3), is not appropriate 
for an activation function for inference of FCMs, because it 
monotonously increases for the domain and range of (−∞ ,∞ ). 
However, if we know the domain range of the linear function 
to be reached during inference process, we can design the 
linear function as an activation function. That is, the follow-
ing corollary shows a way to design a linear-type activation 
function that satisfies the following condition.
  Assumption 3. The function :f →R R  is bounded; i.e., 
0 ( )f u M≤ ≤  for all 1 2, ,u u u ∈R such that 1 2[ , ]u u u∈  and 

1 2u u< , and any M∈R  such that 0M > .
  Corollary 3. Let α  be the same as in Equation (3) and 1ρ , 

2ρ , w , n , and M  be the same as in Theorem 1. Then, in the 
designed linear-type activation function, the value of α  is 

( ) 1/2
1 2

0.5
n M

α
ρ ρ

=
+ w

.

  Proof. We derive the following equation, which is the in-
verse function of Equation (3).

( ) ( )1 ( ) ( 1)( 1) 1 0.5k kk
j jjf x vv

α
− ++ = = −

Thus, we have

( )( 1)
( )

1 0.5k
jk

j

v
x

α += − .

If ( )( )
max

k
jI x  and ( )( )

min
k

jI x  are assigned to ( )( 1)
max 1k

jI v + =  
and ( )( 1)

min 0k
jI v + = , respectively, then α  is computed as

       
( ) ( ) ( )

( 1)
( ) ( ) ( )

max min

1 0.5 0.50.5k
jk k k

j j j

v
x I Ix x

α + −
= − = = =

              ( ) 1/2
1 2

0.5
n Mρ ρ+ w

.
 
□

4. Design of FCM on Pulmonary Infection
To apply he designed sinusoidal-type and linear activation 
functions to an FCM model for a clinical decision, we refer 
the FCM model designed in [2] representing causal knowl-
edge of pulmonary infections. However, the characteristics 
of the FCM in [2] are different with those of the FCM con-
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sidered in this paper. That is, different from Definition 1, the 
concept values in [2] were bounded into the interval [-1, 1], 
and a bipolar activation function was used for the inference 
process. Therefore, we customize the FCM model designed 
in [2], as shown Figure 3, by adding seven concepts (C26-1, 
C27-1, C28-1, C29-1, C30-1, C31-1, and C32-1) representing 
the negative values of the concepts (C26, C27, C28, C29, C30, 
C31, and C32, respectively), as was done in [11]. For instance, 
if the concept value of C26 is “ 26 1Cv = − ,” then D1 is affected 
by the amount from 26 26, 1 1 0.7C C Dv w× = − × . However, ac-
cording to Definition 1, we cannot represent the concept 

value of “ 1− .” To affect negative influence on D1, we 
create a new concept, C26-1, which applies a negative 
value to concept C26, i.e., if “sputum culture” is “ 1− ” 
then “ 26 1 1Cv − = ” because C26-1 involves the meaning of 
the negative concept value. Moreover, we give the weight 
“ 26 1, 1 0.7C Dw − = − ” between concepts C26-1 and D1, i.e., 
even though the value of C26-1 is positive, D1 is affected 
negatively by 26 1 26 1, 1 1 ( 0.7)C C Dv w− −× = × − .
  We deal with the two scenarios described in [2]. That is, 
this experiment aims to show the process for physician’s 
decision that which patient is more serious in pulmonary 

Figure 2. Results of inference process of an fuzzy cognitive map using various activation functions: (A) sinusoidal function where β = 
0.4652; (B) trajectory of state vector in (i); (C) sinusoidal function where β = 0.8376; (D) trajectory of state vector in (ii); (E) 
sinusoidal function where β = 1.0870; and (F) trajectory of state vector in (iii).
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infection, based on observed symptoms and laboratory test 
results of patients in the following scenarios.
  Scenario 1: An immunocompromised patient (A23 = 1) 
with a high fever (A4 = 0.7), loss of appetite (A5 = 1), and 
high systolic blood pressure (A13 = 0.7), with radiologic 
evidence present in his/her chest x-rays (A16 = 1), a small 
number of WBCs (A22 = 0.4), a negative sputum culture 
(A26-1 = 1), and negative antigen (A32-1 = 1).
  Scenario 2: An older patient (A25 = 0.8) with a low fever 
(A4 = 0.3), altered mental status (A12 = 0.4), high oxygen 
requirements (A9 = 0.8), a normal number of leukocytes-
white blood cell (A22 = 0), positive sputum culture (A26 = 1), 
negative blood culture (A28-1 = 1), and negative gram stain 
(A31-1 = 1).

III. Results

According to [2], physicians made decision that the patient 
in scenario 1 is more serious in pulmonary infection than 
that in scenario 2, and the inference of FCM also shows the 
same result with the physicians’ decision. In this experiment, 
therefore, we compared the results of the inference process 
of the FCMs with four activation functions, (i) the sigmoid 
function designed in [12], (ii) a sinusoidal-type function de-
signed using the method proposed in [12], (iii) a sinusoidal-
type function and (iv) a linear function designed using the 
proposed method. In these inferences, we provided the same 
stimulus as in [16].
  According to the two scenarios, we created the following 
initial state vectors:

Figure 3. Customized fuzzy cognitive map model for predicting severity index of pulmonary infection. ABGs: arterial blood gases, 
WBC: white blood cell, GCS: glasgow coma scale.
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Figure 4. Designed activation functions and trajectories of values of concept D1 regarding two scenarios during inference: (A) sig-
moid function where λ = 0.9270; (B) trajectory of values in (i); (C) sinusoidal function where β = 0.4635; (D) trajectories of 
values in (ii); (E) sinusoidal-type function where β = 0.0569; and (F) trajectory of values in (iii); (G) linear function where α 
= 0.0181; and (H) trajectory of values in (iv).
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  (0)
1v = [0 0 0 0.7 1 0 0 0 0 0 0 0 0 0.7 0 1 0 0 0 0 0 0.4 1 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0],
  (0)

2v = [0 0 0 0.3 0 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0.8 
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0].

  Figure 4 shows the designed activation function and trajec-
tories of the values of concept “D1: Severity” at each infer-
ence of the two scenarios. 
  For (i), the values of concept D1 regarding scenarios 1 
and 2 were converged to *

1 1Dv = 0.9983 and *
2 1Dv = 0.9972, 

respectively. As shown in Figure 4A, the slope is almost flat 
around the maximum values of ( )

1 1
k

Dx  and ( )
2 1

k
Dx , and thus the 

gap between the converged concept values is very small, at 
* *

1 1 2 1D Dv v− = 0.0011. Even though it was difficult to make a 
decision based on the results in (i), the results showed that 
the patient in scenario 1 has a severer condition than the pa-
tient in scenario 2, which is the same result determined in [2].
  For (ii), the values of concept D1 regarding scenarios 1 
and 2 were converged to 

*
1 1Dv = 0.5691 and *

2 1Dv = 0.6688, 
respectively. However, in the designed activation function, as 
shown in Figure 4C, the maximum values of ( )

1 1
k

Dx  and ( )
2 1

k
Dx  

exceeded the value that yielded max ( )I v . As a result, the pa-
tient in scenario 2 has a severer condition than the patient in 
scenario 1, which is contrary to (i). That is, the result is not 
useful for decision making.
  For (iii), the values of concept D1 regarding scenarios 1 and 
2 were converged to *

1 1Dv = 0.6556 and *
2 1Dv = 0.6398, re-

spectively. Differing with cases (i) and (ii), the designed ac-
tivation function looks almost like a linear function around 
the maximum values of 

( )
1 1

k
Dx  and 

( )
2 1

k
Dx . Moreover, the gap 

between the converged concept values is the largest among 
the results, at * *

1 1 2 1D Dv v− = 0.0158. That is, comparing (i) 
and (iii), we can see that the results of the latter make it more 
convenient for a physician to make a decision and with more 
correct results.
  For (iv), the values of concept D1 regarding scenarios 1 and 
2 were converged to *

1 1Dv = 0.5487 and *
2 1Dv = 0.5435, respec-

tively. The gap between the converged concept values is the 
better than the result in (i), at * *

1 1 2 1D Dv v− = 0.0052. 
  As a result, we can see that although the sinusoidal-type ac-
tivation functions was designed using the method proposed 
in [12], it occasionally provides incorrect results for decision 
making. Therefore, we can determine that the method pro-
posed in this paper is more appropriate for designing sinu-
soidal-type activation functions than the method proposed 
in [12].

IV. Discussion

There exist various methods to support physicians’ clinical 

decision making such as fuzzy, neural networks, decision 
tree, and FCMs. However, the usability of the methods is 
strongly dependent on the features of a clinical field; because 
their knowledge models are different from each other and 
each method has its own strength and weakness. And even 
in the same method, the results of decision making may be 
different according to its knowledge model. Thus, the us-
ers in clinical field (e.g., physicians) only refer to the results 
from the methods when they make clinical decisions. The 
aim of the methods in clinical field is how clearly shows the 
results to the users.
  In this paper, we focused on a clinical decision making 
based on FCMs, which are good models of the causal knowl-
edge of relationships between medical concepts and provide 
prediction results based on the current status of a concept 
through an inference process. Therefore, activation functions 
used for the inference process are very important factors that 
support physicians in making the right decision. In other 
words, for physicians to make a final decision, how well the 
physicians’ knowledge is represented as an FCM model is 
not the only important factor. The inference process of that 
model is also important in the application of clinical deci-
sion making. In general, sigmoid functions have been used 
as activation functions for the inference process of FCMs; 
the design of an activation function is greatly dependent 
on the experience of experts because, during inference, the 
slope varies considerably within the domain range of the 
function. 
  Therefore, we proposed a method for designing sinusoidal-
type and linear activation functions by calculating the do-
main range of the activation function to be reached during 
the inference process of FCMs. Even though sinusoidal-
type functions are oscillated and linear functions are mo-
notonously increased within the entire range of the domain, 
the designed activation functions make the inference stable 
because the proposed method notices where the function is 
used in the inference. Moreover, because a sinusoidal-type 
function designed by the proposed method provides a gen-
tler slope than a sigmoid function does, it can be used as a 
normalization function. We applied the designed functions 
to an FCM model that represents the causal knowledge of 
pulmonary infections. Comparing the activation function 
designed using the proposed method with activation func-
tions designed using an existing method, we confirmed that 
the proposed method can be appropriately used for design-
ing the activation functions for the inference process of an 
FCM for clinical decision making.
  This study dealt with only two kinds of functions and lim-
ited their adaption into an example of decision making with 
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the designed knowledge model in other study. In future 
research, we will consider another type of functions such as 
hyperbolic tangent function and apply the functions to more 
various FCM models in medical field.
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