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Flaviviruses have been important human pathogens after emerging and resurging flavivirus diseases over the past 
decades. Although effective therapeutic agents are not yet commercially available for use in humans, significant progress 
has been made toward developing effective therapeutics and treatments. Several studies have shown that antibodies 
against the flaviviral E and NS1 proteins play a central role in prophylaxis and/or treatment of flavivirus infection through 
passive immunization. In addition, many anti-flavivirals, including interferons, oligonucleotide-based platforms, and 
small compounds, have been developed and evaluated for their antiviral effects. This review provides an overview of 
various approaches to the development of anti-flaviviral candidates and new insights that could improve our strategies 
for designing effective therapeutics against flaviviruses. 
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Flavivirus infection has resurged in recent decades and 

has caused hundreds of thousands of deaths annually 

worldwide (1~11). The genus Flavivirus of the family 

Flaviviridae is composed of more than 70 viruses that are 

transmitted by mosquitoes, ticks, or zoonotic agents with 

unidentified vectors (8). Approximately 40 viruses in the 

genus are associated with human diseases. Among these 

flaviviruses, dengue virus (DENV), West Nile virus (WNV), 

Japanese encephalitis virus (JEV), yellow fever virus 

(YFV), St. Louis encephalitis virus (SLEV), and tick-borne 

encephalitis virus (TBEV) are significant human pathogens 

globally, which induce severe encephalitic or hemorrhagic 

diseases that cause extensive morbidity and mortality (6, 8, 

12~14). 

Flaviviruses are single-stranded, positive-sense, enveloped 

RNA viruses with an approximately 11-kilobase genome. 

The genome is translated as a single polyprotein, which is 

cleaved by viral and cellular proteases to generate three 

structural proteins [capsid (C), pre-membrane (prM), and 

envelope (E)] and seven nonstructural (NS) proteins (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (15). Among 

them, the E protein functions in binding of the virus to a 

cell surface receptor, membrane fusion, and viral assembly 

with the assistance of prM (16). Flavivirus NS1 is a 

glycoprotein that is absent in the virion and secreted at high 

levels (up to 50 μg/ml) in the serum (17~24). Secreted NS1 

associates with the cell surface membrane through inter- 

actions with sulfated glycosaminoglycans (25). Additionally, 

secreted and/or cell-associated NS1 is implicated in the 

pathogenesis and immune regulation of flavivirus infection 

in that it binds complement-regulatory factors (26~30). Two 
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other NS proteins, NS3 and NS5, have been characterized 

as the viral protease/helicase and RNA-dependent RNA 

polymerase, respectively, which form a viral replication 

complex with other NS proteins (31, 32). 

Although advances in anti-flaviviral drug discovery have 

progressed significantly, no therapeutic agent for flavivirus 

infection is currently approved for human use. Recent 

studies suggest that monoclonal antibody (mAb)-based 

therapy could be a promising alternative strategy (33~36). 

Several groups have generated protective mAbs against the 

E and NS1 proteins of flaviviruses (33, 34, 37~44). The 

structural E protein is used as the major antigenic target to 

raise neutralizing antibodies (33, 35, 36, 45). However, it is 

difficult to generate neutralizing antibody for variant viruses 

due to the high mutation rate of the flavivirus RNA-

dependent RNA polymerase (46). Sub-neutralizing concen- 

trations of anti-E antibody also have theoretical potential to 

cause antibody-dependent enhancement (ADE) of flavivirus 

infection (47~50). Another major antigen, the flavivirus NS1 

glycoprotein, induces the production of non-neutralizing 

protective antibodies (34, 51~53). Although the protective 

mechanisms and binding regions of a few anti-NS1 

antibodies have been demonstrated (24, 34, 54~56), most 

still remain to be characterized. On the other hand, several 

antiviral agents have been tested to overcome the drawback 

for anti-flavivirus antibodies (57~63). Some of these agents 

inhibit flavivirus infection and reduce the significant 

mortality and morbidity associated with the infections (62, 

63). 

This review provides an overview of the major anti-

flavivirus antibodies and other anti-flaviviral agents with 

particular attention to: [1] protective and/or therapeutic 

antibodies against flavivirus infections, [2] the inhibitory 

mechanisms of protective and/or therapeutic antibodies, 

and [3] other candidates for anti-flavivirus therapeutics. 

 

I. Protective antibodies against 

flavivirus infection 

 

Flavivirus infection induces the humoral immune 

response in the host and elicits the production of anti-

flavivirus antibodies that could limit viral spread and 

burden (64~69). As expected, many studies demonstrate 

that passive administration of polyclonal or monoclonal 

antibodies against flavivirus proteins protects mice from 

lethal flavivirus infection (33, 34, 37~44), and B-cell-

deficient mice are more vulnerable to infection (66). These 

findings indicate that antibodies are one of the major com- 

ponents involved in protection against flavivirus infection. 

1. Neutralizing antibodies against the E protein 

A flavivirus virion consists of three structural proteins 

(C, prM/M, and E), the viral genome, and a lipid envelope 

derived from the endoplasmic reticulum (ER) (70, 71). The 

viral particle induces the production of neutralizing anti- 

bodies (72~74). Although some neutralizing antibodies 

recognize the prM/M protein, the majority of neutralizing 

antibodies are raised against the E protein (75~77). The E 

protein has three structural domains and plays an important 

role in viral attachment, entry, assembly, and cell tropism 

(Fig. 1) (16). Domain I (DI) and Domain II (DII) of the E 

protein are involved in pH-dependent fusion of the virus 

and host cell membranes (78). Domain III (DIII) has an 

immunoglobulin-like fold and is located on the opposite 

end of DI, which is suggested to contain cellular receptor 

Figure 1. Schematic of flavivirus E and its antibody. The 
structure of the dimer of flavivirus E protein is schematically 
represented. "I", "II", and "III" represent Domain I, Domain II, 
and Domain III, respectively. Domain I and II participate in the 
pH-dependent fusion of virus-host cells, and Domain III has been 
suggested as a host receptor binding site. Although most neu-
tralizing monoclonal antibodies (mAbs) recognize Domain III, 
broadly cross-neutralizing flavivirus mAbs primarily react with 
Domain II.
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binding sites (43, 79, 80). Although neutralizing mAbs that 

cross-react with flaviviruses primarily recognize DII, most 

neutralizing antibodies bind to epitopes in the DIII region 

(Fig. 1) (43, 44, 81~83). In addition, X-ray crystallography 

and neutralization escape mutant analysis indicate that 

type-specific neutralizing antibodies against individual flavi- 

viruses mainly map to amino acid residues in DIII of the E 

protein (Fig. 1) (84~87). 

Interestingly, the anti-E neutralizing mAbs at sub-

neutralizing concentrations have the potential to result in 

ADE of flavivirus infections, thereby complicating antibody 

therapy (47~50). Although ADE by anti-E neutralizing 

mAbs has not been well characterized in flavivirus infection 

in vivo, in vitro studies suggest that ADE is primarily 

associated with Fc-γ- or complement receptors (48, 88~90). 

To avoid the potential ADE, recent studies engineered 

anti-flavivirus antibodies with mutations in the Fc region, 

which prevented ADE in vitro and in vivo (88). Therefore, 

these findings suggest that ADE of flavivirus infection is a 

serious consideration in the design of novel strategies to 

develop a safe and effective therapeutic agent based on 

anti-E antibodies. 

2. Non-neutralizing antibodies against the NS1 protein 

During the course of natural infection, flaviviruses secrete 

nonstructural protein NS1, which is present at high concen- 

trations (e.g., 1~50 μg/ml) in patient serum and associates 

with cell surface membranes (20~23, 25). Although most 

neutralizing antibodies are raised against virion-associated 

proteins, E and prM/M, NS1, which is absent from the 

virion, induces the production of non-neutralizing protective 

antibodies. Many studies have demonstrated the immuno- 

genicity and protective efficiency of recombinant NS1 

generated through DNA vaccines, recombinant viruses, 

and bacterial expression (38, 39, 51, 52, 91). The passive 

administration of anti-NS1 antibody protects mice against 

lethal flavivirus challenge, depending on the dosage and 

time of administration (34). These results suggest that 

anti-NS1 antibodies could serve as therapeutic antibodies 

that do not induce ADE. However, a recent study revealed 

that anti-DENV-2 NS1 mAbs (e.g., 1G5.3) cross-reacts 

with the DENV-2 E protein, inducing weak neutralizing 

activity and ADE in mice. These findings imply a potential 

risk of anti-NS1 antibody-based therapeutics (92). 

Because mapping of protective mAbs could provide 

useful information for the design of effective therapeutics, 

several studies have been performed to determine the 

binding regions for anti-NS1 mAbs by using overlapping 

peptides, bacterially expressed fragments of NS1, yeast 

surface display expression, and mAb competition binding 

assays (24, 34, 54~56). Despite the intense interest, few 

protective mAbs against NS1 have been mapped to specific 

amino acids (53, 54, 91) and the three-dimensional structure 

of the NS1 protein has not yet been identified. Recently, 

important determinants for a cross-protective mAb against 

JEV and WNV, 16NS1, were identified by overlapping 

peptide mapping analysis combined with a yeast surface 

display system and site-specific mutagenesis (53). However, 

structural studies based on X-ray crystallography are 

required to further characterize the functions of flavivirus 

NS1 and protective anti-NS1 antibodies. 

 

II. Protective mechanism of 

anti-flavivirus antibodies 

 

Protective antibodies prevent viral infection and reduce 

the viral burden in host cells through direct and indirect 

effects (33~35, 45). Neutralization is one of the direct 

functions of antibodies that does not require any other 

immune system components and is independent of the Fc 

portion of the antibody. Neutralizing antibodies block many 

steps in the viral entry pathway including virion attachment 

to the host cell, entry into the host cell, and uncoating in the 

endosome to release viral RNA into cytoplasm (Fig. 2) 

(93~96). For example, E53 and E60 anti-WNV E mAbs 

block viral attachment and entry at neutralizing concen- 

trations (Fig. 2A) (96). The E16 anti-WNV E mAb inhibits 

fusion of WNV with the endosomal membrane and blocks 

uncoating, which leads the virus particle to the lysosome 

for destruction (Fig. 2B) (96). Although some neutralizing 

antibodies are well characterized, our understanding of 

neutralization is still limited. For example, an anti-DNEV2 



Potential Therapeutics Against Flaviviruses 111 

 

mAb, 3H5-1, inhibits viral attachment to Vero cells, but the 

3H5-1 mAb blocks DENV-2 fusion to the plasma membrane 

of LLC-MK2 cells (97, 98). In addition, while attachment 

factors (e.g., DC-SIGN, DC-SIGNR, heparin sulfate) that 

 

Figure 2. Protection model of neutralizing 
antibody. (A) Blockage of virion attachment and 
entry. Neutralizing antibodies that are directed 
against the E protein inhibit virion attachment and 
entry by blocking receptor engagement or mem-
brane fusion. (B) Inhibition of virion uncoating. 
Some neutralizing antibodies interfere with fusion 
of the virion and endosomal membrane, which 
results in lysosomal destruction of the virion. 

A 

B 

A 

C 

B 

D 

Figure 3. Protection model of non-neutralizing antibody through immune mechanisms. (A) Complement-mediated cytolysis of 
infected cells. Antibodies bound to a specific antigen on flavivirus-infected cells interact with C1q complement factor, which leads to 
activation of the classical complement pathway and eventually induces membrane attack complex (MAC)-mediated lysis of virus-infected
cells. (B) Antibody-mediated complement lysis of virions. The antiviral effects of some neutralizing antibodies are efficiently enhanced 
by inducing lysis of the virion through antibody-mediated complement activation, which leads to fragmentation of the viral envelope. (C) 
and (D) Antibody-dependent clearance of viral particles and infected cells through Fc-γ receptor(s). Antibody binding to viral particles and 
infected cells recruits immune-effect cells such as macrophages, which interact with the Fc region of the antibody through the Fc-γ
receptor expressed by the effect cells. The antibody-bound virions and infected cells are then phagocytosed by the immune cells. 
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facilitate flavivirus binding in viral entry were identified 

(99~101), a neutralizing antibody that inhibits the E-

attachment factor complex has not yet been characterized. 

Non-neutralizing antibodies exert a protective effect 

through indirect functions that require the Fc portion of the 

antibody and components of the innate or adaptive immune 

system (102). Despite the absence of detectable neutralizing 

activity of the anti-NS1 antibody, many studies have reported 

its protective activity (34, 37, 39, 40, 42, 53, 91). Although 

the detailed mechanisms of this protection are incompletely 

understood, antiviral functions through an Fc-dependent 

pathway and complement-mediated cytolysis (CMC) of 

infected cells have been proposed as the basis for mAbs 

protection against NS1 (Fig. 3) (34, 42, 103). For example, 

anti-NS1 antibody bound to YFV-infected cells induces 

CMC of virus-infected cells (Fig. 3A) (103). Recent passive 

antibody transfer studies showed that anti-WNV NS1 mAbs 

(10NS1, 16NS1, and 17NS1) trigger protective activity 

through a C1q-independence and Fc-γ receptor I-and/or 

IV-mediated phagocytosis (Figs. 3C and D) (34, 37). 

However, specific mechanisms of many non-neutralizing 

antiviral antibodies against flavivirus NS1 remain to be 

identified. For example, an anti-WNV NS1 mAb, 14NS1, 

confers a strong protective effect in mice infected with lethal 

WNV that are deficient in C1q and Fc-γ receptor I and III 

(34), but the detailed mechanism underlying this effect 

remains uncharacterized. Although more studies on the 

detailed mechanisms of these anti-NS1 mAbs are needed, 

the facts that the cell surface-associated NS1 of WNV 

modulates complement activation by binding complement 

regulatory protein and the secreted NS1 of DENV increases 

viral propagation indicate mAbs to flavivirus NS1 may 

directly block the immunomodulatory and virologic functions 

of NS1 (26, 104). 

Beyond direct neutralization of anti-flavivirus E mAbs, 

recent observations suggest that the protective activity of 

some neutralizing mAbs is partially dependent on the Fc 

portion of the mAbs and is associated with Fc receptors 

and the complement cascade (Fig. 3B) (48, 82, 105). For 

example, the protective efficiency of an anti-WNV E mAb 

is reduced in mice with blocked Fc-γ receptors I, III, and 

IV (82). The neutralization potential of hu-E16 anti-WNV 

E is augmented by C1q, which is dependent on the isotype 

of antibodies that bind C1q avidly (human IgG1 and IgG3) 

(48). Taken together, these recent findings suggest that a 

better comprehension of the role on protective antibodies 

in vivo and in vitro is crucial for the development of optimal 

therapeutic antibodies. 

 

III. Other potential anti-flaviviral agents 

 

Although antibody-based therapy provides a promising 

strategy to inhibit flavivirus infection, one possible limitation 

of this therapeutic antibody is the emergence of escape 

mutants that could decrease the inhibitory activity (46). 

Several antiviral agents have been tested and characterized 

to determine their inhibitory activity against viral replication 

in host cells (57~63). However, it is more difficult to 

develop specific antiviral agents without toxicity to cells 

because viruses, unlike bacteria, are obligate intracellular 

parasites that are dependent on the host's biosynthetic 

machinery. In this section, several anti-flaviviral agents will 

be discussed. 

1. Interferons 

Interferons are produced through the innate immune 

response to viral infection (106). During the viral life cycle, 

double-stranded viral RNA can primarily induce type I 

interferons such as interferon-α and interferon-β in the 

infected cell. Type I interferons inhibit viral replication by 

activating the JAK-STAT pathway, which induces the 

expression of antiviral genes. The interferon-dependent 

innate immune response is crucial for inhibiting flavivirus 

infection (107~111). For example, interferon-α/β receptor-

deficient mice are more susceptible to WNV infection with 

100% mortality and high viral loads in nearly all tissues 

(111). Type I interferon-pretreatment of cells also signifi- 

cantly inhibits flaviviruses (107~109, 111). However, the 

antiviral activity of interferon is significantly reduced after 

viral replication because flavivirus nonstructural proteins 

interfere with interferon signaling pathway (110, 112, 113). 

Nonetheless, several lines of evidence indicate that interferon 
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has strong potential for use as a therapeutic. For example, 

treatment with interferon-α yields substantial improvement 

in complications in SLEV and WNV encephalitis cases 

(114, 115). 

2. Nucleic acid-based inhibitors 

Nucleic acid-based antiviral agents involve the use of 

oligonucleotides to suppress viral gene expression, including 

antisense-, ribozyme- and RNA interference (RNAi)-based 

approaches (116, 117). These strategies selectively inhibit 

viral replication by targeting the expression of key viral 

proteins through degradation of sequence-specific single-

stranded RNA (118). RNAi is an evolutionarily conserved 

cellular mechanism that is initiated by double-stranded 

RNA (dsRNA) or micro RNA, which specifically blocks 

gene expression (119, 120). In the past decade, RNAi has 

been widely used to inhibit flavivirus infection in cells (57, 

59, 121, 122). For example, small interfering RNA (siRNA) 

inhibits JEV replication (121). In addition, pretreatment of 

siRNA prior to viral replication significantly reduces WNV 

infection (59, 122). Recent studies show that administration 

of siRNA improves survival against lethal flavivirus infection 

in mice (62, 63). Although these results suggest that antiviral 

RNAi therapy is very promising, the emergence of escape 

mutations in the targeted sequences may limit their efficiency. 

However, the development of a new delivery method could 

increase their therapeutic potential and clinical applications 

because commonly used methods such as electroporation, 

lipid-based transfection reagents, and nanoparticles are less 

effective and not cell specific. 

3. Small-molecule inhibitors 

Viral replication is a well-organized process that is 

essential for effectively producing progeny viruses. There- 

fore, the steps of viral replication could be attractive targets 

for antiviral agents that inhibit viral genome replication and 

enzymes whose activity is crucial for viral protein processing 

(123). Two nonstructural proteins with enzymatic functions, 

NS3 (protease and helicase) and NS5 (RNA-dependent RNA 

polymerase), are considered as major targets for antiviral 

inhibitors, and a small-molecule library has been screened 

to identify compounds that block viral enzymes critical for 

replication (124~127). Borowski et al. demonstrated that 

an imidazo[4,5-d]pyridazine nucleoside analogue, 1-(2'-O-

methyl-β-D-ribofuranosyl)imidazo[4,5-d]pyridazine-4,7(5H, 

6H)-dione, inhibits the helicase activity of WNV NS3 

(IC50 = 30 μM) (124). In addition, this nucleotide analogue 

shows similar inhibition against WNV replication in cell 

culture (125). Johnston et al. screened a compound library 

to identify inhibitors of WNV NS2B-NS3 protease using a 

miniature NS2B-NS3 assay and discovered a common 

amino-1H-pyrazol-3-yl scaffold as an inhibitor of WNV 

protease (126). Migliaccio et al. reported that nucleoside 

analogs, 2'-C-methyl-substituted ribonucleosides, inhibit 

flaviviruses such as WNV, DENV, and YFV by termination 

of RNA synthesis (127). 

Several groups have recently used a high-throughput 

screening (HTS) assay combined with a flavivirus replicon 

and/or virus-like particle (VLP) system to discover novel 

flavivirus inhibitors (128, 129). Qing et al. developed an 

HTS assay using DENV-1 VLP to screen anti-DENV-1 

inhibitors (128). Noueiry et al. employed a cell-based 

WNV subgenomic replicon to test over 80,000 compounds 

to determine their capacity to inhibit WNV replication and 

identified lead compound classes with strong antiviral 

activity against WNV, including 5H-cyclopenta [b] pyridine, 

tert-sulfonamide, thienylpyrimidine, and secondary sulfona- 

mides (129). Approaches based on these HTS assays could 

facilitate the development of anti-flavivirus drugs that target 

viral entry, translation, and replication. 

 

IV. Conclusions 

 

During the past decades, the resurgence and spread of 

the most important mosquito-borne flaviviruses (e.g., DENV, 

WNV, and JEV) to new environments have increased the 

importance of developing anti-flavivirus agents. Anti-

flaviviral candidates with different targets and inhibitory 

mechanisms have been developed. mAbs against the E and 

NS1 protein have provided significant protection through 

neutralization and effector-mediated clearance of virions 

and infected cells. In addition, other anti-flaviviral agents 
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including type I interferons, oligonucleotide-based platforms, 

and small compounds targeting flaviviral replication have 

been developed to inhibit flaviviral infection in vitro and/or 

in vivo. Although these flavivirus antivirals demonstrate 

significant prophylactic and/or therapeutic effects against 

flaviviral infection, combination treatments are required to 

minimize the risk of escape mutant emergence and to 

increase the antiviral efficiency through different targets. 

Furthermore, expanding flavivirus epidemics and the 

co-circulation of multiple flaviviruses in the same endemic 

area (7~9) has heightened the necessity for developing 

broad-spectrum therapeutics against flavivirus infection. 
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