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Selective Inhibition of Glutamate Uptake by
Mercury in Cultured Mouse Astrocytes

Paul Kim* and Byung Ho Choi

We studied the effects of organic and inorganic mercury (Hg) on the uptake of L-[*H] glutamate (L-
GLU) in cultured mouse astrocstes. Following exposure to mercuric chloride (MC) [0.2~5.0 pM], selective
and dose-dependent inhibition of L-GLU uftake to 50% of control levels was observed, whereas 2-
deoxyglucose (2-DG) uptake was not significantly affected. Methyimercuric chloride (MMC) also inhibited
L-GLU uptake but 50% reduction was reached only at a concentration of 10 yM. Inhibition of L-GLU
uptake by MMC appears to be dosely linked to voltage-sensitive calcium channels as evidenced by the lack
of L-GLU uptake inhibition by MMC in calcium-free medium or in the presence of the channel blocker
verapamil. Exposure to a variety of divalent metallic ions, including CuCl, FeCl, and ZnCl, did not af-
fect L-GLU uptake in astrocstes in vitro. Exposure to PbCL, however, resulted in a decline in L-GLU up-
take, though to a much smaller degree than that observed with Hg compounds. Selective impairment of
astrogliadl L-GLU transport may represent a critical early pathogenetic feature of Hg-induced

neurotoxicity.
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The sensitivity of the human central nervous
system (CNS) to the toxic effects of mercurial
compounds is well documented (Hunter and
Russell, 1954; Takeuchi, 1968). Similar neurotoxic
effects have also been successfully demonstrat-
ed in mammalian animal models (for review see
Choi, 1983, 1989, 1992). However, the manner in
which these compounds cause cellular injury has
not been fully understood. Because mercury
(Hg) reacts indiscriminately and with a high de-
gree of affinity for sulfhydryl (SH) groups in all
types of cells (Clarkson, 1987), methylmercury
(MeHg) can induce metabolic perturbations in a
variety of ways, including disruption of intracel-
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lular calcium homeostasis (Kauppinen et al. 1989;
Komulainene and Bondy, 1987; Levesque and
Atchison, 1991; Oyama e al. 1994), lipid
peroxidation (Taylor ef al. 1973; Yonaha et dl.
1983), disturbances in protein synthesis (Cheung
and Verity, 1985, Sarafian ef al. 1983), distur-
bances in protein synthesis (Cheung and
Verityy, 1985, Sarafian et al. 1984) and induction
of oxidative stress (LeBel et al. 1990; Oyama et al.
1994; Yee and Choi, 1994, 1995).

As a sequel to the widening belief that oxida-
tive injury-inducing free radicals may be of im-
portance in MeHg neurotoxicity, the concept has
emerged that excessive activation of glutamate
receptors can cause oxidative stress in target
cells by increasing the rate of formation of reac-
tive oxygen species (Coyle and Puttfarcken,
1993) and/or by depleting antioxidants (Coyle
and Puttfarcken, 1993; Dykens et al. 1987). It has
been shown that astrocytes possess high-affinity
glutamate uptake mechanisms (Bridges et al.
1987; Hansson et al. 1985 Hertz et al. 1978;
Waniewski and Martin, 1986), and that L-GLU
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levels are modulated by highly efficient
astroglial uptake mechanisms (Yu et a/. 1982). In
addition, L-GLU receptors have been demon-
strated in astrocytes (Backus et al. 1989; Gallo e
al. 1989; Glaum et al. 1990). Therefore, any distur-
bance in astroglial L-GLU transport could
theoretically give rise to excessive local accumu-
lation of L-GLU, thereby triggering the develop-
ment of excitotoxic cellular injury (Olney, 1969).
The purpose of this study was to determine
whether or not disturbances in astroglial L-GLU
uptake might be involved in the pathogenesis of
Hg-induced central neurotoxicity.

MATERIALS AND METHODS

Astroglial cell cultures were established from
the cerebra of neonatal (postnatal day 1) C57BL/
6J mice according to a modification of a previ-
ously published method (McCarthy and de
Vellis, 1980). Briefly, the brains were removed
and, after separation from the meninges, washed
in saline solution (138 mM NaCl, 5.4 mM KC], 1.1
mM Na:HPO,, 1.1 mM KH.PO,, 22 mM glucose,
0.9 mM CaCl,, pH 7.2). The separated cerebral
cortex was finely minced and triturated, incu-
bated in 0.25% trypsin for 25 minutes at 37°C in
saline solution in a rotary shaker, spun at 2000
rpm for 5 minutes and resuspended in modified
Eagle’s medium (MEM) supplemented by 15%
fetal calf serum. Cell suspensions were consecu-
tively filtered through Nitex 130 and 33 filters
and plated onto poly-L-lysine-coated 75 cm? cul-
ture flasks at 37.5°C in a water-saturated atmo-
sphere of 5% CO./95% air. Cultures were fed
twice a week until grown to confluence (approx-
imately one week). The flasks were then placed
overnight at 37°C in a rotary shaker at 200 rpm.
Floating cells (mostly oligodendrocytes) were re-
moved and the remaining cells were thoroughly
washed with MEM, dissociated with trypsin-
EDTA in Hank's balanced salt solution, plated
onto 9% 30 mm poly-L-lysine-coated glass cover-
slips in multi-well culturg chambers and grown
to confluence (approximately 4 days). Lowry
protein assays (Lowry et al. 1951) of representa-
tive cultures were performed on individual
coverslips to allow standardization between cul-
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tures and to permit biochemical analysis of the
L-GLU transport system. Immunocyto-chemical
staining for glial fibrillary acidic protein
(GFAP), fibronectin and factor 8 was also car-
ried out in representative coverslips.

The L-GLU uptake assay

The uptake of L-[*H] GLU was examined in
monolayer cultures of mouse astrocytes follow-
ing exposure to various concentrations (0~ 10
#M) of mercuric chloride (HgCl:) and methyl-
mercuric chloride (CH;HgCl). In addition, the ef-
fects of divalent metallic ions, namely, copper
chloride (CuCl), iron chloride (FeCl,), lead chlo-
ride (PbClL,) and zinc chloride (ZnCL), were simi-
larly tested.

The coverslips were equilibrated for 10 min in
Tris buffered salt solution (TBSS)[150 mM
NaCl, 5 mM KCIl, 2 mM CaCl,, 0.8 mM MgCl,, 5
mM dextrose, 20 mM Tris, Ph 7.3, 345 mosmol by
sucrose] at 37°C, incubated in TBSS containing 0
to 104M of metallic solution (HgCl, CHs;HgCl,
CuCl,, FeCl,, PbCl; and ZnCl.) for 10 min at 37,
transferred to TBSS containing 100 mM of L-
GLU (approximate equilibrium concentration)
containing L-[*H] GLU (40~60 Ci/mmol, Dupont
NEN) as a tracer for 4 min at 37°C, washed
quickly in ice cold TBSS and transferred to vials
of distilled water at room temperature for 10
minutes to lyse the cells. The H content of the
lysate was then analyzed in a liquid scintillation
counter to determine the amount of L-GLU
taken up by astrocytes.

The influence of extracellular calcium on L-
[*H] GLU uptake after CH;HgCl exposure was
also examined by the use of calcium-free culture
medium and in the presence of the voltage-sen-
sitive calcium channel blocker verapamil. Mono-
layer cultures of astrocytes were incubated for
30 min at 37°C in calcium-free MEM and in the
presence of 10#M verapamil prior to equilibra-
tion in calcium-free and calcium-containing
TBSS, respectively. L-[*H] GLU uptake assays
were then carried out as described above after
exposures to 0 to 10 M CH;HgCL

2-deoxy-D-glucose (DG) uptake assay

Following 10 min of equilibration in TBSS, the
cover slips were exposed to 2-[°H] DG (30~60 Ci
/mmol, Dupont NEN) at a concentration of 20
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nM (with a total 2-DG concentration of 5 mM) to
measure 2-DG uptake at various incubation
times (1~10 min) following exposure to various
concentrations (0.2~104M) of CH:HgCl and
HgCh.

RESULTS

Monolayer cultures of astroglial cells such as
that illustrated in Fig. 1, showing strong
immunofluorescence of GFAP within the cyto-
plasm, were used throughout these experiments.
Since preliminary studies showed the L-GLU
equilibrium concentration of astrocytes to be 90
~100 mM and to display simple first-order ki-
netics, this concentration was used for each of
the metals to determine the initial rate of up-
take (i.e., over 4 minutes). Exposure to HgCL(0~
10 M) produced the most dramatic and immedi-
ate drop in L-GLU uptake, in a dose-dependent
manner. During the initial 4 min of incubation,
No significant changes in L-GLU uptake were
observed. However, after 14 min of incubation,
1-GLU uptake declined approximately 50% at
concentrations below 24#M, and continued to
drop steadily to 14.2% of its original level at 10
¢M (Fig. 2). Exposure to CH,;HgCl for 14 min at 0
to 10 xM concentrations also resulted in a signifi-
cant decline, although it was less than that

Fig. 1. Photomicrograph s

ing monolaryer of astro-
ostes used in this study. Note strong fibrillary
GFAP immunofluorescence within the cyto-
Dasm of astrocwés. Indivect immunoftuores-
cence X 200.
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ovserved with HgCl. (Fig. 2). A 50% decrease in
L-GLU uptake occurred at 10uM as opposed to
2 M for HgClL. No significant change in the up-
take of L-GLU was observed when cells were
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Fig. 2. Effects of HgCl, and CH:HgCl on L-GLU uptake
in cultured astrocytes. Note immediate drop of
utake in a dose-dependent manner following ex-
posures to HCL. After 14 min of incubation the
uptake declined approximately 50% at concentra-
tions below 2 pM and to 142% of its original level
at 10 M. Folowing exposure to MMC, 50% de-
dine in L-GLU uptake occurred at 10 yM.
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Fig.3. L-GLU uptakes following exposure to CuCl,,
FeCl,, ZnCl, and PbCl,, respectively. No signifi-
cant change in L-GLU uptake was noted.
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Fig. 4. The pattern of L-GLU uptake in calcium-free

. medium and in the presence of voltage-sensitive
calcium channel blocker verpamil under MMC
exposure. Note absence of L-GLU inhibition fol-
lowing preincubation in 10 M verapamil and in
calcium-free medium, whereas MMC inhibition
was still notable in the presence of calcium inthe
culture medium.

exposed to CuCl,, FeCl; or ZnCl; (Fig. 3). On the
other hand, exposure to PbCl. resulted in a
sharp drop in L-GLU uptake below 24M that
leveled off at approximately 63% of the original
level, but the effect was not further enhanced at
10 M (Fig. 3). CH,;HgCl inhibition of L-GLU up-
take did not take place when cells were incubat-
ed either in calcium-free medium or in the pres-
ence of the voltage-sensitive calcium channel
blocker verapamil (Fig. 4). No significant change
in 2 DG uptake was seen at concentrations of
HgCl, that dramatically affected L-GLU uptake
(Fig. 5).

DISCUSSION

The results of this study clearly indicate that
mercurial compounds cause significant and se-
lective inhibition of LYGLU uptake in cultured
mouse astrocytes at levels that de not affect the
uptake of 2-DG, a sensitive indicator of certain
other vital cellular functions (Brookes, 1988).
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Fig.5.2-DG uptake following exposure to MC. No
signficicant change in 2-DG uptake was noted at
concentrations of metal associated with signifi-
cant disturbance in L-GLU uptake.

The lack of a dose-dependent L-GLU uptake
response following exposure to other divalent
metal ions, such as CuCl,, FeCl, and ZnCl, fur-
ther suggests that such inhibition is relatively
specific for mercurial compounds. At concentra-
tions below 2 1M, exposure to HgCl, resulted in
a saturation type of uptake pattern, whereas at
higher concentrations (up to 10 M) a more grad-
ual decrease in L-GLU uptake was demonstrat-
ed. Although PbCl, showed similar uptake satu-
ration initially, its magnitude was much less
than that observed with HgClL. Exposure to 0 to
10 “M CH,HgCl, on the other hand, caused a di-
rect and gradual decrease in L-GLU uptake
without uptake saturation.

Similar findings were reported by Brookes
(1988, 1992) who demonstrated selective inhibi-
tion of L-GLU transport in astrocytes by HgCL
at a fraction of the concentration needed to in-
hibit 2-DG transport or to produce cytotoxic ef-
fects. Metallic Hg (Hg°) is highly volatile, and
toxic damage generally results from inhalation
of Hg vapor. Hg vapor which readily crosses the’
blood-brain barrier (BBB), is oxidized to Hg*
and probably exerts its toxic effects in this
form. A contrast between the effects of HgCl,
and CH;HgCl on L-GLU transport and on pro-
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tein synthesis in astrocytes was also noted by
Brookes and Kristt (1989).

Although the precise mechanism for the dif-
ferential effects of organic and inorganic Hg is
not clear, the bifunctional nature of Hg** as op-
posed to the monofunctional character of CH;Hg*
in forming Hg-sulfide bridges between cysteine
residues in proteins has been suggested as the
reason for the difference (Brookes and Kristt,
1989). Cantoni et al. (1984) also demonstrated sig-
nificant inhibition of astroglial L-GLU transport
at a fraction of the concentration of HgCl; need-
ed to produce cytotoxic change.

In previous work (Choi and Lapham, 1981;
Choi et al. 1980, 1981; Choi and Kim, 1984; Choi
and Simpkins, 1986) we have shown that
cytotoxic changes in cultured neurons and
astrocytes become evident by light microscopy
at much higher Hg concentrations and at longer
exposure times. The most apparent ultrastruc-
tural findings following exposure to cytotoxic
levels are stripping of the cell membranes and
the appearance of electron-dense coagulative
changes within them (Choi and Lapham, 1981).
However, following a brief exposure (5 min) to
104M methylmercuric chloride (MMC), a
marked shift in the distribution of anionic
groups along the astrocytic surface membrane
was observed in the absence of any discernible
ultrastructural alteration (Peckham and Choi,
1986). It was hypothesized that such alterations
in surface charge might trigger a cascade of
pathological responses on the part of cytoplas-
mic organelles, including depolymerization of
microtubules (Abe et al. 1975; Choi, 1991; Choi
and Lapham, 1981; Miura et al. 1978; Sager et al.
1983), as a result of rapid influx of extracellular
Ca** through the damaged cell membranes.

It is important to note that L-GLU uptake in-
hibition by MMC did not occur in the absence of
extracellular calcium or in the presence of the
voltage-sensitive calcium channel blocker verap-
amil, at least within the limits of the experimen-
tal paradigm employed in this study (Fig. 4). It
appears, therefore, that the L-GLU uptake
mechanism in astrocytes is closely linked to the
verapamil-sensitive calcidm channels, and that
MeHg probably affected calcium eritry through
this channel. A significant increase in intra-
synaptosomal and intracytoplasmic free Ca** fol-
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lowing exposure to MeHg has been reported
(Glaum, 1990; Komulainen and Bondy, 1987) and
is thought to be related to nonspecific damage to
the plasma membrane by MeHg, rendering it
leaky to Ca’** (Komulainen and Bondy, 1987). It is
not certain whether or not a similar L-GLU up-
take pattern in astrocytes would exist when
damage to the plasma membrane is severe
enough to be leaky to Ca’**. Nonetheless, it is
clear that impairment of L-GLU transport in
astrocytes following exposure to Hg at a frac-
tion of the concentration neeed to produce
cytotoxic damage is potentially significant and
may represent a critical feature of Hg-induced
neurotoxicity. ‘

Although our findings support the hypothesis
that Hg-induced disturbances in astroglial L-
GLU transport may be of importance in the de-
velopment of neurotoxic cellular injury, whether
or not the same mechanisms are operative in
vivo remains speculative. Previous studies in our
laboratory (Choi, 1989) showing significant modi-
fications in EAA receptor densities in selected
regions of the cerebrum following prolonged
MeHg intoxication in young adult mice suggest
the possibility of excitotoxic damage and/or
alterations in plasticity in selected neuronal
groups. It has been reported that L-GLU trans-
port in cultured astrocytes differs greatly de-
pending upon site of origin (Hansson et al. 1985;
Shousboe and Divac, 1979). It is possible, there-
fore, that differences in astroglial function in
different regions of the brain with regard to L-
GLU transport may also contribute to selective
vulnerability to Hg toxicity. More precise infor-
mation relating to the distribution and concen-
tration of Hg within brain tissue and to the
quantitative contribution of astroglia toward in-
activation of L-GLU in vivo would help to clari-
fy some of these questions.
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