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Systemic lupus erythematous (SLE) is a systemic autoimmune disease with multi-organ inflammation caused by the production 
of pathogenic autoantibodies and immune complexes reflecting a global loss of tolerance. Lupus nephritis (LN) is present in ap-
proximately 60% of SLE patients and is considered a major predictor of a poor prognosis. To date, many studies utilizing ge-
nomics, transcriptomics, epigenetics, metabolomics, and microbiome have been conducted on a range of animal models and 
lupus patients to understand the pathogenesis of SLE and LN. Collectively, these studies support the concept that LN is caused 
by increased cell death, which has not been properly dealt with; abnormal innate immunity; hyperactive adaptive immunity; 
and genetic variants triggered by a range of environmental factors. This review summarizes the results from studies that con-
tributed strongly to elucidating the pathogenesis of SLE and LN, highlighting the immunological and non-immunological 
mechanisms. (J Rheum Dis 2018;25:81-99)
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INTRODUCTION

Pride and prejudice
Lupus nephritis (LN) is a representative clinical feature 

of systemic lupus erythematous (SLE), which is scientifi-
cally challenging to comprehend its nature. The patho-
genesis of LN involves a variety of pathogenic mecha-
nisms. The pathogenesis of LN implicates altered cell 
death including aberrant apoptosis and formation of neu-
trophil extracellular traps (NETs) in breaking tolerance, 
the significance of autoantibodies, the role of the comple-
ment cascade, the contributions of adaptive immunity 
cross-talked with the innate immune system, genetic as-
sociations and various environmental factors in driving 
renal damage (Figure 1).
In spite of a knotted skein slowly being unraveled in re-

turn for endless efforts of researchers in various fields, we 
still haven’t figured out the exact cause, which prevents 

us from achieving the goal of cure. In addition, some re-
sults have not been repeated in following studies and not 
been validated yet. For example, the intrarenal etiology of 
LN includes the several paradigms contemporarily in con-
flict with each other such as anti-double strand DNA 
(dsDNA) antibodies that cross-react with inherent renal 
antigens, anti-dsDNA antibodies targeting exposed chro-
matin in glomeruli, and relative antibody avidity for 
dsDNA, chromatin fragments, or cross-reacting antigens. 
In addition, LN patients have been reported to have in-
creased numbers of apoptotic glomerular cells compared 
to healthy controls, in correlation with anti-dsDNA anti-
body levels, complement consumption, and cell pro-
liferation while there are also evidences about a decrease 
in apoptotic cells from the glomerulus and tubulo-inter-
stitium in LN biopsies compared to control kidneys. 
Therefore, I’d like to suggest that you stop here if you are 
eager to find the right answer to the pathogenesis of LN 
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Figure 1. Overall pathogenic mechanism of lupus nephritis. HLA: human leukocyte antigen, SLC5A11: solute carrier family 5 
member 11, PDGF: platelet-derived growth factor, TNFSF4: tumor necrosis factor ligand superfamily, member 4, ITGAM: integrin
alpha M, STAT: signal transducer and activator of transcription, UV: ultraviolet, RNA: ribonucleic acid, DNA: deoxyribonucleic 
acid, DNase: deoxyribonuclease, pDC: plasmacytoid dendritic cells, TLR: toll-like receptor, STING: stimulator of interferon gene,
IFN: interferon, TNF: tumor necrosis factor, IL: interleukin, BAFF: B cell-activating factor, CCL2: chemokine ligand 2, FGF: fibro-
blast growth factor, Th: helper T cells, Treg: regulatory T cells, TfH: follicular helper T cells, dsDNA: double strand DNA.

through this review. And for those who are only inter-
ested in LN rather than the whole story of SLE, the patho-
genesis specific to LN is written in Italics.

Epidemiology-‘The nuclear bomb targets the kidney 
in SLE’
SLE is a systemic autoimmune disease with multi-organ 

inflammation by production of pathogenic autoanti-
bodies directed against nucleic acids and their binding 
proteins and immune complexes reflecting a global loss of 
tolerance [1]. The prevalence of SLE ranges from 1.4% to 
21.9%; incidence is estimated to be 7.4∼159.4 cases per 
100,000 person-years [2]. In Korea, the prevalence was 
reported to be around 20 per 100,000 populations and 
there are approximately 12,000 patients under treatment 
[3]. Most patients are female and younger than 50 years 

of age. However, male patients have a high incidence of nephrop-
athy and greater severity of disease [4]. With the advent of ad-
vanced therapies, the 5-year survival rate has shown con-
tinuous improvement from 50% in 1953∼1969 to nearly 
90% to date [5,6]. 
LN is present in approximately 60% of SLE patients, with 25%∼

50% of patients presenting with clinical renal disease at the time 
of diagnosis [7], when occurring early in the course of SLE, is 
considered a major predictor of poor prognosis [8]. Patients with 
LN also have a higher standardized mortality ratio (6∼6.8 vs. 
2.4) and die earlier than SLE patients without LN [9-12]. 
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Figure 2. Potential role of aber-
rant cell death in the develop-
ment of systemic lupus erythe-
matous. CRP: C-reactive pro-
tein, PTX: pentraxin-related 
protein, DNase: deoxyribonu-
clease, NET: neutrophil ex-
tracellular trap, DNA: deoxy-
ribonucleic acid, RNA: ribonu-
cleic acid, AMP: adenosine mo-
nophosphate, HMGB1: high-mo-
bility group box 1 protein, pDC:
plasmacytoid dendritic cells, 
TLR: toll-like receptor, STING: 
stimulator of interferon gene, 
IFN: interferon, Th: helper T 
cells, Treg: regulatory T cells, 
TfH: follicular helper T cells.

MAIN SUBJECTS

How wolves attack human
1) Aberrant cell death and dead cell handling-‘Climbing 

to ALPS’
(1) Apoptosis

Accelerated cell death in SLE can potentially overwhelm 
the host clearance mechanism, resulting in the accumu-
lation of apoptotic debris. And these changes contribute 
to induction of autoantibodies and other aberrant im-
mune responses in SLE and in LN specifically [13]. 
Secondary necrotic cells release nuclear autoantigens that 
can lead to immune complex formation (Figure 2).
Some apoptotic signaling molecules have been reported 

to be related to SLE. One of these was the identification of 
mutations in Fas receptor and Fas ligand in mice [14-16] 
and in humans that develop autoimmune lymphoproli-
ferative syndrome (ALPS) [17,18].
Defects in phagocytosis have been observed in SLE [19]. 

SLE patients have an accumulation of apoptotic cells in 
lymph node germinal centers likely due to the reduction 
in tangible body macrophages that specialize in the re-
moval of dead cells [19]. Defects in the differentiation of 
myeloid progenitors into macrophages may potentially 
lead to phagocytosis defects in SLE [20].
Apoptosis-induced post-translational histone mod-

ifications are targets for autoimmune system in SLE 

[21-23]. Microparticles from SLE patients which contain 
apoptosis-related histone modifications activate plasma-
cytoid dendritic cells (pDCs) and myeloid DCs (mDCs) 
that results in the induction of proinflammatory cyto-
kines such as type I interferon (IFN) [24].
Some apoptotic signaling molecules including B cell lymphoma 

2 (Bcl-2), Bim, transmembrane activator and calcium modu-
lator and cyclophilin ligand interactor (TACI), B cell-activating 
factor (BAFF), phosphatase and tensin homolog (PTEN), and 
p53 have also been linked to LN [25]. 
Whether increased cell death of glomerular cells is an important 

source of circulating and/or tissue nucleosomes promoting glo-
merulonephritis is controversial [26]. LN patients have been re-
ported to have increased numbers of apoptotic glomerular cells 
compared to healthy controls, in correlation with anti-dsDNA 
antibody levels, complement consumption, and cell proliferation 
[27]. But, there are also evidences about a decrease in apoptotic 
cells from the glomerulus and tubulo-interstitium in LN biopsies 
compared to control kidneys [28]. In addition, renal cells from 
LN patients had enhanced proliferation without an increase in 
apoptosis. It is not clear why there are significant inconsistencies 
in determining if renal cells from LN patients undergo increased 
apoptosis, but one potential explanation could be the type of ex-
perimental method used to quantify this process [29,30]. On the 
other hand, the deposition of glomerular ubiquitinated histone 
H2A was reported in a significant proportion of LN [31,32].
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Figure 3. Innate and acquired 
immunity processes contribute 
to systemic lupus erythematous. 
pDC: plasmacytoid dendritic 
cells, TLR: toll-like receptor, 
STING: stimulator of interferon 
gene, IFN: interferon, TNF: tu-
mor necrosis factor, IL: inter-
leukin, BAFF: B cell-activating 
factor, Treg: regulatory T cells, 
Th: helper T cells, TfH: follicular
helper T cells.

(2) NETs 

Enhanced formation and defective clearance of NETs contrib-
utes to SLE, especially renal disease (Figure 2). Neutrophils 
can extrude a meshwork of nuclear material bound to 
neutrophil granular proteins which mediates cleaving 
histones and promoting chromatin decondensation [33]. 
NET induction and clearance may result in a protective 
antimicrobial effect but excessive NET formation and in-
efficient removal could lead to tissue damage and auto-
antigen modification and externalization [34]. SLE pa-
tients are more prone to form NETs than neutrophils 
from healthy controls [35-38]. And SLE patients have an im-
paired ability to degrade NETs and proposed that this impair-
ment contributes to the development of LN [39-42]. NET de-
rived self-DNA complexed with neutrophil-derived antimicrobial 
peptides activatepDC Toll-like receptor (TLR) 9 and induce 
IFN α [38]. 
The renal biopsy analysis from patients with LN revealed the 

presence of NETs and infiltrating netting neutrophils in the glo-
meruli [35], which positively correlates with higher levels of cir-
culating autoantibodies and enhanced activity index in kidney 
biopsies. Deoxyribonuclease (DNase) I is the major endonuclease 
found in circulation involved in degrading NETs. The correlation 
between DNase I deficiency and increased prevalence of LN was 

confirmed in SLE patients with renal involvement [39,41,43]. 

2) The troops betray me
(1) Innate immunity 

TLR: Persistent apoptotic debris containing nucleic 
acids can stimulate the inflammatory response through 
the activation of nucleic acid recognition receptors such 
as members of the TLR [44]. In SLE, TLRs might become 
aberrantly activated in the absence of foreign molecules 
[45] and associated with pDC activation and type I IFN 
production (Figure 3) [36,38]. Indeed, TLR7 (receptor 
for single strand RNA) and TLR9 (receptor for DNA) 
mRNA expression was upregulated in PBMCs from SLE 
patients and levels correlate with the expression of IFN α 

[46,47]. TLR7 was preferentially increased in SLE pa-
tients with antibodies against RNA-associated antigens, 
while TLR9 induction correlated with anti-dsDNA anti-
body titers [48]. And the upregulation of TLR7 was ob-
served when healthy neutrophils were cultured with sera 
from SLE patients with active disease [36]. SLE patients 
with active disease had a higher number of TLR9 express-
ing B cells and monocytes than did patients with low dis-
ease activity, and levels of these cells correlated with lev-
els of antibodies to dsDNA [49]. In TLR9 deficient lu-
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pus-prone mice, the generation of anti-dsDNA and an-
ti-chromatin autoantibodies was specifically inhibited [50].
The nucleic acid component of immune complexes also activates 

intrarenal inflammation by TLRs in intrarenal macrophages and 
DCs to produce large amounts of proinflammatory cytokines and 
IFN [51-58]. In pristane-treated mice, TLR7 was specifically re-
quired for the production of RNA-reactive autoantibodies and for 
the development of glomerulonephritis [59]. Studies of pharma-
cologic or genetic manipulation of TLR7 expression or function 
support a central role for TLR7 in inflammation, loss of toler-
ance, and type I IFN production [60-63]. And the activation of 
TLR3 on antigen presenting cells (APCs) or renal mesangial cells 
can aggravate LN by recruiting polymorphonuclear cells to the 
site of inflammation, where they can contribute to renal injury 
[64,65]. Genetic variants of TLR3 (receptor for dsRNA), 
TLR7/8 and TLR9 have been associated with LN. These variants 
may contribute to severe renal insufficiency in LN. In addition, 
signaling through particular TLR9 genetic variants was asso-
ciated to more severe renal disease at the time of LN presentation 
[66,67].
Cytokines: Levels of many cytokines are elevated in SLE 

such as IFN, TNF, interleukin (IL)-4, IL-6, and IL-10 and 
their main effects are the promotion of autoantibody pro-
duction and inflammation (Figure 3). 
Type I and II IFNs have emerged as key cytokines in the 

pathogenesis of SLE and increases in their levels precede 
autoantibody development [68]. Upregulation of TNF 
can increase type I IFN expression [69,70]. IFN α, a type 
I IFN has multiple effects consistent with known im-
munologic features of SLE, such as upregulation of BAFF, 
decreased regulatory T (Treg) cell function, and induction 
of plasma cells. In particular, the prevalence of type I IFN 
signaling was higher in T cells than in other immune cell 
types in patients with SLE [71]. A direct pathogenic role 
for IFN in mouse models of lupus is also supported by 
studies in which exogenous administration of IFN α ex-
acerbates disease [72,73]. 
Patients with SLE may also have an imbalanced T cell cy-

tokine profile characterized by decreased IL-2 [74] and 
increased IL-17 levels [75]. Production of IL-2 is impaired 
on multiple levels [74]. IL-2, in addition to being critical 
for Treg cell development and function, is also necessary 
for restricting expression of IL-17. In SLE, IL-17 may me-
diate local tissue damage through the induction of in-
flammatory cytokines and chemokines, and by recruiting 
other immune cells. The differentiation of the T helper 
cell subset producing IL-17 is dependent on IL-23, and an 
anti-IL-23 antibody ameliorated disease in one mouse 

model of lupus [76]. 
B cell activation and autoantibody production are pro-

moted in SLE by BAFF. Serum levels of BAFF are in-
creased in patients with SLE and positively correlate with 
autoantibody titers [77]. Transgenic overexpression of 
BAFF in a mouse model of lupus exacerbated disease 
[78], BAFF is a critical factor for B cell homeostasis and 
high BAFF levels might reduce the stringency of B cell se-
lection, allowing autoreactive clones to persist in the pe-
riphery [79].
Following immune complex deposition, a large variety of in-

flammatory mediators is produced in LN kidneys with spreading 
of the response as disease progresses [80,81]. A Type I IFN sig-
nature is also a feature of LN kidneys [82,83]. IFN has multiple 
detrimental effects on the kidneys including vascular rarefaction 
and injury to glomerular parietal cells and podocytes [84,85]. 
Examples include CCL2, a chemokine expressed early in the glo-
merulonephritis process, and TNF that is expressed at proteinuria 
onset [86,87]. Multiple cytokines such as IFN γ, IL-21 and 
IL-17 have also been detected in LN kidneys [88]. Once tissue in-
jury occurs, soluble products released from injured cells amplify 
the inflammatory response by stimulating extracellular and in-
tracellular innate immune receptors [89-93]. Nevertheless, not 
all renal inflammatory mediators are necessary for the in-
flammatory process. For example, IL-17 deficiency alters the 
course of LN only in some models in which Th17 cells infiltrate 
the kidneys [94,95]. IL-4 drives signal transducer and activator 
of transcription 4 (STAT4) activation, which leads to autoanti-
body production. Autoantibody-mediated pathology in LN is sup-
ported further by genetic variants within the T follicular helper 
(Tfh) differentiation pathway [96,97], where IL-6 and IFN γ 

[98] via STAT [99] activate TfH differentiation. 
Complements: The complement systems affect the abil-

ity of innate immune cells to facilitate phagocytosis of nu-
clear antigens and cell debris. One of the most remarkable 
genetic associations in SLE is the early components of the 
complement system classical pathway [100-103]. More 
than 90% of patients with homozygous deficiency of C1q 
are reported to have SLE and the high titers of autoanti-
bodies are observed in more than 70% of these patients 
[100-102,104]. About 10%∼30% of homozygous C2-de-
ficient patients develop SLE [100,105,106]. Arthritis, 
malar rash, discoid rash, and photosensitivity are seen in 
the majority of C2-deficient patients with SLE [100, 
101,103,104,106]. Complete homozygous deficiency of 
C4 is rare but, more than 75% of these patients develop 
this disease. Approximately 50% of SLE-C4-deficient patients 
develop LN and more than 70% has antinuclear antibodies and 
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anti-Ro autoantibodies in their serum [100,101,104].
Patients with C1 deficiencies usually present SLE at an 

early age, in similar female:male proportions, with severe 
symptoms and prominent cutaneous manifestations 
[107]. Anti-C1q antibodies which target a neo-epitope of 
bound C1q are present in 2%∼8% of the healthy pop-
ulation, but they are present in 30%∼48% of patients 
with SLE [108]. Their titer correlates to active renal dis-
ease with a sensitivity of 44%∼100% and a specificity of 
70%∼92% [109].
The complement system is generally activated in LN and can di-

rectly mediate kidney injury through the terminal pathway, or in-
directly increase renal inflammation by recruiting leukocytes to 
the kidney. In a lupus cohort, 23% of patients had autoantibodies 
to C1q and to C3b [110]. Anti-C3b and anti-C1q levels tended 
to increase in the months leading up to renal flare [111]. LN has 
been associated genetically with deficiencies in the opsonin C1q, 
C2 and C4 [112], Genetic variants of C-reactive protein (CRP) 
[113] and mannose binding lectin [114], also contribute to LN 
by disrupting complete clearance of autoantigens, enhancing in-
flammation, and increasing autoantibodies to C1q.

(2) Acquired immunity

B cells: The absolute number of B cells is not different to 
that of controls in SLE patients. But, certain peripheral B 
cell subsets in SLE patients showed differently compared 
to healthy controls by the following mechanisms (Figure 3). 
Loss of tolerance and altered B cell differentiation in SLE 

might present from birth or acquired as part of the disease 
process [115]. Human studies have clearly implicated 
loss of B cell tolerance. Early immature B cells show in-
creased levels of autoreactivity in SLE, possibly owing to 
a break in central B cell tolerance [116]. Patients with in-
active SLE fail to remove B cells expressing self-reactive B 
cell receptors (BCRs) expressed by naïve B cells due to de-
fects of selection against autoreactive B cells [117]. 
Activation of B cells through the TLR pathway or cyto-
kines such as BAFF promotes loss of tolerance. Mouse 
models have demonstrated that transitional B cells are 
susceptible to accelerated maturation by TLR 9, which 
bypasses tolerance checkpoints [118-121]. In addition, 
IL-10 secreting B cells with regulatory capabilities show 
functional impairment in SLE [122,123]. 
High number of self-reactive mature naïve B cells which 

subsequently originate autoantibody producing plasma 
cells is the most reported characteristic of the abnormal B 
cell homeostasis in SLE characterized by the expansion of 
peripheral plasmablasts [124], which also correlates with 
disease activity and the titer of autoantibodies [125]. And 

the pool of memory B cells is enlarged. Since these cells 
have low activation thresholds, they present a risk for au-
toimmunity and the regulation by FcγRIIb receptors 
may be inhibited [126]. So these cells can be rapidly acti-
vated in a non-antigen-specific manner by the combina-
tion of TLR agonists and a proliferation-inducing ligand 
(APRIL) (TNFSF13A) or BAFF (TNFSF13B) as well as by 
the combination of cytokines, such as IL-21 and BAFF 
[77,127].
Anti-dsDNA antibodies react with several renal cell types and 

are thought to be central to the nephritis process. The relative 
amount of anti-dsDNA antibodies has been calculated to com-
prise up to 20% of the total eluted immunoglobulin (Ig)G from 
nephritic kidney [128-132]. There are two theories about the 
pathogenic process about dsDNA antibodies. First, anti-dsDNA 
antibodies recognize exposed chromatin in the mesangium or in 
glomerular basement membrane. DNA specific B cells are stimu-
lated by chromatin fragments and histone specific T helper cells. 
The emerging anti-dsDNA antibodies bind exposed chromatin in 
glomeruli and initiate LN [128,133]. The completely lostof re-
nal DNase I during progression of SLE seems to reduceclearance 
of chromatin from dead cells, and to promote harmful accumu-
lation of undigested chromatin in glomeruli [133-135]. Others 
indicate that antibodies target cross-reacting antigens that ap-
pear as normal constituents in glomeruli [133,136] or that chro-
matin-IgG complexes derive from circulation [137-139]. The B 
cells specific for chromatin or inherent glomerular structure such 
as laminin or entactin, respond by producing cross-reactive anti- 
dsDNA/anti-chromatin antibodies. These antibodies may bind 
exposed chromatin fragments or homologous, inherent antigens 
in kidneys, lungs, and other organs [133,136]. Autoantibodies to 
annexin1 and α enolase have also been detected in LN kidneys 
[140]. Meanwhile, Infiltrating leukocytes form de novo lym-
phoid organs inside the kidney, which involve the clonal ex-
pansion of B cells. Such B cells undergo intrarenal proliferation 
and activation, which contributes to local inflammation and tis-
sue pathology in addition to their role for systemic and intrarenal 
autoantibody production [141,142]. B cells derived from human 
LN biopsies recognize vimentin, an intracellular structural pro-
tein that is cleaved and extruded from apoptotic cells [143]. 
Serum anti-vimentin antibodies are associated with decreasing 
GFR and increasing tubulointerstitial damage, and are asso-
ciated with severe interstitial disease in LN [143,144]. 
There are genetic variants that affect B-cells to break tolerance, 

secrete autoantibodies that contribute to kidney damage in LN. 
Genetic variants in the BCR complex and proximal signaling 
molecules are enriched in SLE patients and may contribute to LN 
[145]. The SLE patients with genetic variation of CSK has am-
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plified inhibitory phosphorylation of Lyn, thus increasing 
BCR-mediated activation of mature B cells [146]. And these pa-
tients carries many lupus-associated autoantibodies that contrib-
ute to LN [147]. Genetic variants of CD40 which positively reg-
ulates B-lymphocyte activation through the adaptor molecule 
TRAF6 are associated with LN [148]. CD40 synergizes with 
TLRs and the BCR allowing to further drive immune dysregula-
tion associated with SLE and renal disease in LN [149].
T cells: Loss of T cell tolerance through multiple mecha-

nisms exists in SLE. There is aberrant signaling through 
the T cell receptor (TCR) in patients with SLE. In T cells 
from patients with SLE, the CD3ζ chain (which medi-
ates signaling via tyrosine-protein kinase ZAP 70) is 
down regulated, causing ZAP 70 to be replaced by FcRγ. 
FcRγ then pairs with tyrosine-protein kinase SYK rather 
than with ZAP 70, resulting in hyperactivation of the TCR 
signaling pathway [150,151]. Despite this hyperactivated 
phenotype, T cell production of IL 2 is actually impaired 
[74,152]. 
Patients with SLE also show altered T cell subset pop-

ulations (Figure 3). Th17 cells found infiltrating the kid-
neys of patients with lupus nephritis, and in the skin le-
sions of patients with SLE [153]. Double-negative T cells 
(CD4−CD8−) are expanded in patients with SLE 
[154,155] and seem to be the primary source of IL 17 in 
SLE [156]. And these T cells are thought to contribute to 
loss of tolerance [154,155], as they also express IL 1β 

and IFN γ, and promote B cell differentiation and anti-
body production. 
Both B cells and T cells from LN kidneys are clonally expanded, 

and the same T cell expansions have been detected in the periph-
eral blood [143,157] and in the urine of LN patients [158]. 
Aberrant T cell–B cell interactions are also observed in 
SLE [159,160]. The pathologically expanded and acti-
vated TfH cell compartment markedly affects B cell 
differentiation. And expansion of the TfH cell subset cor-
relates with increased disease activity and severity in pa-
tients with SLE [161-163]. The expansion of TfH cells in 
SLE may be directed by interaction with OX40 ligand 
(also known as TNF ligand superfamily member 4 
[TNFSF4]), which is expressed on myeloid antigen-pre-
senting cells [164]. Genetically determined increased 
OX40L expression promotes human SLE by effector T 
cells proliferation and plasma cell development. Loss of B 
cell OX40L ameliorates the SLE through declining in TfH 
cell numbers [165].
T cells from LN kidneys are clonally expanded, and the same T 

cell expansions have been detected in the peripheral blood [143], 

particularly IL-17 producing CD3+/CD4+ or CD3+CD4/8-/-T 
cells [156]. And multiple T cell cytokines such as IFN γ, IL-21 
and IL-17 have also been detected in LN kidneys [88]. TfH cells 
can be seen within lymphoid aggregates in kidney biopsy samples 
from patients with active LN, and activated TfH cells correlate 
with autoantibody titers in these patients [96,166]. 
Circulation-'the vessels are tossed and turned': Endothelial 

cells produce Platelet-derived growth factor (PDGF)-B whose in-
teraction with PDGF-Rβ on mesangial cells is required for the 
development of glomerular disease. Expression of PDGF isoforms 
is upregulated in many forms of renal injury, causing mesangial 
hyperproliferation, matrix production, cytokine and chemokine 
release, and renal fibrosis [167]. Podocytes and endothelial cells 
also interact by bidirectional diffusion of cytokines/growth fac-
tors through the glomerular basement membrane [168]. And in 
diseased tissue, both activated glomerular endothelial cells and 
damaged podocytes release endothelin 1 that amplifies glomer-
ular injury by causing mitochondrial stress [169]. 
And there are abnormal vascular function and tissue hypoxia in 

LN. The capacity for angiogenesis and capillary repair is lost ow-
ing to dissociation pericyte from capillaries and diminished pro-
duction VEGF, leading to capillary infarction in both the glomer-
ulus and the interstitium [170,171]. Other disturbances of an-
giogenesis reported in LN include a decrease in the ratio of pro-an-
giogenic Ang1/anti-angiogenic Ang2, down regulation of the 
angiogenic factor FGF-2, an increase in the VEGF inhibitor 
ADAMTS-1, and alterations in endothelial nitric oxide synthase 
[172-175]. Recent studies have shown that injured renal tubu-
lar cells have mitochondrial dysfunction, reprogram them to a 
pro-fibrotic phenotype, and contribute to their death [80]. 
Fibroblasts may contribute to tissue injury by producing pro-in-
flammatory mediators [176]. Fibrotic tissue may disrupt normal 
anatomic structures and interfere with oxygen diffusion, thus ex-
acerbating hypoxia [177].

3) Genetics-‘ascribing everything to my parents?’
SLE is known to have a strong genetic link, with a herit-

ability of 66%. Data suggest that concordance of SLE is 10 
times more frequent in monozygotic than in dizygotic 
twins. The twin concordance rate for SLE is 25%∼30% in 
monozygotic twins compared with 2% in dizygotic twins 
[178]. Most of genes associated with SLE are associated 
with multiple autoimmune diseases. The overall genetic 
risks identified to date are limited, with each gene gen-
erally conferring a relative risk ＜2 (Figure 4).
The rare but high-risk deficiencies in complement path-

way gene products, including C2, C4, and C1q, are 
thought to contribute to lupus pathogenesis by impairing 
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Figure 4. Associated genes and environmental factors with the pathogenesis of systemic lupus erythematous. CRP: C-reactive pro-
tein, ATG5: α-glucoside transporter 5, TREX1: three prime repair exonuclease 1, UV: ultraviolet, HLA: human leukocyte antigen,
FCGR: Fcγ receptor, IRAK: interleukin 1 receptor associated kinase, IRF: IFN regulatory factor, STAT: signal transducer and activa-
tor of transcription, ITGAM: integrin α M, TNFAIP: TNF α-induced protein, IFI27: interferon α-inducible protein 27, IFI44L: inter-
feron-induced protein 44-like, LY6E: lymphocyte antigen 6 complex, locus E, IFITM1: interferon induced transmembrane protein
1, BANK1: B cell scaffold protein with ankyrin repeats 1, BLK: B lymphoid tyrosine kinase, ETS1: ETS proto-oncogene 1, PTPN22:
protein tyrosine phosphatase, nonreceptor type 22, TNFSF: tumor necrosis factor ligand superfamily, member, IKZF1: IKAROS 
family zinc finger 1, SLC5A11: solute carrier family 5 member 11, PDGFR: platelet-derived growth factor receptor, NCF1: neu-
trophil cytosolic factor 1, ACP5: acid phosphatase 5, PRDM1: PR domain zinc finger protein 1.

clearance of cellular debris [179,180]. SLE develops in 
over 90% of C1q-deficient individuals [181]. Similarly, 
SLE development is strongly associated with C4 defi-
ciency (75%) and to a lesser degree with homozygous C2 
deficiency (10%∼30%) [182]. However, the deficiency of 
these genes in patients with SLE is extremely rare. 
Several genes have been associated with SLE suscepti-

bility, most prominently in the human leukocyte antigen 
(HLA) loci [183,184]. Then, FcγRIIA and FcγRIIIB 
which mediate the phagocytosis and immune function of 
the immune complex have been reported, In addition, 
CRP and integrin alpha M (ITGAM) are related [185, 
186]. Mutation in the integrin α M (CD11b)-encoding 
ITGAM gene induced TLR-dependent proinflammatory 
signaling and IFNα signaling in lupus-prone MRL/Lpr 
mice [187].
HLA DRB1*1501 (DR2) and DR3 B1*0301 are class II 

alleles consistently shown to be associated with SLE 
[188]. More recently, a large genome wide association 
studies (GWAS) found that the best model for association 
was a combination of HLA alleles including B*08:01 
and B*18:01 in class I, DQB1*02:01,DRB3*02:00, and 
DQA*01:02 in class II and a class III single nucleotide 
polymorphism (SNP) (rs74290525) located in SLC44A4 
[184, 189]. Recent GWAS have superseded older candi-
date gene studies and have shown ＞40 genes associated 
with SLE outside of the MHC in European populations 
[189]. A large number of lupus-associated SNPs found in 
genes that encode proteins involved in induction of type 
I IFN and the innate immune response in SLE patho-
genesis, such as IFN regulatory factor 5 (IRF5) and IRF7, 
TNF α-induced protein 3 (TNFAIP3) [190-193]. And 
the expression of type I IFN signature genes such as 
Interferon α-inducible protein 27 (IFI27), interferon-in-
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duced protein 44-like (IFI44L), lymphocyte antigen 6 
complex, locus E (LY6E), TNFAIP6, and interferon in-
duced transmembrane protein 1 (IFITM1) in SLE pa-
tients was increased compared to other patients with au-
toimmune disease [194]. Additional lupus-associated 
variants that alter adaptive immune system activation are 
involved in cytokine signaling, such as STAT4, or effi-
ciency of signaling downstream of the T and B cell surface 
antigen receptors, such as , protein tyrosine phosphatase, 
nonreceptor type 22 (PTPN22) in the case of both T and 
B cells, and LYN, B cell scaffold protein with ankyrin re-
peats 1 (BANK1), B lymphoid tyrosine kinase (BLK), 
TNFAIP3, and others in the case of B cells [195].
A GWAS in Koreans has been recently published [196]. 

Two loci were detected in 1174 SLE cases and the loci 
were, an intergenic SNP between FCH and double SH3 
domains 2 (FCHSD2) and purinergic receptor P2Y2 
(P2RY2), and autophagy related 16 like 2 (ATG16L2). A 
locus that was detected as suggestive, huntingtin inter-
acting protein 1 (HIP1) is replicated in this study. None of 
these loci has been as yet detected in Europeans, but in 
Koreans, several European loci were confirmed once 
more. These were STAT1-STAT4, TNFSF4, TNFAIP3, 
IKAROS family zinc finger 1 (IKZF1), HIP1, IRF5, BLK, 
WDFY family member 4 (WDFY4), ETS proto-oncogene 
1 (ETS1) and interleukin 1 receptor associated kinase 1 
(IRAK1)-methyl-CpG binding protein 2 (MECP2) [196]. 
And GWAS was conducted in 4,478 SLE cohort from six 
East Asian conturies, general transcription factor II-I re-
peat domain-containing protein 1-general transcription 
factor 2-I (GTF2IRD1-GTF2I) being the most significant 
locus among ten new loci [197]. 
Recently, genetic risk factors have been identified as 

follows. NADPH oxidase-encoding Ncf1 gene SNP in-
duced production of ROS, so increases the risk of devel-
oping SLE [198]. Mutation in the tartrate-resistant acid 
phosphatase (TRAP)-encoding ACP5 gene result in the 
expression of IFN-stimulated genes and the production 
of IL6 and TNF. And an excess of heterozygous ACP5 mis-
sense variants was observed in SLE [199]. Transcription 
factor Blimp1-encoding Prdm1 deficiency in DC led to 
modulated antigen presentation and the TfH cell reper-
toire to contribute to autoimmunity [200].
Carriers of HLA-DR4 and DR11 were protected against LN 

[183]. Conversely HLA-DR3 and DR15 conferred an increased 
risk of LN. In another approach, a meta-analysis of three GWAS 
was done to identify risk alleles for LN in patients already known 
to have SLE [201]. Here the most significant associations for LN 

mapped to the PDGF receptor A gene and the gene for the so-
dium-dependent glucose cotransporter solute carrier family 5 
member 11 (SLC5A11). In LN, PDGF may mediate kidney cell 
proliferation, matrix accumulation, and intrarenal inflammation. 
Several SLC genes have been associated with chronic kidney dis-
ease (CKD) [202]. Variants in SLC5A11 may have a role in 
proximal tubule inositol reabsorption and mediate a decrease in 
serum and an increase in urine myoinositol [202]. Additionally, 
SLC5A11 may mediate apoptosis through the programmed cell 
death and TNF-pathways [203]. HLA loci were less strongly as-
sociated with LN in this analysis. Other risk genes include 
TNFAIP3 interacting protein 1 (ABIN1), TNFSF4, STAT4, 
ITGAM, kallikreins and FcγRIIIa low-binding alleles 
[185,186,204-208]. These results suggest a link between in-
flammation and LN as well as a contribution from pathways that 
regulate the renal response to inflammation and injury. However 
the relative risk associated with most of these genetic variants is 
low. 
Epigenetic processes include DNA methylation, post- 

translational histone modifications were identified in 
SLE. T cells from patients with active SLE have global DNA hy-
pomethylation [209], especially those from patients with LN 
[210]. And IFN-stimulated genes (ISGs) were specifically 
hypomethylated in patients with SLE [210]. Naive CD4+ 
T cells become primed for Th2, Th17, and TfH cell re-
sponses through the activity of the chromatin-modifying 
enzyme histone–lysine N methyl transferase EZH2 dur-
ing a flare [211]. Post-translational histone modifications 
were shown to be aberrant in T cells from patients with 
SLE. These aberrations were corrected by treatment with 
mycophenolate mofetil [212]. And histone H4 acetyla-
tion was shown to be globally increased in monocytes 
from patients with SLE [213]. Changes in microRNA 
(miRNA) expression have been identified in peripheral blood 
mononuclear cells and renal tissue from patients with SLE 
[214-216]. MiRNAs identified in patients with SLE seem 
to affect pathways that affect TLR signaling and ex-
pression of ISGs [217,218].

4) Environment-‘I hate my neighbor’
(1) Environmental factors-inside the body

Infection has been associated with the occurrence of SLE 
(Figure 4). Epstein–Barr virus (EBV) and cytomegalovi-
rus are considered to be SLE triggers [219], whereas 
Helicobacter pylori [220], hepatitis B virus [221], and para-
site infections are thought to be protective [222]. Viral in-
fections induce IFNα release, which triggers antiviral 
immunity as well as lupus disease activity [223]. In addi-
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tion, EBV activates B cells and contains amino acid se-
quences similar to those of Ro antigen, resulting in mo-
lecular mimicry [224].
The following additional data support the role of micro-

organisms in SLE. Lipopolysaccharide (LPS) is a compo-
nent of the cell wall of Gram-negative bacteria that can ac-
tivate TLR4. Serum levels of LPS are increased in patients 
with SLE [225] and biomarkers of LPS engagement by 
TLR4, such as shedding of CD14, correlate with disease 
activity [226]. Bacterial biofilms represent another mech-
anism by which microorganisms interact with the im-
mune system. Many biofilms contain amyloid-DNA com-
plex, so greatly increased the production of autoanti-
bodies in lupus-prone mice [227]. Immune stimulation 
by bacterial DNA results from characteristic sequence 
motifs that center on an unmethylated cytosine and gua-
nine (CpG) dinucleotide. Bacterial DNA which contain 
CpG motif more frequently than mammalian DNA pres-
ents a structural motif that represents a pathogen asso-
ciated molecular pattern that can signal a pattern recog-
nition receptor to trigger innate immunity via TLR9 
[228]. The pDCs, which responds to TLR9, is a main 
source of type 1 IFN and therefore has been implicated in 
lupus pathogenesis [229,230]. The microbiome which is 
the collection of bacteria, viruses, and fungi that coexist 
on and in the human body is related to SLE. In women 
with SLE, the ratio of Firmicutesto Bacteroidetes was seen 
lower than in healthy individuals, even during times of re-
mission [231]. The mechanism of the effect is not fully 
understood, but certain gut bacteria foster the develop-
ment of Treg cells [232,233]. 
Furthermore, bacterial products stimulate intrarenal immune 

cells and renal cells, which can trigger a transient aggravation of 
proteinuria and kidney damage. Bacterial lipopeptide and LPS 
aggravate glomerulonephritis and potently induces severe albu-
minuria in MRL (lpr/lpr) mice [234].

(2) Environmental factors-outside the body 

Ultraviolet (UV) light have long been recognized as con-
tributors to SLE (Figure 4) [235]. UV drives apoptosis, 
providing an immunologic stimulus and increase in the 
load of dead cells by causing keratinocyte death [236]. 
And UV decreases DNA methylation level of CD4+ T 
cells in SLE patients [237,238]. UV exposure can induce 
the secretion of IL-1 and TNFα in keratinocytes, mast 
cells and Langerhans cells, and can recruit and activate 
DCs, T cells and pDCs to release IFNα, further releasing 
chemotactic factors [239]. 
Drug induced SLE involves inhibition of methyl-trans-

ferases, a process that enhances the unmasking of endog-
enous nucleic acids and the activation of TLR7 and TLR9 
[240,241]. And UV light converts propranolol into a 
proinflammatory aryl hydrocarbon receptor ligand, possi-
bly explaining its association with lupus-like disease 
[242]. 
Besides, silica exposure from a variety of industrial occu-

pations and smoking is associated with an increased risk 
of SLE. A longer duration of exposure to silica dust is as-
sociated with greater risks [243]. And current smoking 
and ＞10 pack-years of smoking with anti-dsDNA pos-
itive SLE was observed [244]. And Vitamin D deficiency 
and zero minor allele of CYP24A1 significantly increased 
the risk of transitioning to SLE [245]. The alcohol con-
sumption, on the other hand, decrease risk of SLE in large 
prospective Nurses’ Health cohorts (Figure 4) [246].

5) Sex hormone-‘If I were born a man?’
SLE has a female preponderance of 10:1. The admin-

istration of estrogen to postmenopausal women doubles 
their risk of developing the disease and the inhibition of 
estradiol in patients with SLE with tamoxifen had modest 
beneficial effect on the disease [247]. Estrogen enhances 
immune responses through diverse mechanisms (Figure 1).
The prepubertal ovariectomy of female NZB x NZW F1 

(B/W) mouse model for SLE was shown to reduce auto-
antibody levels, but had no effect on mortality. Conversely, 
orchiectomy of B/W male mice exhibited accelerated dis-
ease onset and shortened life span compared with intact 
male B/W mice [248]. Treatment with 17 β-estradiol ac-
celerated disease in both female and male B/W mice, 
while disease was ameliorated in B/W mice treated with 
testosterone [249]. Treatment of R4A BALB/c mice with 
17 β-estradiol resulted in a significant rise in anti-dsDNA 
antibodies, an increase in the number of anti DNA-secret-
ing B cells [250]. and induced significant aberrations in 
the selection of autoreactive B cells into the mature B cell 
pool [251]. In addition, estrogen preferentially increased 
the proportion of marginal zone B cells [251], which par-
ticipates in T independent immune responses. Estrogen 
treatment blocked BCR mediated apoptosis, which is es-
sential for the elimination of autoreactive B cells [251,252]. 
The antiapoptotic Bcl-2 protein, which is a known estro-
gen target [36], was increased in estrogen treated mice 
[250,253]. An increase in Bcl-2 may enhance the survival 
of B cells that would normally be eliminated by tolero-
genic signals [254]. 
In human SLE studies, the concentration of estradiol 
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and prolactin in lupus patients was increased [255]. 
However, the level of these hormones is not related to the 
severity of SLE, and the concentration is within the phys-
iological range. Females with SLE have even lower an-
drogen levels than their normal female counterparts. The 
oxidation of androgens in SLE is increased when com-
pared to males with the disease [256,257]. The ex-
pression of intracellular ER-beta which is anti-inflam-
matory was reduced in T cells from SLE patients with 
SLEDAI-2K scores ＞ 6 as compared to those with scores 
＜6 or healthy controls. No difference was found for ER 
alpha differences [258]. 
Treatment of R4A BALB/c mice with 17 β-estradiol induced 

resulted rising in anti DNA antibody titers and immune com-
plexes depositions in the kidneys [250]. And treatment of R4A 
BALB/c mice with tamoxifen prevented the estrogen-induced 
production of anti-DNA antibodies and immune complex deposi-
tion in the kidney [259]. 

CONCLUSION

Hope springs eternal
SLE is a systemic autoimmune disease with multi-organ 

inflammation. Accelerated cell death and formation of 
NETs activate pDC TLR 9 and induce IFN αcontributing 
to the development of SLE, especially LN. Many cytokines 
such as IFN, TNF, IL-4, IL-6, IL-10, and activated comple-
ment system enhanced the promotion of autoantibody 
production and inflammation. Loss of tolerance and al-
tered B-cell and T cell differentiation in SLE might pres-
ent from birth or acquired as part of the disease process of 
LN. Over 100 genes have been associated with suscepti-
bility to SLE such as HLA, FcγRIIA and FcγRIIIB, 
ITGAM, deficiency of C2,C4, and C1q. Environmental 
factors such as infection (EBV, CMV, microbiome), UV 
light,smoking, some drugs, silica, Vitamin Ddeficiency 
increased the risk of transitioning to SLE. We are still far 
away from really knowing the pathogenesis of LN. 
However, the development of target therapies and an 
eventual cure will come in our lifetime.
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