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Quercetin attenuates fasting and postprandial hyperglycemia in animal models of 
diabetes mellitus

Ji-Hye Kim1, Min-Jung Kang1, Ha-Neul Choi1, Soo-Mi Jeong1, Young-Min Lee2 and Jung-In Kim1§

1Department of Smart Foods and Drugs, School of Food and Life Science, Inje University, 607 Obang-dong, Gimhae, Gyungnam
621-749, Korea 

2Department of Nutrition, Pusan Paik Hospital, Busan 633-165, Korea

Abstract
The objective of this study was to investigate the hypoglycemic effects of quercetin (QE) in animal models of diabetes mellitus (DM). A starch 

solution (1 g/kg) with and without QE (100 mg/kg) or acarbose (40 mg/kg) was orally administered to streptozotocin (STZ)-induced diabetic rats 
after an overnight fast. Postprandial plasma glucose levels were measured and incremental areas under the response curve were calculated. To study
the effects of chronic feeding of QE, five-week-old db/db mice were fed an AIN-93G diet, a diet containing QE at 0.08%, or a diet containing
acarbose at 0.03% for 7 weeks after 1 week of adaptation. Plasma glucose and insulin, blood glycated hemoglobin, and maltase activity of the 
small intestine were measured. Oral administration of QE (100 mg/kg) or acarbose (40 mg/kg) to STZ-treated rats significantly decreased incremental
plasma glucose levels 30-180 min after a single oral dose of starch and the area under the postprandial glucose response, compared with the control 
group. QE (0.08% of diet) or acarbose (0.03% of diet) offered to db/db mice significantly reduced both plasma glucose and blood glycated hemoglobin
compared to controls without significant influence on plasma insulin. Small intestine maltase activities were significantly reduced by consumption
of QE or acarbose. Thus, QE could be effective in controlling fasting and postprandial blood glucose levels in animal models of DM.
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Introduction3)

The occurrence of diabetes mellitus (DM), especially type 2 
DM, is increasing at an epidemic rate worldwide [1]. Controlling 
blood glucose is one of the major goals for DM treatment [2]. 
Although enormous advances have been made in the development 
and clinical application of oral hypoglycemic agents, most current 
hypoglycemic agents have undesirable side effects and reduced 
efficacy over time [3]. Therefore, there have been extensive 
searches for naturally-derived antidiabetic agents with fewer side 
effects. Quercetin (QE), a flavonoid antioxidant, is a leading 
potential candidate for treating DM [4-8]. The long-term 
consumption of QE appears to control blood glucose levels in 
streptozotocin (STZ)-induced diabetic animals [4-8]. It has been 
suggested that QE protects the pancreas against oxidative stress 
in STZ-treated animals, improving hyperglycemia [4,5].

It has also been reported that QE inhibits α-glucosidase activity 
in vitro [9,10]. α-Glucosidase inhibitors are oral hypoglycemic 
agents that inhibit the digestion of carbohydrates in the small 
intestine, delaying increases in blood glucose after a meal. They 

are used to control both fasting and postprandial hyperglycemia 
in patients [11]. Since both fasting and postprandial glucose are 
important in determining overall glycemic control [12], α
-glucosidase inhibitors are useful in achieving optimal blood 
glucose control in patients with type 2 DM. Plant extracts with 
α-glucosidase inhibitory activity in vitro, such as pine [13] and 
chestnut skin [14], have a flattening effect on postprandial 
glucose levels in STZ-treated rats, an animal model of type 1 
DM, and their chronic administration leads to overall control of 
fasting glucose levels in animal models of type 2 DM.

Therefore, QE is expected to be effective in reducing pos-
tprandial glucose response. However, its inhibitory activity against 
α-glucosidase has not been fully investigated in vivo. We examined 
the acute effects of QE on postprandial hyperglycemia in 
STZ-induced diabetic rats using a carbohydrate-loading test and 
compared its effect with that of acarbose, a competitive α
-glucosidase inhibitor. We also examined the chronic effect of 
QE on fasting hyperglycemia and intestinal maltase activity in 
db/db mice, an animal model of type 2 DM, to evaluate its 
potential as a hypoglycemic agent.
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Materials and Methods

Reagents

We used a glucose assay kit from Yeongdong Co. (Seoul, 
Korea), an insulin assay kit from Linco Co. (St. Charles, MO, 
USA), and a glycated hemoglobin (HbA1C) assay kit from 
BioSystems (Barcelona, Spain). Casein, L-cysteine, mineral mixture, 
and vitamin mixture were purchased from ICN Pharmaceuticals 
Inc. (Costa Mesa, CA, USA). Tert-butyl hydroquinone was 
purchased from Fluka Co. (Milwaukee, WI, USA). Cornstarch 
was acquired from Daesang Co. (Seoul, Korea), and sucrose and 
soybean oil from Cheiljedang Co. (Seoul, Korea). Acarbose was 
obtained from Bayer Korea Ltd. (Seoul, Korea). QE, STZ, 
Alphacel, choline bitartrate, and all other chemical reagents used 
in this study were purchased from Sigma Chemical Co. (St. 
Louis, MO, USA).

Measurement of control of postprandial hyperglycemia in 
STZ-induced diabetic rats

Male Sprague-Dawley rats weighing 240-260 g (Bio Genomics, 
Inc., Seoul, Korea) were housed under standard laboratory 
conditions (24 ± 5℃ and 55 ± 5% relative humidity, with a 12-hr 
light:12-hr dark cycle). The rats were fed a commercial chow 
(Samyang Co., Seoul, Korea) ad libitum for 2 weeks after arrival. 
The animals were injected intraperitoneally with STZ (65 mg/kg) 
in citrate buffer at pH 4.5 [15]. After one week, fasting glucose 
was measured by tail-vein sampling using a glucometer 
(Glucotrend, Roche Diagnostics, UK). Animals with fasting 
blood glucose levels between 200 and 400 mg/dL were selected 
and randomly assigned to one of 3 groups (n = 18). After an 
overnight fast, rats were administered a soluble starch (1 g/kg, 
control group), starch with QE (100 mg/kg), or acarbose (40 
mg/kg) via gastric intubation [16]. Tail tip blood samples were 
obtained 0, 30, 60, 120, 180, and 240 min afterward and were 
centrifuged at 1,500 g for 15 min. Plasma glucose was measured 
enzymatically [17] using a commercial kit; levels were expressed 
relative to the baseline, and areas under the response curves 
(AUCs) were calculated using the trapezoidal rule. 

Measurement of control of fasting hyperglycemia in db/db mice

To study the chronic effect of QE on fasting hyperglycemia, 
five-week-old male C57BL/KsJ-db/db mice (n = 18) were 
obtained from Japan SLC, Inc. (Hamamatsu, Japan). After 1 week 
of adaptation, during which time the animals had free access 
to commercial chow, they were randomly divided into three 
groups. The animals were fed ad libitum for 7 weeks with an 
AIN-93G diet, a diet containing QE at 0.08%, or a diet containing 
acarbose at 0.03%. The AIN-93G diet was composed of 39.8% 
cornstarch, 20% casein, 13.2% dextrinized cornstarch, 10% 
sucrose, 7% soybean oil, 5% Alphacel, 3.5% mineral mixture, 

1% vitamin mixture, 0.3% l-cystine, 0.25% choline bitartrate, and 
0.0014% tert-butyl hydroquinone [18]. At the end of the 
experimental period, the mice were sacrificed by heart puncture 
after an overnight fast. Samples of the small intestine were 
collected for further assay. The duodenum was removed and 
discarded. The proximal one-third of the remaining jejunoileum 
was excised and used for maltase assays. The segment was cut 
longitudinally, washed in saline on ice, and then blotted on tissue 
paper. The mucosa was scraped off with a glass slide and 
homogenized in four volumes of cold saline with a teflon 
homogenizer. The homogenates were centrifuged at 12,000 g for 
30 min, and the supernatants were stored at 70℃ until further 
analysis.

Blood HbA1C was measured with a chromatographic assay kit 
[19]. Plasma glucose was measured as described above, and 
insulin levels were determined using a radioimmunoassay kit 
[20]. Maltase activity of the intestinal mucosa homogenate was 
determined according to the method described by Dahlqvist 
[21], using 0.056 M maltose in 0.1 M maleate buffer (pH 6.0) 
as a substrate. Maltase activity was determined by measuring 
the amount of glucose released from maltose. Protein concentra-
tion was determined using the method described by Lowry et 
al. [22], using bovine serum albumin as a standard. Enzyme 
activity was expressed as specific activity (U/g protein), which 
was defined as μmoles of maltose hydrolyzed per minute per 
gram of protein. All animal experiments were done according 
to the guidelines of the Animal Resource Center at Inje 
University, Korea.

Statistical analysis

All data are expressed as means ± standard deviation (SD), and 
were analyzed with a one-way analysis of variance (ANOVA) 
and subsequent Tukey’s test. Values of P < 0.05 were considered 
to be significant. 

Results

Effect of QE on postprandial glucose in STZ-induced diabetic 
rats

Consumption of QE (100 mg/kg) by STZ-treated rats signi-
ficantly suppressed the elevation of plasma glucose at 30 (P <
0.05), 60, 120 (P < 0.01), and 180 min (P < 0.05) after a single 
oral dose of starch and reduced the AUC of the glucose response 
curve (5,261 ± 796 mg·min/dL) compared to that of the control 
group (10,875 ± 1,625 mg·min/dL, P < 0.01, Fig. 1). Incremental 
plasma glucose levels at 30, 60, 120 (P < 0.01), and 180 min 
(P < 0.05) and the AUC of the acarbose (40 mg/kg) group (3,863
± 629 mg·min/dL, P < 0.01) were also significantly decreased 
compared to those of the control group. There were no significant 
differences between the incremental glucose levels at any time 
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Fig. 1. Effect of quercetin on postprandial blood glucose response in 
STZ-induced diabetic rats. Control group (○): Soluble starch (1 g/kg) was 
administered orally to STZ-induced diabetic rats after an overnight fast. Quercetin
group (●): Starch (1 g/kg) with quercetin (100 mg/kg) was administered orally to 
rats after an overnight fast. Acarbose group (◆): Starch (1 g/kg) with acarbose (40 
mg/kg) was administered orally to rats after an overnight fast. Values represent mean
± SD (n = 6). Means not sharing common letters are significantly different (*P <
0.05. **P < 0.01).

Control Quercetin Acarbose
Initial body weight (g) 21.2 ± 1.4ns** 21.0 ± 1.3 21.1 ± 1.3
Final body weight (g) 44.2 ± 2.0ns 41.4 ± 2.1 42.3 ± 1.6
Weight gain (g/d) 0.47 ± 0.07ns 0.42 ± 0.04 0.43 ± 0.06
Food intake (g/d) 4.3 ± 0.2ns 4.0 ± 0.3 4.1 ± 0.5
FER* (%) 11.0 ± 1.7ns 10.6 ± 1.4 10.6 ± 1.7
The control group was fed a standard AIN-93G diet, the quercetin group was fed 
a diet containing 0.08% quercetin (wt/wt), and the acarbose group was fed a diet 
containing 0.03% acarbose ad libitum for 7 weeks. Values represent mean ± SD 
(n = 6).
*Feed efficiency ratio (%) = (Body weight gain [g/day]/food intake [g/day]) x 100
**Not significant

Table 1. Body weight, food intake, and feed efficiency ratio of db/db mice

A

B

C

Fig. 2. Hypoglycemic effects of quercetin in db/db mice. A, Plasma glucose level; 
B, Insulin level; and C, Blood glycated hemoglobin (HbA1C) level. Values represent 
mean ± SD (n = 6). Means not sharing common letters are significantly different (P
< 0.01).

point or between the AUCs of the QE- and acarbose-treated 
groups.

Effect of chronic feeding of QE on fasting hyperglycemia in db/db 
mice

Body weight, food intake, and feed efficiency ratio (FER) of 
the control, QE, and acarbose groups were not significantly 
different (Table 1). QE consumed at 0.08% of diet or acarbose 
consumed at 0.03% of diet significantly decreased fasting plasma 
glucose levels (298 ± 34 mg/dL and 262 ± 29 mg/dL, respec-
tively) compared with the control group (437 ± 51 mg/dL, P <
0.01, Fig. 2). There was no significant difference between the 
plasma glucose levels of the QE and acarbose groups. Plasma 
insulin levels of the QE group (87.1 ± 8.4 μU/mL) were not 
significantly different from those of the control (94.2 ± 10.6 μ
U/mL) or acarbose group (80.3 ± 9.1 μU/mL). Blood HbA1C 

levels of the QE and acarbose groups (5.7 ± 0.7% and 5.2 ± 0.6%, 
respectively) were significantly lowered compared with the 
control group (7.4 ± 0.7%, P < 0.01). Blood HbA1C levels in the 
QE group were not significantly different from those of acarbose 
group. Consumption of QE (280.1 ± 51.0 U/g protein) or 



110 Hypoglycemic effects of quercetin

Fig. 3. Effect of quercetin on maltase activity of small intestine in db/db mice. 
Values represent mean ± SD (n = 6). Means not sharing common letters are 
significantly different (*P < 0.05. **P < 0.01).

acarbose (249.6 ± 56.0 U/g protein) significantly suppressed the 
maltase activities of the proximal part of the jejunoileum 
compared with the control group (388.3 ± 68.6 U/g protein, Fig. 3).

Discussion

QE has been shown to inhibit rat intestinal α-glucosidase in 
vitro with an IC50 of 0.48-0.71 mM [9,10]. In this study, QE 
administered at a dose of 100 mg/kg reduced the AUC of the 
postprandial glucose response by 51.6% compared to the control 
group, an effect comparable to that of acarbose at a dose of 40 
mg/kg (64.5% reduction). Previous studies have shown that 
acarbose administered at a dose of 40 mg/kg effectively suppresses 
the blood glucose response after carbohydrate loading in 
STZ-treated rats [23,24]. Postprandial glucose is known to be 
an independent risk factor for cardiovascular complications 
associated with DM [25]. The effective control of blood glucose 
elevation by QE after starch loading suggests that it is a candidate 
agent for alleviating postprandial hyperglycemia.

QE consumed at 0.08% of a total diet decreased fasting plasma 
glucose and HbA1c without influencing insulin levels in db/db 
mice. These results were not significantly different from those 
of animals that consumed acarbose at 0.03% of a total diet. The 
average intake of QE and acarbose was calculated to be 101.5 
and 39.0 mg/kg/d respectively, based on food intake and average 
body weight. 

Chronic consumption of QE (0.1% of diet) decreased blood 
glucose in STZ-treated rats [6,7]. QE protected pancreatic β cells 
from oxidative stress and damage, resulting in increased insulin 
secretion in STZ-treated rats [5]. Ishida et al. [26] suggested that 
a reduction in oxidative stress could preserve the pancreatic β 
cell mass in db/db mice, thereby decreasing hyperglycemia. From 
our data, it is not clear whether QE could exert a protective effect 
on the pancreas of db/db mice, as these mice have hyperinsu-
linemia and hyperglycemia in early life [27]. The insulin levels 
of these animals begin to decrease due to degenerating pancreatic 

islet cells after 5-6 months of age [28]. It might be useful to 
elucidate the effect of QE on insulin secretion in the db/db mice 
after that age.

It has been demonstrated that acarbose can decrease the 
requirement for insulin by controlling postprandial hyperg-
lycemia [29], and that it can chronically reduce glucose and 
insulin levels after meals, improving insulin sensitivity [30]. In 
addition, it has been suggested that QE could improve insulin 
signaling and therefore insulin sensitivity in rats with insulin 
resistance [31]. QE could improve fasting hyperglycemia by 
enhancing insulin sensitivity via α-glucosidase inhibition and 
enhanced insulin signaling in db/db mice.

DM has been reported to induce intestinal disaccharidase 
activities, which could increase the digestion and absorption of 
carbohydrates [32-34]. Lee et al. [33] reported that the admi-
nistration of α-glucosidase inhibitor (Bay-o-1248) for 7 days 
decreased maltase activities in the jejunoileum of db/db mice. 
Acarbose given to STZ-induced diabetic rats for 5 weeks lowered 
small intestine maltase activities [34]. Ramachandra et al. [7] 
demonstrated that long-term administration of QE (0.1% of diet) 
decreased the activities of small intestinal maltase and sucrase 
in STZ-treated rats. They suggested that the decreased activities 
of disaccharidases by QE could play a major role in the 
amelioration of diabetes. A reduction of maltase activities by QE 
could reduce digestion of dietary carbohydrates and contribute 
to the control of hyperglycemia in db/db mice. 

Clinically, acarbose is used as an antidiabetic agent, alone or 
in combination with other oral hypoglycemic agents. However 
the chronic use of acarbose could be limited by unfavorable 
gastrointestinal side effects, such as flatulence, abdominal 
cramping, and diarrhea [35]. QE is a well-documented biofla-
vonoid that is abundant in fruits and vegetables and has been 
marketed as a nutraceutical in several countries, including the 
United States [36]. QE could potentially be alternative hypog-
lycemic agent without side effects.

In conclusion, dietary QE alleviated fasting and postprandial 
hyperglycemia in an animal model of DM, at least in part by 
inhibiting α-glucosidase activity. Thus, QE may be useful for 
improving overall glycemic control in the management of DM.
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