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ABSTRACT

Vascular smooth muscle cells (VSMCs) play a pivotal role in the stability and tonic regulation 
of vascular homeostasis. VSMCs can switch back and forth between highly proliferative 
(synthetic) and fully differentiated (contractile) phenotypes in response to changes in the 
vessel environment. Abnormal phenotypic switching of VSMCs is a distinctive characteristic 
of vascular disorders, including atherosclerosis, pulmonary hypertension, stroke, and 
peripheral artery disease; however, how the control of VSMC phenotypic switching is 
dysregulated under pathological conditions remains obscure. Canonical transient receptor 
potential (TRPC) channels have attracted attention as a key regulator of pathological 
phenotype switching in VSMCs. Several TRPC subfamily member proteins—especially 
TRPC1 and TRPC6—are upregulated in pathological VSMCs, and pharmacological inhibition 
of TRPC channel activity has been reported to improve hypertensive vascular remodeling in 
rodents. This review summarizes the current understanding of the role of TRPC channels in 
cardiovascular plasticity, including our recent finding that TRPC6 participates in aberrant 
VSMC phenotype switching under ischemic conditions, and discusses the therapeutic 
potential of TRPC channels.

Keywords: Transient receptor potential channel; Phenotype switching; Remodeling; 
Excitation-transcription coupling

INTRODUCTION OF VASCULAR SMOOTH MUSCLE CELL 
(VSMC)
1. VSMC plasticity in the vasculature
The fundamental function of fully differentiated VSMCs, which express a wide range of 
contractile and regulatory proteins, is to maintain arterial blood vessel contractility. VSMCs 
display considerable plasticity, characterized by reversible switching between contractile 
and proliferative (i.e., synthetic) phenotypes. In healthy vessels, VSMCs exhibit a contractile 
phenotype to maintain vascular tone. Contractile VSMCs, which typically show elongated 
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and spindle-shaped morphology, express various smooth muscle-specific contractile proteins 
including α-smooth muscle actin (α-SMA) and smooth muscle-myosin heavy chain. In 
contrast, synthetic VSMCs show a stellate shape and have high proliferative and migratory 
ability, which is essential for the development and repair of damaged vessels.1,2

In pathological conditions such as vascular injury, arteriosclerosis, and hypertension, fully 
differentiated VSMCs are able to undergo partial de-differentiation and restart the program 
of cell growth and proliferation. Owens GK and Schwartz SM have focused on vascular 
hypertrophy, hyperploidy, and hyperplasia in various forms of experimental hypertension,3,4 
and has suggested that VSMC hypertrophy represents an increase of tissue mass that is an 
adaptive response to increased functional demands without the loss of any differentiated 
function. In contrast, VSMC proliferation is related to a transient decrease in the expression 
of smooth muscle-specific contractile proteins, indicating that synthetic VSMC growth 
may occur under pathological conditions where functional demands exceed the capacity of 
VSMCs to respond through cellular hypertrophy.5 This results in hyperplastic remodeling, 
with less vascular contractility and robustness.6,7 In atherosclerosis, it has been confirmed 
by lineage-tracing experiments that VSMCs switch from the contractile phenotype to the 
proliferative phenotype during atherosclerosis and neointima formation,8-12 and that VSMCs 
proliferate and further undergo phenotypic switching to phagocyte-like cells, resulting 
in the accumulation of atherosclerotic plaques and injury-induced neointimal lesions.13-16 
Phenotypic switching of VSMCs also reportedly contributes to the development of aortic 
aneurysms.8-12 A complex regulatory mechanism governs VSMC phenotypic switching 
through the integration of numerous environmental cues, including cytokines/growth 
factors, neurohumoral factors, cell–cell contact, cell adhesions, extracellular matrix 
interactions, injury stimuli, and mechanical forces. In particular, platelet-derived growth 
factor (PDGF) can dramatically promote multiple aspects of the synthetic VSMC phenotype, 
while transforming growth factor beta (TGF-β) and its related family members, such as 
bone morphogenetic protein 4, can increase the expression of VSMC contractile proteins 
(Fig. 1). Therefore, aberrant hormone release is thought to play a key role in abnormal VSMC 
plasticity in vascular diseases.

2. Differences in Ca2+ handling in synthetic VSMCs and contractile VSMCs
The transition from contractile to proliferative VSMCs is associated with changes in the 
expression levels of ion channels, transporters, receptors, and contractile proteins.17 
Intracellular Akt-dependent signaling mediates the expression of α-SMA and SM22α 
proteins, and RhoA mediates actin reorganization, which increases VSMC contractility. 
In contrast, stimulation of VSMCs with PDGF increases the activity of extracellular signal-
regulated kinase (ERK) and cyclin-dependent kinases to promote VSMC proliferation 
and migration through Krüppel-like family (KLF)-dependent production of matrix 
metalloproteinases. A major functional difference between contractile VSMCs and synthetic 
VSMCs is the Ca2+ handling system. Differentiated contractile VSMCs are characterized by 
rapid transient changes in the intracellular Ca2+ concentration ([Ca2+]i), while the resting 
cytosolic [Ca2+]i remains low.18 These transient changes in Ca2+ are mainly caused by 2 
components of Ca2+ signaling pathways: Ca2+ influx through voltage-dependent L-type Ca2+ 
channels and dynamic Ca2+ release from intracellular Ca2+ stores. As these Ca2+ dynamics 
are directed towards VSMC contraction, this pattern is known as excitation-contraction 
coupling. The synthetic VSMC phenotype is characterized by a long-lasting [Ca2+]i increase 
(sometimes shown as oscillations) accompanied by a sustained elevation of basal [Ca2+]i.19 
During the switch from the contractile to proliferative phenotype, the Ca2+ handling system 
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in VSMCs also transitions from voltage-dependent Ca2+ entry to voltage-independent Ca2+ 
entry, which is preferentially directed towards gene expression (i.e., excitation-transcription 
coupling). These changes are associated with altered gene expression, which is dependent 
on specific transcription factors, such as serum responsive factor (SRF) and SRF-accessory 
proteins, such as myocardin,1 repressor element 1-silencing transcription factor (also known 
as neuron restrictive silencer factor)20 and nuclear factor of activated T cells.21 The genes 
responsible for phenotypic switching in VSMCs include those that code for L-type and 
T-type Ca2+ channels,22,23 voltage-dependent Na+ channels,24,25 ClC-3 chloride channels,26 
Ca2+-activated K+ channels,20,21 inward rectifier K+ channels,27,28 Na+-Ca2+ exchangers,29 and 
canonical transient receptor potential (TRPC) channels.30 Of these various types of channels, 
TRPC channels have attracted attention as a critical regulator of excitation-transcription 
coupling induced by various forms of chemical and physical stimulation in the cardiovascular 
system, and we have recently revealed that a TRPC subtype 6 negatively regulates TGF-β-
induced contractile differentiation in VSMCs (Fig. 2).
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Fig. 1. Characteristics of synthetic and proliferative VSMCs. Contractile VSMCs abundantly express voltage-dependent LTCC, which predominantly mediate 
Ca2+-dependent contraction through a MLC phosphorylation-dependent pathway (excitation-contraction coupling). In contrast, synthetic VSMCs abundantly 
expresses receptor-activated TRPC channels, which mediate GPCR-stimulated gene expression through the activation or inactivation of several transcriptional 
factors (excitation-transcription coupling). 
VSMC, vascular smooth muscle cell; LTCC, L-type Ca2+ channels; MLC, myosin light chain; TRPC, canonical transient receptor potential; GPCR, G protein-coupled 
receptor; α-SMA, α-smooth muscle actin; TGF-β, transforming growth factor beta; PDGF, platelet-derived growth factor; CREB, cAMP response element binding 
protein; MLCP, myosin light chain phosphatase; MRTF, myocardin-related transcription factor; NFAT, nuclear factor of activated T cells; ROCK, Rho kinase; SRF, 
serum response factor.



TRANSIENT RECEPTOR POTENTIAL (TRP) CHANNELS IN 
THE CARDIOVASCULAR SYSTEM
1. TRP channels in VSMCs
In 1989, Craig Montell first identified the trp gene from a spontaneous mutation of fruit fly 
Drosophila, which displayed transient elevation of potential in response to light stimuli.31 
Since then, extensive studies of this gene have revealed that TRPs make up a superfamily of 
ion channels that are ubiquitously expressed in mammals, and that 28 members are found in 
humans. The TRP nomenclature was unified in 2002, and the TRP superfamily is currently 
subdivided into 6 related protein subfamilies based on genetic and functional similarities: 
canonical (TRPC1–C7), vanilloid (TRPV1–V6), melastatin (TRPM1–M8), polycystin (TRPP2, 
P3, P5), mucolipin (TRPML1–L3), and ankyrin (TRPA1). TRP proteins commonly possess 
6 transmembrane domains and a preserved sequence of 25 amino acids known as the TRP 
domain. Despite the high homology among TRPs, it has been revealed that the biophysical 

127https://doi.org/10.12997/jla.2020.9.1.124

TRPC Channels in VSMC Plasticity

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

Aberrant proliferation
• Aterosclerosis
• Pulmonary artery hypertention

Synthetic
• Vessel repair and enlargement

Contractile
• Blood pressure control
• Vessel stabilization

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

PTEN

PT
EN PTEN

PTEN

PTEN

PTEN
PTEN

Nucleus

Nucleus

Nucleus
Akt

Akt

AktP

TRPC6
(active)

TRPC6
(active)

TRPC6
(inactive)

Metabolic stress

PDGF

TGF-β

PTEN
PTENPI3K PI3K

ContractileSyntheticPhenotype

Cortical actin

PIP3

PIP2

Stress fibre
RhoA

Akt activation

TRPC6
PTEN
PIP2 PIP3

TRPC6
PTEN
PIP2

TGF-β

Fig. 2. Physiological and pathophysiological significance of TRPC6 in VSMC phenotype switching. Increased TRPC6 channel activity plays a critical role in 
determining the VSMC phenotype. Once VSMCs are exposed to metabolic stresses, such as hypoxia, nutrient deficiency and glucose deprivation, TRPC6 channel 
activity is increased and TRPC6-mediated cation influx suppresses VSMC switching from the synthetic to contractile phenotype upon TGF-β stimulation through 
PTEN-dependent reduction of Akt activity. 
VSMC, vascular smooth muscle cell; TRPC, canonical transient receptor potential; TGF-β, transforming growth factor beta; PTEN, phosphatase and tensin 
homologue deleted from chromosome 10.



features of TRPs are different in terms of activation mechanisms and selectivity. For example, 
the activity of TRPC family proteins (TRPC1–TRPC7), which are most closely related to the 
original Drosophila TRP, are polymodally regulated by phospholipase C (PLC)-linked receptor 
stimulation or other exocytotic mechanisms (Table 1).32 The TRPC3–7 proteins share a high 
homology (up to 75%) in their amino acid sequence,33 while TRPC1 shows a lower sequence 
homology than other TRPC members. TRPC1 was initially proposed as a molecular entity 
of store-operated Ca2+ channels (SOCCs),34-37 which coordinate Ca2+ signaling events in 
the absence of intracellular Ca2+ stores.38 In VSMCs, however, TRPC1 has been shown to 
interact with stromal interaction molecule 1, thereby indirectly regulating store-operated 
Ca2+ entry through the Orai1 channel.39,40 TRPC1-dependent store-operated Ca2+ entry has 
been found to be associated with vasoconstriction in the rat pulmonary artery and caudal 
artery. TRPC6 also contributes to receptor-stimulated vasoconstriction, but it requires PLC-
dependent production of diacylglycerol (DAG), but not inositol-1,4,5-trisphosphate (IP3). The 
distribution of TRPC subtypes in the cardiovascular system is summarized in Table 1.

In addition to TRPCs, TRPV (V1, V2, and V4) and TRPM4 subfamily proteins are reportedly 
present in the cardiovascular system, but the activation mechanisms and electrophysiological 
properties of TRPVs and TRPMs are quite different from those of receptor-activated TRPC 
channels.32,40 The TRPV subfamily members (V1–V6) contain 3–5 ankyrin repeats within 
their cytosolic N-terminal region. TRPV1-TRPV4 are all thermosensitive and non-selective 
cation channels, which show a modest predominance of Ca2+ over Na+ permeation (PCa/PNa = 
1–10). TRPV1 is present at high levels in perivascular sensory nerves and participates in the 
regulation of the tone of small mesenteric resistance arteries stimulated by neuropeptides. 
TRPV4 channels are also chemosensitive, as they can be activated by cell swelling-induced 
formation of 5′,6′-epoxyeicosatrienoic acid. As TRPV2 and TRPV4 reportedly participate in 
cardiac remodeling and endothelium-dependent hyperpolarization induced by mechanical 
stress, these TRPVs have been proposed to play a role in mechanotransduction in VSMCs. The 
mechanisms of activation of TRPV5 and TRPV6 are quite different from those of TRPV1–V4, 
which can be activated by low intracellular [Ca2+]i or hyperpolarization. Proteins in the TRPM 
subfamily do not contain ankyrin repeats in their N-termini, but have the unique structural 
feature of a functional enzymatic domain in their C-termini (ADP-ribose pyrophosphatase 
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Table 1. Molecular characteristics and functional roles of TRPC subtypes in CVS
Subtype Expression in CVS Function in CVS Activation mechanisms Ion selectivity (PCa/PNa) Metal ion permeability
TRPC1 Ubiquitous - Vasoconstriction PLC, mechanical stretch, 

store depletion
Nonselective 

(Ca2+=Na+=Ba2+)
Na+, Cs+, Ca2+, Ba2+

- Neointimal hyperplasia
- Cardiac hypertrophy

TRPC2 Pseudogene in human PLC, DAG, store depletion? PCa/PNa=2.7 (Ca2+>Na+=Cs+) Na+, Cs+, Ca2+

TRPC3 PA, CA, Ao, RA, CoA,  
EC, CM, CF

- Cardiac remodeling PLC, DAG, Src, IP3, 
intracellular Ca2+,  
store depletion

PCa/PNa=1.6 Na+, Cs+, Ca2+, Ba2+, Mn2+

- Hypertension
- IPAH

TRPC4 EC, PA, RA, PV, CoA,  
CA, Heart

- Vasorelaxation PLC, GTPγS,  
store depletion?

PCa/PNa=1.1−7.7 
(Ba2+>Ca2+>Na+=Cs+)

Na+, Cs+, Ca2+, Ba2+, Mn2+

- Endothelial barrier function
TRPC5 EC - Vasorelaxation? PLC, RNOS,  

extracellular Ca2+
PCa/PNa=1.8−9.0  

(Ca2+>>Na+, Mn2+)
Na+, Cs+, Ca2+, Mn2+

TRPC6 Ubiquitous - Vascular remodeling PLC, DAG, Src,  
20-HETE, flufenamate, 

mechanical stretch

PCa/PNa=5 (Ca2+>>Na+) Na+, Cs+, K+, Li+, Ca2+, Ba2+, 
Sr2+, Mn2+, Zn2+, Fe2+/Fe3+- VSMC proliferation

- IPAH
TRPC7 Ubiquitous PLC, DAG, Ca2+,  

constitutively activated
PCa/PNa=2 (Ca2+>Na+=Cs+) Na+, Cs+, Ca2+, Ba2+, Mn2+

TRPC, canonical transient receptor potential; CVS, cardiovascular system; PLC, phospholipase C; DAG, diacylglycerol; Ao, aorta; CA, cerebral artery; CoA, 
coronary artery; PA, pulmonary artery; RA, renal artery; CM, cardiomyocyte; CF, cardiac fibroblast; EC, endothelial cell; RNOS, reactive nitric oxide species; 
IPAH, idiopathic pulmonary arterial hypertension; 20-HETE, 20-hydroxyeicosatetraenoic acid.



in TRPM2 and an atypical Ser/Thr kinase in TRPM6/M7). TRPM2 can be activated by an 
increase in intracellular cyclic ADP-ribose and NAD+, or by hydrogen peroxide. TRPM6/M7 
channels are activated by a decrease in Mg2+ concentration. In cerebral arteries, TRPM4 is 
present, forming a Ca2+-activated non-selective cation channel that regulates myogenic tone 
regulation (i.e., cerebral blood flow autoregulation).

2. Regulation of TRPC channel activity in VSMCs
As TRP channels are involved in a variety of mechanosensory processes, TRPC channels have 
also been reported to be sensitive to forms of mechanical stimulation, such as membrane 
stretching.41-43 For example, pharmacological perturbation or gene deletion of TRPC6 has 
been reported to attenuate excess cardiac contractility stimulated by mechanical stress 
in Duchenne muscular dystrophy mice.44 Furthermore, it has been demonstrated that the 
activation of TRPC6 induced by mechanical stretching is mediated by intracellular lipids such 
as DAG and 20-hydroxyeicosatetraenoic acid (HETE) in A7r5 myocytes (a smooth muscle cell 
line from rat aorta).45,46 As with TRPC6, the TRPC2, TRPC3, and TRPC7 subfamilies have 
been shown to be directly activated by DAG.47,48

The functional roles of TRPC3/C6 have been analyzed primarily with regard to Ca2+ influx and 
signal transduction in vascular physiology. For example, in the rat portal vein, the TRPC6 
channel is activated by an α-adrenergic receptor and evokes membrane depolarization and 
activation of the voltage-dependent Ca2+ channel, thereby inducing contraction of smooth 
muscle cells.49 It has been also demonstrated that this TRPC3/C6-induced membrane 
depolarization can be triggered by vasoactive G protein-coupled receptor (GPCR) ligands, such 
as angiotensin II and endothelin-1.50,51 However, unlike the voltage-dependent Ca2+ channel, 
TRPC-mediated Ca2+ influx is considered to participate in local Ca2+ signaling, rather than global 
intracellular Ca2+ mobilization, as TRPC3-mediated local Ca2+ influx is specifically transduced 
to downstream signaling pathways in B lymphocytes.52,53 Furthermore, the TRPC3 protein can 
interact with various intracellular signaling molecules, including PLC, protein kinase C (PKC), 
the receptor for activated C-kinase-1, the IP3 receptor (IP3R), and calmodulin,52-56 suggesting that 
TRPC3-mediated Ca2+ influx might amplify diverse signaling pathways in the vascular system.

TRPC3/6 channel activity is negatively regulated by Ser/Thr phosphorylation of TRPC3/6 
proteins via PKC, protein kinase A (PKA), and protein kinase G (PKG). PKG phosphorylates 
human TRPC3 at Thr-11 and Ser-263, and human TRPC6 at Thr-70 and Ser-322.57 PKG can be 
activated by nitric oxide (NO), atrial natriuretic peptide, and inhibitors of cGMP-dependent 
phosphodiesterases (PDEs). The PKG-dependent suppression of TRPC6 channel activity 
by NO is physiologically important in endothelium-dependent vasodilation.58 Both PKA 
and PKG can recognize the same substrate sequence (-R-R/K-X-S/T-), and PKA-dependent 
phosphorylation of rodent TRPC6 at Thr-69 has been shown to participate in endothelium-
independent vasodilation.51 Increased PKG activity reportedly suppresses Ca2+/calcineurin-
dependent cardiac hypertrophy induced by receptor stimulation and pressure overload, and 
blockade of PKG-dependent phosphorylation by TRPC6 mutagenesis (i.e., substitution of 
Thr-69 to Ala) reversed the PKG-dependent anti-hypertrophic action.59 In contrast, reduction 
of cGMP/PKG signaling by guanylate cyclase-A gene deletion caused spontaneous cardiac 
hypertrophy by promoting TRPC3/6 channel activity.60

3. Vascular tone regulation by TRPC6
The physiological importance of TRPC6 in vascular mechanosensation has been revealed in 
TRPC6-deficient mice.61 An increase of blood pressure inside the small arteries unexpectedly 
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results in vasoconstriction. This phenomenon, which is known as the Bayliss effect, involves 
the stretch-activated non-selective cation channels in VSMCs.62,63 TRPC6 deficiency decreases 
VSMC contraction and depolarization induced by pressure in arteries; for instance, the 
basal mean arterial pressure in TRPC6-deficient mice is approximately 7 mmHg higher 
than that in wild-type mice.61 It has been recently reported that the stretch-induced channel 
activity originates from a fascinating interplay between the TRPC6 channel and Gq/11 protein-
coupled GPCRs, including angiotensin II type 1 receptor (AT1R).64 In fact, the myogenic tone 
induced by an increase in intravascular pressure was attenuated in AT1R-deficient mice.65 
Since TRPC6 also functionally couples with Gq/11PCRs that are responsive to membrane 
stretching,43,46 TRPC6 is widely accepted to be a mechano-activated cation channel. TRPC6 
deficiency causes acute arterial hypoxemia in the mouse pulmonary artery,66 a phenomenon 
known as the Euler-Liljestrand reflex in the small pulmonary artery.67 This process includes 
accumulation of intracellular DAG and reactive oxygen species (ROS) via NADPH oxidase 
2 (Nox2) activation in endothelial cells, leading to an increase in endothelial permeability 
and edema formation.45 In patients with idiopathic pulmonary arterial hypertension, certain 
single-nucleotide polymorphisms in the TRPC6 gene promoter have been shown to be 
associated with enhanced expression of TRPC6 mRNA and protein.68,69 Enhanced expression 
of TRPC6 caused pulmonary arterial smooth muscle cells to switch from a contractile to 
synthetic phenotype via an increase in [Ca2+]i by upregulating store-operated Ca2+ entry.70

4. Role of TRPC channels in VSMC plasticity
Contractile VSMCs abundantly express the large-conductance Ca2+-activated K+ channel, a 
voltage-dependent channel that is activated by membrane depolarization.71 The function 
of this channel is to provide negative feedback against membrane depolarization, limiting 
voltage-dependent Ca2+ influx through L-type Ca2+ channels, a high-affinity site of action of 
anti-hypertensive Ca2+ channel blockers.72 The switch of VSMCs to the proliferative phenotype 
is associated with loss or suppression of both voltage-dependent channels.73 However, we 
should not exclude the possibility that these channels could contribute to very early events in 
responses to injury74 or return once the modulated cells have ceased their activity and begun a 
more quiescent existence. That is, timing is a critical factor, meaning that it would be wrong 
to oversimplify the situation by assuming the cells either have a pure contractile phenotype or 
are constantly in a proliferative phenotype.75

In contrast, proliferative VSMCs lose voltage-dependent channels, while enhancing native 
store-operated or receptor–activated Ca2+ entry that fails to couple with contraction.76 These 
channels are necessary for receptor-stimulated cell proliferation or migration, and several 
TRP channel proteins have been identified as critical components of receptor-activated 
cation channels in VSMCs.75 TRPC1 is reportedly upregulated in response to vascular 
injury, and inhibition of TRPC1 attenuates VSMC proliferation77,78 and hyperplasia induced 
by angiotensin II.79 TRPC1 also exerts a robust functionality by forming heteromultimers 
with TRPC580 and its related isoform TRPC4.81 Since TRPC5 and TRPC4 are predominantly 
expressed in endothelial cells, but not in VSMCs, these heteromultimers may play a pivotal 
role in endothelial cells.

Indeed, the most important difference between the 2 VSMC phenotypes is that contractile 
VSMCs express more abundant contractile proteins, such as α-SMA and SM22α than synthetic 
VSMCs.1 PDGF is a major cytokine that contributes to mural cell recruitment to capillaries, 
while TGF-β is a major cytokine involved in the contractile differentiation of VSMCs.82 
We have recently reported a signaling mechanism through which TRPC6 channel activity 
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negatively regulates contractile differentiation in VSMCs induced by TGF-β stimulation.83 
Using TRPC6-deficient VSMCs, we found that TGF-β-induced contractile differentiation 
in VSMCs was significantly enhanced compared to wild-type VSMCs, while PDGF-induced 
proliferation and migration of VSMCs were unaffected. As the background intracellular 
Ca2+ entry was not significantly different between wild-type VSMCs and TRPC6-deficient 
VSMCs, we focused on the plasma membrane potential, because more quiescent and fully 
differentiated cells reportedly exhibit relatively polarized membrane potentials, ranging 
from −50 to −90 mV, whereas more plastic stem cells exhibit less polarized membrane 
potentials, averaging from −10 to −40 mV.84 Indeed, contractile TRPC6−/− cells showed more 
hyperpolarized membrane potentials than contractile TRPC6+/+ cells. Simultaneously, TGFβ1 
stimulation increased SM22α expression to a higher level in TRPC6−/− cells than in TRPC6+/+ 
cells. By using C3H10T1/2 mesenchymal stem cells as a well-defined VSMC differentiation 
model, we found that knockdown of TRPC6 significantly increased TGF-β1-induced 
activation of Akt, a major mediator of VSMC differentiation accompanying the upregulation 
of contractile proteins.85 TRPC6 has been reported to interact with phosphatase and tensin 
homologue deleted from chromosome 10 (PTEN), a negative regulator of Akt, by inhibiting 
the production of phosphatidylinositol (3,4,5)-trisphosphate, in endothelial cells and 
VSMCs, and this interaction is important for cell surface expression of TRPC6.86,87 We also 
confirmed that TRPC6 interacts with PTEN, through a process in which TRPC6-mediated 
cation influx negatively regulates Akt activity via membrane depolarization. Changes in 
membrane potential influence the distribution of phosphatidylserine (PS) in the plasma 
membrane.88 PTEN possesses a C2 domain that is critical for its translocation to the plasma 
membrane and enzymatic activation. The C2 domain binds to anionic phospholipids such 
as PS and phosphatidylinositol in a global Ca2+-dependent manner. Thus, TRPC6-mediated 
cation influx may cause membrane depolarization, followed by voltage-dependent Ca2+ influx 
through L-type Ca2+ channels, thereby downregulating the differentiating activity of VSMCs 
through PTEN-mediated Akt inactivation (Fig. 2). However, the TRPC6 channel does not 
conduct a large amount of current. Therefore, it is not likely that TRPC6-mediated cation 
influx rapidly depolarizes the membrane potential of VSMCs. As TRPC-dependent currents 
are long-lasting, longer-time imaging of membrane potentials in VSMCs will be necessary to 
elucidate its underlying mechanism.

THERAPEUTIC POTENTIAL OF TRPC CHANNELS IN 
CARDIOVASCULAR DISEASES
Therapeutic applications of TRPC channels have been well studied using cardiac systems. 
Structural and morphological changes (remodeling) of the heart are a clinical outcome 
of heart failure, and many studies have shown that TRPC3 and TRPC6 are involved in the 
development of cardiac remodeling.44,59,60,89,90 Cardiomyocyte-specific overexpression 
of TRPC3 or TRPC6 is hypersensitive to the hemodynamic load and promotes cardiac 
hypertrophy in mice.91,92 Since knockdown of either TRPC3 or TRPC6 completely suppressed 
angiotensin II-induced hypertrophic growth in rat cardiomyocytes89 and the inhibition of 
TRPC3 or TRPC6 channel activity significantly attenuated cardiac hypertrophy in mice in 
vivo,44 many researchers—including our group—have concluded that TRPC3 and TRPC6 
heteromultimer channels clearly participate in the development of cardiac hypertrophy.93 
Based on these observations, several small molecules that can inhibit TRPC3/C6 channel 
activity were revealed to suppress pathological cardiac remodeling in mice (Fig. 3). In 
particular, our in vivo studies using TRPC-deficient mice have revealed that TRPC3, but not 
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TRPC6, predominantly participates in pressure overload-induced cardiac remodeling—
especially in interstitial fibrosis, but not in myocardial hypertrophy.94,95 We have also found 
that TRPC3 has little impact on myocardial global [Ca2+]i under mechanically stretched 
conditions, but significantly suppresses mechanical stretching-induced ROS production. 
The TRPC3 protein interacts with Nox2 on the plasma membrane, which enables Nox2 to 
escape from ER-associated degradation, leading to excess ROS production in both cardiac 
myocytes94 and fibroblasts95 and resulting in the induction of interstitial fibrosis through 
the respective signaling pathways. Although it has been shown that the TRPC6 protein is 
upregulated in pathological rodent hearts,92 TRPC6 has been found to counteract the TRPC3-
Nox2 protein complex and to abrogate Nox2-dependent ROS signaling in cardiomyocytes.96 
This evidence suggests that TRPC6 upregulation is an adaptive response against 
environmental stress in order to avoid inducing excess ROS production (i.e., oxidative stress) 
in the heart. Indeed, among several TRPC3 inhibitors, only pyrazole-3 can suppress the 
TRPC3-Nox2 axis-dependent cardiac stiffness and atrophy caused by anthracycline-derivative 
anti-cancer drug treatment.90 We recently screened a potent inhibitor of the TRPC3-Nox2 
complex using a library of already approved drugs and found that ibudilast, a PDE4 inhibitor 
approved for the treatment of asthma and dizziness secondary to chronic cerebral circulation 
impairment associated with the sequelae of cerebral infarction, significantly suppressed 
doxorubicin-induced atrophic shrinkage of cardiomyocytes and skeletal muscles, as well 
as macrophage cell death.97,98 However, our preliminary experiments indicate that TRPC3 
selective inhibitors have little impact on VSMC plasticity or vascular diseases, including 
peripheral arterial disease. This may be because TRPC6 is highly expressed in VSMCs and 
predominantly regulates VSMC plasticity, rather than the TRPC3 channel or the TRPC3-Nox2 
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protein complex. Indeed, several small molecules that can inhibit TRPC6 channel activity are 
able to reduce blood pressure and pulmonary artery hypertension.51,99,100 These observations 
suggest that inhibition of TRPC6 channel activity is a promising strategy for the treatment of 
aberrant VSMC plasticity in vascular diseases.

FUTURE PERSPECTIVES

Accumulating evidence has suggested that the expression of TRPC1 and TRPC6 in VSMCs can be 
exploited to control systemic arterial blood pressure and local blood flow, and the manipulation 
of TRPC1/TRPC6 channel activity offers a new therapeutic strategy for the treatment of lung 
ischemia-reperfusion injury.101,102 We recently reported that TRPC6 participates in the negative 
regulation of VSMC contractile differentiation under pathological (ischemic) conditions. 
Although upregulation of the TRPC6 protein is required for the efficient physiological 
proliferation of VSMCs, it is still obscure why the TRPC6 protein is continuously upregulated 
in pathological VSMCs, and whether TRPC6 also participates in aberrant VSMC proliferation 
in human vascular diseases. Further spatio-temporal analyses of TRPC6 protein function are 
necessary to establish the pathological significance of TRPC6 in VSMC plasticity. In addition, as 
TRPC6 is also expressed in endothelial cells and mediates endothelial permeability in capillary 
microvessels in response to histamine stimulation,103 it is also necessary to investigate the roles 
of TRPC6 in non-VSMCs, such as endothelial cells and macrophages, to achieve a comprehensive 
understanding of the clinical significance of TRPC6 channels in the vasculature.

Furthermore, more attention should be paid to the diverse patterns of cation permeability shown 
by TRPC channels (Table 1). Unlike TRPC3, divalent metal cations such as iron (Fe2+) and zinc 
(Zn2+) can permeate through TRPC6, even though TRPC3 and TRPC6 are up to 75% identical.104,105 
Indeed, TRPC6−/− mice presented an elevated Zn2+ level in the placenta and reduced litter sizes.106 
Although both Zn2+ and Fe2+ must be essential metal cations for the maintenance of cellular 
homeostasis, the causal relationship between metal cation dynamics and vascular plasticity is 
obscure. Future studies focusing on TRPC6-mediated metal ion influx and identification of its 
relationship with VSMC plasticity will help us to obtain a comprehensive understanding of how 
TRPC6 can serve as a specific therapeutic target for pathological VSMC plasticity.
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