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Background: The differential diagnosis of common pig-
mented skin lesions is important in cosmetic dermatology. 
The computer aided image analysis would be a potent 
ancillary diagnostic tool when patients are hesitant to 
undergo a skin biopsy. Objective: We investigated the 
numerical parameters discriminating each pigmented skin 
lesion from another with statistical significance. Methods: 
For each of the five magnified digital images containing 
clinically diagnosed nevus, lentigo and seborrheic keratosis, 
a total of 23 parameters describing the morphological, color, 
texture and topological features were calculated with the aid 
of a self-developed image analysis software. A novel concept 
of concentricity was proposed, which represents how 
closely the color segmentation resembles a concentric circle. 
Results: Morphologically, seborrheic keratosis was bigger 
and spikier than nevus and lentigo. The color histogram 
revealed that nevus was the darkest and had the widest 
variation in tone. In the aspect of texture, the surface of the 
nevus showed the highest contrast and correlation. Finally, 
the color segmented pattern of the nevus and lentigo was far 
more concentric than that of seborrheic keratosis. Conclu-
sion: We found that the subtle distinctions between nevus, 
lentigo and seborrheic keratosis, which are likely to be 
unrecognized by ocular inspection, are well emphasized 
and detected with the aid of software. (Ann Dermatol 25(3) 

340∼347, 2013)
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INTRODUCTION

Skin color is affected by various factors, including me-
lanin, hemoglobin, carotene and thickness of stratum cor-
neum. Pigmented skin lesion (PSL) arises from the abnor-
malities of those factors1. From the past, PSL has been a 
great challenge in the field of cosmetic dermatology as 
well as in basic dermatological research. Although there 
are numerous reports on the treatment methodology, 
articles focusing on the image analysis of PSL have been 
very limitedly published. The diagnosis of PSL usually 
depends on the ocular inspection of dermatologists.
The advent of high performance computing systems 
engendered the possibility of handling digital images of 
megapixels. Not to mention the engineering application, 
the computer-aided image analysis (CAIA) has been wi-
dely accepted in the field of medicine, particularly in 
radiology2,3. Despite the relative ease of acquiring clinical 
pictures, the image analysis does not receive sufficient 
attention from dermatologists. Moreover, most dermato-
logical researches on image analysis are from Western 
countries. Thus, they primarily explore the properties of 
melanoma4. In Asia, however, the incidence of melanoma 
is much lower than that of the west5. Instead, differen-
tiating benign PSLs, such as nevus, lentigo and seborrheic 
keratosis, from each other is more frequently requested in 
an every-day clinic. Because Asians usually hesitate to 
receive invasive procedures on their faces, CAIA could be 
a potent substitute for a skin biopsy.
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Fig. 1. Raw images of nevus, len-
tigo and seborrheic keratosis. Mag-
nification power is fixed to 20. (A)
Nevus. (B) Senile lentigo. (C) Se-
borrheic keratosis.

Fig. 2. The principal component is more suited for further analysis compared to red (R), green (G) and blue (B). Original image 
is Fig. 1A. (A) R color space gray image. (B) G color space gray image. (C) B color space gray image. (D) Principal component.

We developed a CAIA software in order to collect the 
characteristic parameters of each PSL. Those variables 
would not only play significant roles in understanding the 
characteristics of PSLs, but also give some clues to invent 
a computer-aided diagnostic system.

MATERIALS AND METHODS
Data description and software development

1) Image acquisition 

The magnified photos of patients’ PSL were taken in order 
to achieve a better diagnostic outcome. A digital magnifier 
of polarized light source (AM-413TL; Dino-Lite, Hsinchu,  
Taiwan) has been used to obtain Joint Photographic 
Experts Group (JPEG) images of 8-bit red, green and blue 
(RGB) format and 1,280×1,024 pixels. Magnification 
power of 20 is fixed to every photo taken.
Photos of the commonly acquired melanocytic nevus, 
common seborrheic keratosis without irritation and senile 
lentigo were retrospectively retrieved. A highly experi-
enced dermatologist confirmed the clinical diagnosis of 
each photo. Only focused photos containing the entire 
PSL, without trim, were included. After quality control, 5 
photos were available for each PSL (Fig. 1). This study was 
approved by the Institutional Review Board of Seoul 
National Bundang Hospital (B-1203/148-103).

2) Software development

MATLABⓇ (Version 7.9.0; Mathworks, Natick, MA, USA) 

was used to develop the prototypical CAIA software. The 
built-in libraries, such as Image Processing ToolⓇ (Math-
works) and Statistical ToolⓇ (Mathworks), were also adop-
ted to facilitate the mathematical functions. 

Preprocessing of raw images

1) Surface fitting

Any artifacts caused by illumination unevenness or humps 
of the PSLs should be eliminated. Those artifacts were 
subtracted from the original images by applying the least 
square method algorithm6. We adopted the first order 
fitting formula (1), which minimizes the least square (2). In 
(1), x and y are pixels located in a two-dimensional 
coordinate system; in addition, a, b and c are coefficients 
from the least square method. In (2), I(x,y) means the 
actual intensity of the corresponding pixel.

fit(x,y)=ax＋by＋c (1)

Least square= 
 (2)

2) Principal component analysis (the Karhunen-Loeve 
transformation)

Through this transformation, the RGB space could be 
switched to another three-dimensional matrix. This is ad-
vantageous because the primary component of the trans-
formed matrix contains more information than any dimen-
sions of the previous RGB space. It enables us to deal with 
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Fig. 3. Border detection and lesion
mask creation. Original image, bi-
nary mask, and border marked ima-
ge of (A∼C) nevus, (D∼F) len-
tigo, and (G∼I) seborrheic ke-
ratosis. Border is marked with blue
line.

a one-dimensional gray image rather than the three-di-
mensional RGB, thus making CAIA much faster and more 
effective7. In fact, the primary component gray image 
represents the original colored version much better than 
that of R, G and B (Fig. 2).

3) Elimination of white noises 

To remove the background white noises, the close and 
open operation utilizing the disc of a five pixel diameter 
was performed. The open operation eliminates thin lines 
as well as the isolated pixels, whereas the close operation 
fills the gaps. This is a commonly used image processing 
technique for reducing the background white noises8.

4) Hair removal

The PSLs, located on the scalp, were covered with hair to 
some degree. The hair made further processing of CAIA 
difficult. A simple hair detecting filter was implemented, 
based on the fact that hairs are long, thin and dark strings 
in a gray image. Due to the fact that ordinary Asians have 
black hair, we first extracted every pixels of intensity 
below the threshold value, obtained by Otsu’s algorithm. 
Our threshold should maximize the difference between 
the two averages from the separated groups, while 
minimizing each of the intra-group variation. Then, for the 
pixel group darker than the threshold, we performed a 
pattern analysis, selecting subgroups of contiguous pixels 

which are characterized by a high ratio of height to width. 
The hair mask is applied to the original image and the hair 
shafts are negated9,10. After subtracting the hairs from the 
image, the empty pixels were substituted with interpo-
lation using the surrounding pixels.

Image analysis

1) Border detection by a semi-supervised, semi-automa-
ted iteration method

To detect the proper borders of PSLs from the prepro-
cessed images, we manually selected two pixels repre-
senting the points inside the lesion along with four pixels 
outside the lesion. Our CAIA software primarily generates 
lesions masked by Otsu’s threshold algorithm. Then, it 
automatically iterates fixing the mask until the mask 
includes two inside pixels and excludes four outside 
pixels. If the temporary binary mask includes one of the 
outside pixels, the threshold is modified to shrink the size 
of the mask by multiplying the coefficient11. On the 
contrary, if the mask excludes one of the inside pixels, the 
mask is expanded by modifying the threshold. The itera-
tion goes on until it finds a mask satisfying the above 
condition. An example shows the detected borders of 
each PSL (Fig. 3).
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2) Feature extraction 

(1) Morphologic analysis: The perimeter and the area are 
defined as the number of pixels around the boundary and 
inside the lesion mask, respectively12. To define a peri-
meter, we adopted an 8-connection method. This method 
implies that two pixels are said to be contiguous when 
one is located just left, right, upward and downward of 
another or at just the next spot in four diagonal directions. 
The area divided by the square of the perimeter is defined 
as the roundness. 

Roundness=
Area

Perimeter2 (3)

As a lesion is more similar to a circle, the roundness 
becomes larger. The solidity is defined as the area divided 
by the size of a minimum convex mask, which can 
encircle the entire lesion. Higher solidity stands for being 
more convex, while a lower solidity implies one that is 
more spiky and concave.

Solidity=
Area

Minimal convex mask encircling the entire lesion (4)

(2) Color histogram analysis: Each of the RGB space is an 
8-bit gray bitmap. Thus, every pixel has an intensity of 
integer between 0 and 255. The histogram analysis ge-
nerates several variables, which explain the pattern of the 
gray level distribution12. If we denote an intensity level to 
x, p(x) is defined as the probability density of intensity x. 
The mean, defined as (5), implicates the average intensity 
of brightness. The image with a bright tone has a high 
mean value.

Mean=




× (5) 

The standard deviation (SD) describes the spread in the 
intensity. A high contrast image yields high SD.

SD=







  (6)

The entropy is defined as the formula (7). If a gray image 
is composed of a single intensity, the entropy becomes 
zero. For the image of a wide intensity variation, the 
entropy increases.

Entropy=







(7)

(3) Texture analysis: Texture information is extracted from 
the co-occurrence matrix. The co-occurrence matrix 
contains information as to how the nearby pixels are 
related12,13. This can be calculated in four directions: verti-
cal, horizontal and two diagonals. As the 8-bit bitmap is 
our concern, the co-occurrence matrix would be 256 by 
256 in terms of rows and columns. If we denote the 
probability density of the i-th row and j-th column as p(i, 
j), the contrast and correlation is defined as the formulas 
(8) and (9), respectively.

Contrast=


    
(8)

Correlation=



   
(9)

The μi, μj each means the average of the i-th row and σi, 
σj j-th column, and as the standard deviation, respec-
tively. The contrast describes the degree of difference 
between the nearby pixels. An image of high contrast 
means that its pixels are distinctive from each other; thus, 
it is more like a rough mosaic rather than a fine gradient. 
Although it is nearly impossible to notice the subtle 
difference of the contrasts among the PSLs with the naked 
eye, the CAIA enabled us to analyze the parameter 
directly. The correlation describes the linear relationship 
between the nearby pixels. The correlation is mathe-
matically a complicated notion, but intuitively a simple 
one. By definition, the correlation implies that the Pearson’s 
coefficient of the two dimensional linear regression bet-
ween the (x, y) positions in the Cartesian coordinate is the 
independent variable, and the intensities corresponding to 
those pixels are the dependent ones. Therefore, an image 
with a simple linear intensity distribution pattern would 
have a high correlation value.

(4) Measuring the concentricity by topological analysis: 　
K means that the algorithm is a clustering method, which 
classifies a set of data into K clusters in which each datum 
is closest to the mean of its cluster14. Mathematically, if we 
denote a datum to a vector form x, (x1 through xn, for total 
of n data) and K clusters S, (S1 through Sk, for total of K 
clusters), the clustering should be done to minimize the 
sum of within-cluster variances defined by the formula (10).


 




 

∥ ∥

(10)

The μi stands for the mean of the i-th cluster. The opera-
tor ‖x−y‖ calculates the distance between vectors x and y. 
Among the various methods of defining the distance, the 
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Fig. 4. Color segmented images of nevus and seborrheic keratosis. (A, E) Original gray images of nevus and seborrheic keratosis. 
(B, F) For nevus, it is well segmented as a concentric pattern through K-means algorithm, K=4. However, the segmented outcome 
is far from concentric for seborrheic keratosis. (C, G) Segment 1, of which pixels distribute most narrowly. For nevus, the pixels 
of segment 1 are well aggregated as a single piece. However, the pixels of segment 1 from seborrheic keratosis are relatively separated
from each other. (D, H) Segment 2, of which pixels distribute second most narrowly. For nevus, it is a shape of a ring, while for
seborrheic keratosis, it is a collection of separated pixel clusters. (I, M) Core, which is defined as the minimal convex area completely
encircling segment 1. (J, N) Hull, which is defined as a minimal convex area completely encircling segment 2. (K, O) In the intersection
of segment 1 and the hull of nevus, most pixels of segment 1 are located inside of the hull. Thus, the core inclusion (CI) is high
(CI=1.0). However, the intersection of segment 1 and core is quite smaller than segment 1 (CI=0.690) for seborrheic keratosis. (L,
P) The intersections of segment 2 and core. In the image for nevus, only few pixels of segment 2 overlap with the core. Thus, the
hull exclusion (HE) is high (HE=0.952). However, for seborrheic keratosis, most pixels of segment 2 overlap with the core. Thus, 
HE is lower than that of nevus and lentigo (HE=0.109).

K-mean function of MATLABⓇ adopts the Euclidean 
method. 
In our analysis, the lesions were divided into four color 
segments. According to the number of pixels belonging to 
the minimal convex area completely containing each 
segment, segment 1 is the smallest and segment 4 is the 
largest. This allocation means that segment 1 is distributed 
as the narrowest, while segment 4 is the widest. For pixels 
belonging to segment 1, only pixels contiguous to each 
other, in the aspect of the 8-connection method, are 
redefined into subgroups. Among those subgroups, the 

ratio between the sizes of the largest subgroup to the size 
of an entire segment 1 is denoted as the percent area (PA).

PA=
Number of pixels belong to the 
largest subgroup of segment 1

Number of pixels belong to segment 1 (11)

The PA describes how well the core is grouped. If the core 
is one piece, the PA is one. If the core is composed of 
scattered pixels without direct connections between them, 
the PA would be zero.
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Table 2. Color histogram analysis; mean values of mean, SD, and entropy of nevus, lentigo and seborrheic keratosis defined in each
RGB color space

Nevus Lentigo Seborrheic keratosis p-value

Mean (R) 110.5 143.9 134.5 ＜0.01
SD (R) 21.1   4.9 10.1 ＜0.01
Entropy (R) 6.2   4.2 5.2 ＜0.01
Mean (G) 81.4 125.9 120.5 ＜0.01
SD (G) 22.8   8.3 14.2 ＜0.01
Entropy (G) 6.3 5.0 5.7   0.02
Mean (B) 60.1 113.1 116.6 ＜0.01
SD (B) 22.3 16.5 21.3   0.23
Entropy (B) 6.2 6.0 6.3   0.59

SD: standard deviation, R: red, G: green, B: blue.

Table 1. Morphological analysis; mean values of area, perimeter, roundness and solidity of nevus, lentigo and seborrheic keratosis

Nevus Lentigo Seborrheic keratosis p-value†

Area* 97208 55553 307927 ＜0.01
Perimeter*  1249  1032   3239 ＜0.01
Roundness 0.780 0.661 0.394 ＜0.01
Solidity 0.966 0.891 0.842   0.02

*Units of area and perimeter are pixels. †The p-value is obtained from Kruskal-Wallis test.

When we denote the minimal convex area which includes 
the entire pixels of segment 2 as a hull, the ratio of the 
pixels belong to segment 1, which also belongs to the hull 
of the entire pixel 1, is defined as the core inclusion (CI). 

CI=
Number of pixels belong to segment 1 and also to hull

Number of pixels belong to segment 1 (12)

The CI describes how well the second smallest area en-
circles the core. If the figure is completely concentric, the 
second smallest would be the first hull encircling the core. 
Thus, the CI would be one. However, if the first and the 
second largest areas are completely separated from each 
other, the CI becomes zero. 
Finally, when we denote the minimal convex area, which 
includes the entire pixels of segment 1 as a core, the ratio 
of pixels belonging to segment 2 which does not belong 
to the core of the entire pixel 2 is defined as the hull 
exclusion (HE). 

HE=1−
Number of pixels belong to segment 2 

and also to core
Number of pixels belong to segment 2

(13)

The HE describes how exclusively the hull surrounds the 
core. The HE of a perfect concentric figure is one. How-
ever, if the first and second largest areas are intermixed 

with each other, the HE would be zero. To emphasize the 
discriminating power of those concentricity properties, the 
product of the three variables is defined as the concent-
ricity ranging from zero to one. Of course, concentricity 
closer to one implies a better concentric structure. Actual 
examples of nevus and seborrheic keratosis are also 
supplied (Fig. 4).

Concentricity=PA×CI×HE (14)

Experiment performed

For each of the five images containing nevus, lentigo and 
seborrheic keratosis, a total of 23 (four morphologic-, nine 
color histogram-, six texture- and four topological-) fea-
tures were used for analysis. With the aid of the Image 
Processing ToolⓇ library embedded in MATLABⓇ, the raw 
jpeg images are loaded to the CAIA software. With mini-
mal manual manipulation of choosing two inside pixels 
and four outside pixels, the CAIA software automatically 
performs the preprocessing, border detection and analysis 
and also provides the numerical outcomes. It also presents 
graphical data, particularly for the concentricity analysis. 
The numerical outcomes are analyzed through a non-para-
metric Kruskal-Wallis test, because only five data were 
enrolled for each PSL. 
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Table 4. Topological analysis; mean values of PA, CI, HE and concentricity of nevus, lentigo and seborrheic keratosis

Nevus Lentigo Seborrheic keratosis p-value

PA 0.993 0.781 0.378   0.01
CI 1.000 1.000 0.771 ＜0.01
HE 0.958 0.726 0.211 ＜0.01
Concentricity 0.951 0.597 0.070 ＜0.01

PA: percent area, CI: core inclusion, HE: hull exclusion.

Table 3. Texture analysis; mean values contrast and correlation of nevus, lentigo and seborrheic keratosis defined in each RGB color 
space

Nevus Lentigo Seborrheic keratosis p-value

Contrast (R)  82.7  29.9  63.5   0.06
Correlation (R)   0.963   0.681   0.780 ＜0.01
Contrast (G) 136.2  52.0  97.1   0.07
Correlation (G)   0.956   0.841   0.842   0.02
Contrast (B) 310.4 139.1 229.0   0.18
Correlation (B)   0.897   0.879   0.815   0.16

R: red, G: green, B: blue.

RESULTS
Morphological analysis: Seborrheic keratosis is large, 
while nevus is convex

It was revealed that the seborrheic keratosis tended to 
have a larger area and perimeter than that of nevus or 
lentigo in a morphologic analysis. The roundness and 
solidity, which both describe the convexity, tended to be 
larger in the nevus than in the lentigo and in seborrheic 
keratosis (Table 1).

Color histogram analysis: Nevus is dark

Three color histogram parameters (mean, SD and entropy) 
exist in each of R, G and B color space. The mean tended 
to be lower, while SD and entropy were higher in nevus 
than in others. Interestingly, it holds truth among all the 
RGB color space. The SD and entropy would be higher in 
nevus, since the intensity varies in a wider range in nevus 
than in others (Table 2).

Texture analysis: The surface of nevus is rough and is 
well correlated

Each of the two texture parameters (contrast and correla-
tion) in R, G and B color space was analyzed. Both cont-
rast and correlation of nevus tended to be higher than 
those of others in all RGB (Table 3).

Topologic analysis: Seborrheic keratosis is less concen-
tric than others

The PA, CI, HE and concentricity were much lower in 

seborrheic keratosis than in nevus and in lentigo (Table 4). 
Actually, the graphical outcomes of nevus and seborrheic 
keratosis demonstrated that former PSL showed much 
better concentric patterns than that of the latter (Fig. 4).

DISCUSSION

We developed a CAIA software, which is able to detect a 
border of PSL with minimal supervision. The outcomes of 
detection were quite acceptable. It also provided several 
parameters describing the morphological, color, texture 
and topological features. Nevus was characterized by a 
dark color and round shape. Lentigo was similar to a 
nevus, but had a brighter tone and a smaller size. Se-
borrheic keratosis was larger than the other two. The most 
interesting finding of our work is that the concentricity 
was higher in nevus and lentigo than in seborrheic kera-
tosis. The concentricity is a novel notion we introduced, 
which gives us a clue to hypothesize the difference 
between the pathogeneses of each PSL. That is, nevus and 
lentigo come from the dysplasia of melanocytes origina-
ting from a point15, whereas seborrheic keratosis originate 
from multiple simultaneous proliferations of keratino-
cytes16. The radial growth of melanocytes from the center 
of dysplasia makes nevus and lentigo have an intensity 
distribution of concentric pattern, while the multifocal 
proliferation of much abundant keratinocytes makes se-
borrheic keratosis have a random pattern.
Due to the fact that only three kinds of benign PSLs were 
included and five photos were allocated for each PSL, it is 
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hard to generalize the above hypothesis even though this 
pilot investigation clearly demonstrated the efficiency of 
CAIA in distinguishing the three benign PSLs from each 
other. From this point of view, additional studies including 
more CAIA parameters and more types of PSLs are 
strongly required. The convergence of technology, clinical 
dermatology and basic science will bring forth a better 
understanding of pathogenesis and a higher diagnostic 
power with the aid of computers.
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