
INTRODUCTION

Asthma and atopic disease have been shown to be induced
by environmental allergens, but the molecular mechanisms
through which allergens drive the pathogenesis of these dis-
eases remain to be clearly identified. Epithelial cells, the first
type of cells to encounter allergens, have been shown to ini-
tiate tissue inflammatory responses via the production of a
variety of cytokines and chemokines. Moreover, many aller-
gens evidence intrinsic protease activities (1), and some pro-
teases from infectious agents, parasites, and fungi have already
been identified as potent allergens (2-7). These different pro-
tease allergens have been shown to induce similar Th2 im-
mune responses via the activation of several chemokines and
cytokines (1, 6). Thus, protease activities may prove crucial
to the initiation of relevant allergic responses. However, the
mechanism by which proteases trigger pro-allergic innate
immune responses has yet to be clearly assessed. 

Two cytokines, interleukin (IL)-25 and thymic stromal
lymphopoietin (TSLP), have been recently identified as cyto-

kines that initiate the Th2 allergic response. IL-25 (also known
as IL-17E), a member of the IL-17 family, has been implicat-
ed in Th2 cell-mediated immunity (8, 9). Recently, IL-25
has been identified as one of the initiators of the Th2 response
(10, 11) and has also been shown to be expressed by mast cells
(12). The transgenic overexpression of IL-25 by lung epithe-
lial cells results in mucus hyperproduction and airway infil-
tration of macrophages and eosinophils; conversely, IL-25
blockade reduced airway inflammation and Th2 cytokine
production in an allergen-induced asthma model (10, 11, 13).
Additionally, the expression of TSLP, an IL-7-like cytokine,
is associated with skin or bronchial epithelial cells, although
the physiological inducers of TSLP expression have yet to be
clearly evaluated. TSLP has been shown to activate dendrit-
ic cells (DCs), which in turn prime naïve T cells to express
Th2 cytokines, thereby resulting in the initiation of allergic
responses (14, 15). Additionally, TSLP can act directly on T
cells to promote Th2 differentiation (14, 16, 17). Therefore,
IL-25 and TSLP perform pivota l roles in provoking allergic
inflammation.
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Protease Allergens Induce the Expression of IL-25 via Erk and p38
MAPK Pathway

Allergic diseases, including asthma, are characterized by T helper type 2 (Th2) cell-
mediated inflammations, coupled with tissue infiltration by eosinophils. In this study,
we demonstrate that multiple protease allergens, including papain and DerP1, effi-
ciently induce interleukin (IL)-25 and thymic stromal lymphopoietin (TSLP) gene
expression, and this phenomenon is dependent on the protease activities of these
allergens. The IL-25 cytokine level in bronchial alveolar lavage (BAL) was also pro-
foundly and significantly increased after treatment with papain. Additionally, the lev-
els of Th2 cytokines were significantly increased, as compared to those in the OVA-
only treatment group. The various protease allergens triggered the expression of
IL-25 and TSLP mRNA in mouse lung epithelial cells (MLE12) and primary mouse
lung epithelial cells; these effects were inhibited by the deactivation of the protease
activity of papain. The allergen papain activates the ErK and p38 MAP pathways;
the inhibition of these pathways, but not the NFkB or PI-3 kinase pathways, impairs
the induction of IL-25 and TSLP expression by proteases. In this study, we demon-
strate that the protease allergens induce IL-25 and TSLP via the MAP kinase sig-
nal pathways, and their protease activities are essential to this pathway. 
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In this report, we have determined that IL-25 and TSLP
mRNA were upregulated in lung epithelial cells after a vari-
ety of protease allergen treatments in our series of in vivo and
in vitro experiments. Moreover, we determined that protease
allergens induce IL-25 and TSLP via the intracellular ERK
and p38 MAP kinase pathways.

MATERIALS AND METHODS

Allergens 

Papain, Aspergillus orizae protease (Asp; Sigma-Aldrich, St
Louis, MO, USA), and rDerP1 (recombinant Dermatophagoides
pteronyssinus allergen 1; Indoor Biotechnologies, Charlottesville,
VA, USA) were reconstituted with sterile PBS to 1 mg/mL
and stored at -20℃. 

Induction of airway inflammatory reaction 

Chicken egg OVA (Sigma-Aldrich) was reconstituted in
sterile PBS at 1 mg/mL and stored at -20℃. For intranasal
challenge, 10 mL (10 mg) of papain was added to 40 mL (40
mg) of OVA immediately prior to intranasal administration.
C57BL/6 mice (Jackson Laboratories, Bar Harbor, MA, USA)
were induced with airway inflammation by papain for six
total challenges, as described previously (10, 11, 18). One day
after the final challenge, the mice were killed for analysis of
bronchial alveolar lavage (BAL) fluid. BAL cells were col-
lected and further subjected to differential cell counts. BAL
fluid was analyzed for cytokine production by ELISA. All
animal studies were approved by the MD Anderson Cancer
Center Institutional Animal Care and Use Committee.

Lung epithelial cell and Mouse embryonic fibroblast cell
culture

Mouse lung epithelial cells (MLE12) were obtained from
The American Type Culture Collection. Primary lung epithe-
lial cells were isolated from C57BL/6 mice, as described pre-
viously (10, 11, 19), after depletion with anti-CD32/CD16
and anti-CD45 antibodies (Miltenyi Biotec, Bergisch Glad-
bach, Germany). Cells were treated with 200 ng/mL of A.
oryzae protease. After 2 hr of stimulation, the cells were col-
lected and lysed, and mRNA was extracted using TRIzol
reagent (Invitrogen, Seoul, Korea). Mouse embryonic fibrob-
last (MEF) cells were isolated from C57BL/6 mouse fetuses
after 10 days of fertilization.

Real-time-PCR analysis 

Total RNA extracted with TRIzol reagent was used to gen-
erate cDNA using oligo-dT, random hexamers, and Super-
Script RT II (Invitrogen). For the quantitation of cytokine

and transcription factor gene expression, cDNA samples were
amplified in iQ SYBR Green Supermix (Bio-Rad Laborato-
ry, Hercules, CA, USA). The primer pairs utilized for Real-
time-PCR are shown in Table 1.

Cytokine levels in BAL fluid

The amounts of IL-4, IL-5, IL-13, IL-25, IL-17, and IL-
17F in the fluid (BALF) were determined via an enzyme im-
munoassay, as previously described (10, 11). 

Immunoblot analysis 

MEF cells were washed with ice-cold PBS and lysed in 0.2
mL of lysis buffer (20 mM Tris-HCl, pH 8.0, 120 mM NaCl,
1% Triton X-100, 10 mM EDTA, 1 mM EGTA, 0.05% 2-
mercaptoethanol, 1×protease inhibitors). Cell debris was
removed via 15 min of centrifugation at 14,000×g, and the
supernatant was boiled for 5 min in Laemmli sample buffer
(Bio-Rad Laboratory) for 5 min. An equal amount of proteins
was subjected to sodium dodecyl sulfate-10% polyacrylamide
gel electrophoresis before blotting onto a PVDF membrane
(Amersham and Pharmacia Biotech, Seoul, Korea). The mem-
brane was blocked with 5% skim milk in Tris-buffered saline
with 0.05% Tween 20 (pH 7.6) for 1 hr at room temperature,
then probed with anti-human b-actin (R&D Systems, Min-
neapolis, MN, USA), anti-mouse phospho-ERK, anti-mouse
phosphoJNK, and anti-mouse p38 MAPK specific antibod-
ies (Cell Signaling Technology Inc., Boston, MA, USA) at 4℃
overnight. After washing, the membranes were incubated
for 1 hr with secondary rabbit anti-mouse antibody coupled
to horseradish peroxidase (Amersham and Pharmacia Biotech)
at room temperature. Antibody-antigen complexes were then
detected using an ECL chemiluminescent detection system
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*for, forward; �rev, reverse.

Primers Sequences

GAPDH-for* 5′-TACCCCCAATGTGTCCGTC-3′
GAPDH-rev� 5′-AAGAGTGGGAGTTGCTGTTGAAG-3′
Eotaxin-for 5′-GCGCTTCTATTCCTGCTGCTCACGG-3′
Eotaxin-rev 5′-GTGGCATCCTGGACCCACTTCTTC-3′
TSLP-for 5′-GGAGATTTGAAAGGGGCTAAG-3′
TSLP-rev 5′-TGGGCAGTGGTCATTGAG-3′
IL-25-for 5′-TGGCAATGATCGTGGGAACC-3′
IL-25-rev 5′-GAGAGATGGCCCTGCTGTTGA-3′
IL-5-for 5′-CGAGCTCTGTTGACAAGCAATG-3′
IL-5-rev 5′-CCACGGACAGTTTGATTCTTCAG-3′
TARC-for 5′-AGAGCTGCTCGAGCCACCAATGTA-3′
TARC-rev 5′-CACCAATCTGATGGCCTTCTTCAC-3′
Gro-alpha-for 5′-CGCTTCTCTGTGCAGCGCTGCTGCT-3′
Gro-alpha-rev 5′-AAGCCTCGCGACCATTCTTGAGTG-3′
GM-CSF-for 5′-CATTGTGGTCTACAGCCTCTCAGC-3′
GM-CSF-rev 5′-AATCCGCATAGGTGGTAACTTGTG-3′

Table 1. Primers used for real-time PCR



in accordance with the manufacturer’s instructions (Amer-
sham and Pharmacia Biotech). 

Statistics

Data are expressed as mean values+SD and are representa-
tive of at least 2 independent experiments involving at least
4 mice per group, unless otherwise indicated. Data were ana-
lyzed via Student’s t test (n=2 groups). P values of <0.05 were
considered significant.

RESULTS 

Protease allergens induce IL-25 expression in vivo 

Following 6 intranasal administrations of papain, immune
cell infiltrations, particularly eosinophils, were evident in the
airway (Figs. 1A, B). The IL-25 cytokine level in BAL was
also profoundly increased after papain treatment (Fig. 1C).
Additionally, the levels of Th2 cytokines (IL-4, -5, and -13)
were significantly increased as compared to those in the OVA-
only treatment group. However, the levels of the Th17 cyto-
kines, IL-17 and IL-17F, in the papain treatment group did
not differ significantly from those of the control group (Fig.
1C). We also that the lung cells of the papain-treated mice
much higher expressed IL-25, IL-5, Gro-alpha, and eotaxin

genes at much higher levels than those of the control group
(Fig. 1D). Therefore, the intranasal administration of papain
specifically induces Th2-type chemokines and cytokines in
vivo. 

Protease allergens triggered IL-25 and TSLP expression
by epithelial cells and fibroblasts

In order to determine whether the induction of the Th2-
type response is a common feature of protease allergens, we
subsequently measured the levels of IL-25 and TSLP in the
MLE12 mouse lung epithelial cell line after stimulation with
a variety of allergens. Consistent with the data shown in Fig. 1,
papain treatment triggered the expression of IL-25 and TSLP
mRNA in the MLE12 cells (Fig. 2A). These effects were inhi-
bited by the deactivation of the protease activity of papain,
either by boiling or by treatment with protease inhibitors
(Fig. 2A). It is worth noting that Aspergillus protease (Asp)
and DerP1, both of which are known as strong allergens with
protease activity, also induced the expression of IL-25 and
TSLP (Figs. 2B, C). The induction of IL-25 and TSLP by
these allergens was also noted in primary lung epithelial (PLE)
cells and mouse embryonic fibroblast (MEF) cells (Fig. 3A,
B). The protease allergens also induced the expression of Th2-
associated chemokine genes, particularly the eotaxin gene
(Fig. 3C). 
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Fig. 1. Papain induced allergic inflammation with significant induction of IL-25. Mice were intranasally treated with papain and OVA (Papain)
or OVA only (OVA) for 6 repetitions. (A) Total cell number of bronchoalveolar lavage fluid (BALF). (B) Differential cell counts of BALF. (C)
Concentration of cytokines in BALF. (D) Chemokine and cytokine mRNA expression of lung cells (*P<0.05; n=5 mice per group; 3 inde-
pendent experiments).
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Protease allergens induce IL-25 gene expression via the
ERK and p38 MAP kinase pathways

In an effort to address the intracellular mechanism that
regulates IL-25 and TSLP expression upon stimulation with
protease allergens, we evaluated the activation of intracellu-
lar MAPK and NF-kB. Papain induced the phosphorylation
of ERK, JNK, and p38 MAPK in MEF cells within as short
a time as 15 min (Fig. 4A). Boiled papain marginally induced

p-JNK with delayed kinetics, and failed to induce the phos-
phorylation (Fig. 4B). On the other hand, the levels of IkBa
were reduced 2 hr after papain treatment, which might be
the results of a secondary response. In order to evaluate the
functions of different signaling pathways in allergen-induced
IL-25 and TSLP gene expression, we employed pathway-spe-
cific inhibitors. IL-25 and TSLP expression were profoundly
inhibited by Erk, JNK, and p38 inhibitors (Fig. 4C, data not
shown). Likewise, Asp protease also induced ErK, JNK, and
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Fig. 3. IL-25 and TSLP gene expression of various cells is induced
by protease allergens. (A) IL-25 expression of PLE (primary lung
epithelial cell) and (B) IL-25 and TSLP expression of MEF cells are
induced by protease stimulations. (C) Additionally, the eotaxin gene
expression of MLE12 cells is induced by protease stimulations (*P<
0.05). 
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p38 phosphorylation in MEF cells (data not shown). 
Toll-like receptors (TLR) are important pattern recognition

receptors for infectious agents, which signal through the adap-
tor proteins MyD88 and/or TRIF. In order to evaluate the
relationship between the toll-like receptors and the protease
allergens, we utilized papain to treat MyD88-/- TIRAP-/- or
TRIF-/- MEF cells. The IL-25 gene was expressed normally
from all types of MEF cells in response to papain stimulation
(Fig. 4D, data not shown). These results showed that pro-
tease-induced allergic responses were not mediated by the
toll-like receptors. 

DISCUSSION

In an effort to determine the mechanism underlying aller-
gen-induced Th2 response, we first analyzed the innate and
adaptive factors triggered by papain as a model protease aller-
gen in vivo.

In this study, following 6 intranasal administrations of pa-
pain, we readily detected strong Th2 responses, including
immune cell (particularly eosinophils) infiltrations, and in-
creased levels of Th2 cytokines (including IL-25) in the air-
way (Fig. 1). Additionally, various proteases were shown to
elicit IL-25 and TSLP expression from mouse lung epithe-
lial cells, and their activities were reduced by boiling or pro-
tease inhibitor treatment (Figs. 2, 3) Our group and others
recently demonstrated that IL-25 and TSLP perform impor-
tant functions in the initiation of allergic asthma (10, 11, 20).
IL-25 (also known as IL-17E), a member of the IL-17 fami-

ly, has been previously implicated in Th2 cell-mediated im-
munity (8, 9). Recently, IL-25 has also been implicated as one
of the initiators of the Th2 response (10), and has also been
shown to be expressed by mast cells (12). The transgenic over-
expression of IL-25 by lung epithelial cells results in mucus
production and airway infiltration of macrophages and eosi-
nophils; conversely, the blockage of IL-25 reduces airway in-
flammation and Th2 cytokine production in an allergen-in-
duced asthma model (10, 13). Additionally, the expression of
TSLP, an IL-7-like cytokine, is associated with skin or bron-
chial epithelial cells, although the physiological inducers of
TSLP expression have yet to be clearly identified. TSLP has
been previously demonstrated to activate DCs, which then
subsequently prime naïve T cells to express Th2 cytokines,
thereby precipitating allergic responses (14, 15). Addition-
ally, TSLP can operate directly on T cells to promote Th2
differentiation (14, 17). 

Kiss et al. (2007) previously reported that the Asp aller-
gen can induce eosinophilic airway inflammation and lung
IL-4 production in the absence of adaptive immune cells;
these responses required intact protease activity (18). In our
study, different protease allergens elicited the expression of
IL-25 and TSLP genes, which depended heavily on the pro-
tease activity. These results show that the induction of TSLP
and IL-25 constitutes an innate immune response to protease
allergens in lung epithelial cells. 

Recently, IL-25-induced cytokines and chemokines have
been shown to be regulated principally by costimulation-acti-
vated MAPKs and NF-kB, in addition to the subsequent
upregulation of the IL-25 receptor (21). In our study, papain
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induced ERK, JNK, and p38 MAPK phosphorylation in
MEF cells, while boiled papain marginally induced p-JNK
with delayed kinetics, but failed to induce ERK and p38 phos-
phorylation. Additionally, IL-25 and TSLP expression were
inhibited by ERK, JNK, and p38-specific MAPK inhibitors
(Fig. 4). These results showed that allergen-induced IL-25
and TSLP production were regulated by the MAP kinase path-
ways. Interestingly, in our study, NF-kB was activated 2 hr
after papain stimulation; this phenomenon may be induced
by IL-25 secretion in the stimulated cells themselves. Collec-
tively, our findings revealed that protease activity in a vari-
ety of allergens activates the MAPK pathway to induce IL-
25 and TSLP in a TLR-pathway-independent manner. These
observations may reflect the existence of non-TLR-related,
protease-activated innate immune receptors in mouse respi-
ratory epithelial cells in the initiation of allergic inflamma-
tion. 

In conclusion, the protease allergens induce IL-25 and TSLP
via the MAP kinase signal pathways, and that their protease
activities are critically important in this pathway. The iden-
tification of innate immune molecules and sensors of protease
activity will prove crucial to our further understanding of the
initial pathogenesis of allergic reaction. Additionally, targeting
the MAPK pathway may provide a novel strategy for prevent-
ing allergic inflammation.
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