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Role of the Alternans of Action Potential Duration and Aconitine-
Induced Arrhythmias in Isolated Rabbit Hearts

Under conditions of Na+ channel hyperactivation with aconitine, the changes in action 
potential duration (APD) and the restitution characteristics have not been well defined in 
the context of aconitine-induced arrhythmogenesis. Optical mapping of voltage using 
RH237 was performed with eight extracted rabbit hearts that were perfused using the 
Langendorff system. The characteristics of APD restitution were assessed using the steady-
state pacing protocol at baseline and 0.1 µM aconitine concentration. In addition, pseudo-
ECG was analyzed at baseline, and with 0.1 and 1.0 µM of aconitine infusion respectively. 
Triggered activity was not shown in dose of 0.1 µM aconitine but overtly presented in 1.0 
µM of aconitine. The slopes of the dynamic APD restitution curves were significantly 
steeper with 0.1 µM of aconitine than at baseline. With aconitine administration, the cycle 
length of initiation of APD alternans was significantly longer than at baseline (287.5 ± 9.6 
vs 247.5 ± 15.0 msec, P = 0.016). The functional reentry following regional conduction 
block appears with the progression of APD alternans. Ventricular fibrillation is induced 
reproducibly at pacing cycle length showing a 2:1 conduction block. Low-dose aconitine 
produces arrhythmogenesis at an increasing restitution slope with APD alternans as well as 
regional conduction block that proceeds to functional reentry.
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ORIGINAL ARTICLE
Cardiovascular Disorders

INTRODUCTION

Aconitine, an alkaloid compound obtained from the plant Aco-
nitum napellus, has well established arrhythmogenic effects on 
the heart. The arrhythmogenic effects of aconitine include vari-
ous ventricular rhythm disorders such as premature ventricular 
contraction (PVC), ventricular tachycardia (VT), torsades de 
pointes (TdP), and ventricular fibrillation (VF) as well as supra-
ventricular rhythm disorders, in a dose-dependent manner (1). 
Experimentally, aconitine-induced arrhythmias are considered 
to represent triggered activity of early as well as delayed activity 
afterdepolarization (2).
  At the cellular level, aconitine has been shown to bind to Na+ 
channels and prolongs their open state favoring entry of a large 
quantity of Na+ into the cytosol; this is accompanied by Ca2+ over-
load via sequential activation of an electrogenic Na+-Ca2+ ex-
change system or L-type Ca2+ channels, and eventually induces 
triggered activity (3, 4). The repetitive discharges from a focal 
myocardial region, caused by enhanced triggered activity, have 
been considered the mechanism associated with aconitine-in-

duced cardiac arrhythmias. However, in addition to the repeti-
tive focal discharges caused by enhanced triggered activity, a 
single or a few PVCs observed after aconitine administration do 
not explain degeneration to more serious ventricular arrhyth-
mias such as TdP and VF. Therefore, reentry and breakup of wave 
propagation might be involved more significantly in aconitine-
induced arrhythmogenesis than previously thought. However, 
the role of action potential duration (APD) restitution has not 
been well studied in aconitine-induced arrhythmogenesis. There-
fore, the purpose of the present study was to evaluate the role of 
APD restitution as a mechanism of degeneration into more se-
rious ventricular rhythm disorders, induced by the administra-
tion of aconitine.
 

MATERIALS AND METHODS

The animal experiments were reviewed and approved by the 
institutional animal care and use committee of the Yeungnam 
University Medical Center (YUMC-AEC2010-023).
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Langendorff preparation and pseudo-ECG recordings
Adult white rabbits (3.2-4.8 kg) were injected intravenously with 
heparin and anesthetized with ketamine and xylazine. After the 
heart was quickly removed, the ascending aorta was then imme-
diately cannulated to a Langendorff apparatus and perfused 
with warm (36°C) oxygenated (95% O2, 5% CO2) Tyrode’s solu-
tion (pH 7.4) at a rate of 30-40 mL/min to maintain a perfusion 
pressure at about 60 mmH2O. The composition of Tyrode’s so-
lution (in mM/L) was: NaCl 125, KCl 4.5, NaH2PO4 1.8, NaHCO3 
24, CaCl2 1.8, MgCl2 0.5, dextrose 5.5, and albumin 50 mg/L in 
deionized water.
  A pseudo-electrocardiogram (pseudo-ECG) was recorded by 
three electrodes placed widely apart with one pole on the right 
atrium and another pole on the left ventricle (LV), or with one 
pole on the right ventricle and the other on the LV; the last one 
was used for grounding. The pseudo-ECG was filtered using a 
low pass filter at 100 Hz and a high pass filter at 1-10 Hz, and digi-
tized with MP100WSW (BIOPAC Systems, Inc., Goleta, CA, USA).

Optical mapping
An optical mapping system was used for this study that includ-
ed a charge coupled device camera (CA-D1-0128T, Dalsa Inc., 
Ontario, Canada). The voltage fluorescence signals were acquired 
through a 710 nm long-pass filter at 1.33 msec/frame. A voltage 
sensitive dye RH237 (Di-4-ANNEPS, Sigma-Aldrich®, St. Louis, 
MO, USA) was added to the perfusate (10-20 μL of 1 mg/mL so-
lution dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) 
with an LED light source.

Mapping sites and experimental protocol
The anterior epicardial surface of the LV was used in eight rab-
bits for the experiments. The APD was measured from the onset 
of the QRS complex (time zero) to a 90% reduction of the fluo-
rescence signal amplitude. Stimulus artifact was used as time 
zero for measuring the paced beats.
  The hearts were perfused with Tyrode’s solution for at least 
15 min before any experimental intervention. Cytochalasin D 
of 5 μM (Sigma-Aldrich) was used as an electromechanical un-
coupler. Electrical stimuli (2 msec pulse duration, twice the dia-
stolic threshold current) were delivered through a bipolar elec-
trode at the LV apex. Mapping was performed both during si-
nus rhythm and during LV pacing. The steady-state pacing cy-
cle length started at 300 msec and was progressively shortened 
until loss of capture occurred. Following the above pacing pro-
tocol, extrastimuli (S2) were delivered that gradually shortened 
the coupling intervals to the point of capture loss, preceded by 
basal incremental pacing (S1; 300 msec, 8 beats). Aconitine was 
dissolved in normal saline before it was added to the Tyrode’s 
solution to achieve a concentration of 0.1 and 1.0 μM. After col-
lecting baseline data, aconitine was administrated sequentially. 
The pacing and mapping protocols were repeated at these con-

centrations.

Statistical analyses
APD90 was used for the statistical analyses. Paired t-test was used 
for the numerical values and those were presented as the mean 
± SD. Because it was not possible at times to differentiate the U 

wave from the T wave, on the pseudo-ECG, the QT interval was 
measured from the onset of the QRS to the end of the T-U wave. 
A repeated measurement method using a general linear model 
analysis was used to compare the means of the QT intervals, and 
APD90. A P value of less than 0.05 was considered to indicate 
statistical significance.

RESULTS

The appearance of triggered activity was found to be dependent 
on the concentration of aconitine in the Langendorff perfusate. 
In the absence of electrical stimulation, an intrinsic narrow QRS 
rhythm continued to be observed with a concentration of 0.1 μM 
of aconitine without producing triggered activity, as at baseline. 
After completing the experiments described above, the concen-
tration of the perfusate was increased tenfold to 1.0 μM aconi-
tine; this resulted in aconitine-induced triggered activity.
  The present study was performed using a 0.1 μM concentra-
tion of aconitine in order to assess the reentry and breakup of 
wave propagation caused by the effects of aconitine on the myo-
cardium while minimizing aconitine-induced triggered activity.

Pseudo-ECG findings according to the changes of aconitine 
concentration
After administration of 0.1 μM aconitine, the heart rate was grad-
ually accelerated with a prolonged QT interval compared to base-
line. However, aconitine-induced triggered activity was not ob-
served in the ventricular myocardium over 30 min during the 
experiments. The aconitine-induced triggered activity was ob-
served after 1.0 μM of aconitine was administered (Fig. 1). At 
first, there was a more prolonged QT interval with a hump, which 
was considered an early afterdepolarization (EAD), and then 
isolated PVCs were observed. The documented rhythm gradu-
ally progressed to ventricular bigeminy and VT. VT was acceler-
ated with T-wave alternans and then degenerated to polymor-
phic VT such as TdP and VF. Similar sequences of rhythm de-
velopment were observed in all eight preparations after admin-
istration of aconitine.

Effects of aconitine on the changes of epicardial membrane 
potential
Aconitine prolonged the APD as well as the QT interval (Table 1). 
During steady-state pacing (incremental pacing), the cycle length 
of initiation of APD alternans and 2:1 conduction block were 
longer with aconitine administration compared to the baseline. 
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In addition, the capture failure (block) of a single extrastimulus 
(S2), followed by 300 msec incremental pacing, occurred with 
longer S1-S2 intervals after the administration of aconitine.
  The left panel of Fig. 2 shows that APD alternans occurred with 
the gradual shortening of the pacing cycle length and finally pro-
gressed to a merging of a short APD over a long APD, as a pair. 
The right panel, with 0.1 μM aconitine, shows that these phe-
nomena appeared earlier, that is at a longer cycle length, and 
demonstrated a 2:1 block. With the cycle lengthening present-
ing with a 2:1 block, the steady-state pacing easily induced VF; 
whereas at baseline APD alternans was present without 2:1 block 
at that cycle length.

Spatial consideration of aconitine-induced VF before 
appearance of triggered activity
Optical mapping was performed on the anterior epicardial sur-
face of the left ventricle of the extracted rabbit hearts. The pat-
terns of wave propagation are illustrated in Fig. 3 after adminis-
tration of 1 μM aconitine; the apex of the left ventricle was paced 
with the cycle length showing an intermittent 2:1 block.
  The upper panel of Fig. 3 shows the paced wavefront propa-
gated sequentially from the apex to the base (also from point “a” 
to point “b”) while the next wave failed to propagate (2:1 block). 
However, the middle panel demonstrates the regional conduc-
tion block of the wavefront toward point “a” after a few inciden-
tal 1:1 conductions of paced beats; whereas the wavefront toward 
point “b” propagated to the base and turned around to progress 
toward point “a” initiating the conduction of fibrillations. There-
fore, the regional conduction block was responsible for VF that 
could be reproducibly induced around the pacing cycle length 
with a 2:1 block. 

The characteristics of the APD restitution curve after 
administration of aconitine
A steady-state pacing was induced in all hearts (n = 8) to obtain 
dynamic APD restitution curves with a pacing cycle length from 
300 msec to a 2:1 conduction block cycle length. The average 
for the minimum pacing cycle lengths where 1:1 conductions 
were achieved was significantly longer with aconitine adminis-
tration than at baseline (246.0 ± 39.7 msec vs 194.0 ± 13.4 msec, 
P = 0.035) while each pacing interval was gradually shortened 
by 10 msec (Table 1). In addition, APD alternans occurred at a 
significantly longer average pacing cycle length with aconitine 
administration (287.5 ± 9.6 msec vs 247.5 ± 15.0 msec, P = 0.016). 
Discordant APD alternans was not observed in all cases after 
aconitine administration and was noted in two cases at base-
line.
  Fig. 4 is a representative example of the dynamic APD restitu-
tion curve, which is more predictive of persistent APD alternans 
and VF inducibility than standard restitution curves (5, 6). The 
left panel of Fig. 4 shows the results obtained from the baseline 
study. As the pacing cycle length was progressively shortened, 
the diastolic interval (DI) and APD decreased according to the 
pacing cycle length in a nonlinear pattern. The dynamic restitu-

A. Baseline

1,000 msecB. 0.1 µM Aconitine

C. 1.0 µM Aconitine

D. E. 

F. G. 

Fig. 1. Pseudo-ECG findings according to the changes of aconitine concentration. From 
baseline (A), the heart rates were gradually accelerated depending on the concentra-
tion of aconitine (B, C) with sequential prolongation of the QT interval. With 1.0 µM of 
aconitine (C), humps at the terminal portion of the T-waves (open arrow) were observed 
suggesting early afterdepolarization representing PVCs (D: closed arrow), which pro-
gressed to ventricular bigeminy (E) and VT (F: lined arrows point the alternans of T-
wave). Finally VF was initiated (G).

Table 1. The electrophysiological characteristics at baseline and with aconitine 

Parameters Baseline (msec) Aconitine 1 µM (msec) P value

APD at 300 msec 176.2 ± 40.4   250.1 ± 15.1 0.006
APD alternans
   initiation CL

247.5 ± 15.0 287.5 ± 9.6 0.016

Minimal 1:1 
   conduction CL

194.0 ± 13.4   246.0 ± 39.7 0.035

S2* block CL 206.0 ± 38.5   236.0 ± 40.4 0.001

*S2 means the second extra-stimulus after basal pacing was performed with eight 
beats of 300 msec cycle length. The paired t-test was used. APD, action potential 
duration; CL, cycle length.

Fig. 2. Effects of aconitine on the changes of epicardial membrane potential. Admin-
istration of 0.1 µM aconitine (B) caused APD alternans at a longer pacing cycle length, 
with APD prolongation compared to the baseline study (A). The arrows indicate inter-
mittent 2:1 conduction block induced VF (lower part of B).
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tion curve shows a parabolic pattern: At longer DIs, the slope of 
the dynamic restitution curve was nearly flat, whereas the slope 
of the dynamic restitution curve was steeper with shorter DIs. 
The right panel of Fig. 4 shows the results obtained with aconi-
tine administration. The dynamic restitution curve shows a very 
steep slope ( > 1) throughout with no initial flat portion.

DISCUSSION

The results of the present study showed that reentry following a 
functional regional block of wave propagation might be a mech-
anism associated with aconitine-induced arrhythmogenesis, 
occurring before the overt manifestations of triggered activity, 
in other words, with low concentrations of added aconitine (0.1 
μM). In addition, the regional block was noted to concur, with 
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Fig. 4. A representative example of the dynamic APD restitution curve. The dynamic APD restitution curves and it’s restitution slope at baseline (A) and after administration of 
0.1 µM aconitine (B); this was steeper than at baseline (A) and prone to arrhythmogenesis.
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Fig. 3. The patterns of wave propagation during initiation of VF after administration of 1 µM 
aconitine. The panel (A) shows the paced wave propagated from the LV apex to the base (A 
to D). The panel (B) shows that the paced wave was not propagated toward the ‘‘a’’ direction 
(regional block) whereas the wave propagated toward the ‘‘b’’ direction initiated VF (E to I). 
The electrogram (C) shows the second paced wave (dotted arrow) failed to conduct totally 
while the forth wave succeeded and the sixth wave was conducted with the regional block 
as shown in the middle panel.C
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maximal APD alternans, just before 2:1 conduction block. There-
fore, the progression of APD alternans is likely to play a pivotal 
role in causing a functional regional block of wave propagation. 
  Aconitine has been shown to prolong the QT interval and APD 
consistent with the results of this study. The type 2 receptor site 
on voltage-gated Na+ channels is a binding site for aconitine that 
increases Na+ channel permeability and shifts the action poten-
tial towards a more hyperpolarized state in voltage-clamp stud-
ies (7, 8). Thereby causing a persistent activation of the Na+ chan-
nels, as well as the prolongation of the QT interval and APD, 
which become more refractory to subsequent stimulation (1, 9). 
One explanation is that the 2:1 conduction block occurred at a 
longer pacing cycle length with aconitine compared to the base-
line. The EAD associated with aconitine administration can be 
explained by an increased window for Na+ current and delayed 
inactivation of the Na+ channel. In addition, the prolongation of 
the QT interval results from increased Na+ influx and the accu-
mulation in the cytosol leads to the appearance of EAD through 
augmented activation of the Na+-Ca2+ exchange system (10). A 
few recent works have suggested that aconitine blocks HERG and 
Kv1.5 potassium channels (11), and this compound has a time- 
and concentration-dependent blocking effect on the ultra-rap-
id delayed rectifier potassium channel (IKur) in H9c2 myogenic 
cells and in ventricular myocytes of neonatal rats (12). This ac-
tion may contribute to APD prolongation along with appearance 
of EAD, and could be another mechanism underlying aconitine-
induced arrhythmia. However, we can not specify the contribu-
tion of possible blocking effect on potassium channel by aconi-
tine in aconitine-induced arrhythmia observed in this study.
  In the present study, the QT interval was prolonged depend-
ing on the dose of aconitine used, and was sufficiently prolonged 
so that a hump was noted on the terminal portion of the QT in-
terval with a high-dose of aconitine (1.0 μM). Isolated PVC’s orig-
inated from the same location where the humps were observed. 
Therefore, the humps are thought to represent the EAD as trig-
gered activity; this has been described in previous studies (13, 
14). After several minutes, the PVC’s spontaneously degenerat-
ed to VT with progressive acceleration of the cycle length, and 
finally to VF. 
  With a low-dose of aconitine (0.1 μM), a PVC or hump, indicat-
ing the development of triggered activity, were never observed 
on the pseudo-ECG, or spontaneous VF. However, the steady-
state pacing could easily induce VF with a certain pacing cycle 
length showing an intermittent 2:1 conduction block; however, 
VF was never induced at baseline. Therefore, the induction mech-
anism associated with VF, with low-dose aconitine, is not likely 
to be dependent on the triggered activity well known to be as-
sociated with aconitine-induced arrhythmogenesis.
  APD restitution is defined as the relationship of APD to its pre-
ceding DI over a range of cycle lengths (15, 16). In other words, 
the longer a preceding DI is, the more prolonged APD follows 

and the converse. The APD restitution curve roughly represents 
a single-exponential time course. The steepness of the slope of 
the APD restitution curve, which is measured as a ratio of the 
change of APD over the change of DI, was associated with APD 
alternans and maintenance of arrhythmias (17): When the slope 
of the APD restitution curve is > 1, APD alternans becomes ex-
aggerated and can induce cardiac arrhythmia through increas-
ing electrical inhomogeneity. In the present study, the slope of 
the APD restitution curve steepened after the administration of 
low-dose aconitine, which resulted in the appearance of APD 
alternans at longer pacing cycle lengths than at baseline. Simi-
larly, fibrillatory conduction was easily observed at the longer 
pacing cycle lengths. 
  In the present study, the initiation of fibrillatory conduction 
(VF) showed a repetitive pattern that always began with a re-
gional conduction block of short AP following maximal APD al-
ternans. This phenomenon can be explained as during the pro-
gression of APD alternans, the subtle oscillation of APD in every 
long-short action potential pair (temporal and spatial heteroge-
neity of APD alternans) incidentally hinders the conduction of 
the next short AP, when the preceding long AP oscillated to slight-
ly prolong the refractory period so that regional conduction block 
occurred. In addition, the heterogeneity of APD alternans is likely 
to be enhanced when the Na+ channels is affected by aconitine.
  Discordant APD alternans, which is more susceptible to in-
ducing VF than concordant APD alternans, was not observed 
during steady-state pacing with low-dose aconitine administra-
tion, whereas two were observed at baseline. The findings of pre-
vious studies (18, 19) show that once discordant APD alternans 
occurs, the dispersion of refractoriness (electrogenic heteroge-
neity) is significantly amplified to produce a favorable substrate 
for the initiation of reentry. While pacing from the same site, as 
in the experimental protocol of this study, the transition from 
concordant to discordant APD alternans requires that the pac-
ing cycle length be short enough to engage conduction velocity 
restitution (18). Aconitine prolonged the APD, and thereby the 
pacing cycle length was not allowed to be short enough to in-
duce discordant APD alternans in this study. Therefore, an in-
crease in the restitution slope causing concordant APD alter-
nans appears to have been the main cause of arrhythmogene-
sis, as well as regional conduction block. 
  With low-dose aconitine, where the triggered activity did not 
occur overtly, an increased heart rate is likely to contribute to 
arrhythmogenesis. In other words, even without considering 
high-dose aconitine intoxication by accidental ingestion or herb-
al prescription, low-dose aconitine that are considered to be safe 
in traditional herbal medicine might have harmful arrhythmo-
genic effects in a patient who develops atrial fibrillation with an 
uncontrolled rapid ventricular response.
  The limitations of this study include that the APD recordings 
were only obtained from the epicardial surface; the transmural 
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electrical gradient and excitation of endocardial Perkinje fibers 
were not assessed. The findings of this study showed that an in-
crease in the APD restitution slope with regional conduction 
block was central to induction of VF with low-dose aconitine. 
Further study is needed using whole layers of heart that might 
reveal more detailed mechanisms of the arrhythmogenic effects 
of aconitine.
  In conclusion, despite the engagement of triggered activity, 
low-dose aconitine can cause arrhythmogenesis by steepening 
of the restitution slope with APD alternans and regional conduc-
tion block that finally proceeds to functional reentry and break-
up of wave propagation. 
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Aconitine, a component of herbal medicine, reportedly induce ventricular arrhythmia at high concentration. Our present study 
shows that, with low-dose aconitine, an increased heart rate is likely to contribute to arrhythmogenesis: in other words, low-dose 
amounts that are recommended to be safe in traditional herbal medicine might have harmful arrhythmogenic effects when a 
patient develops atrial fibrillation with an uncontrolled rapid ventricular response.


