
INTRODUCTION

Phytoestrogens are non-steroidal plant compounds and con-
sist of numerous classes including isoflavones, lignans, and
coumestans (1, 2). Structurally and functionally, they mimic
mammalian estrogens and possess both estrogenic and antie-
strogenic properties. The mechanism of their dual functions
has not been completely clarified yet. Some in vitro studies
have suggested that the biological action of phytoestrogens
may be modulated by the concentration of co-existing estro-
gens; they can act estrogenically in a low-estrogen environ-
ment or antiestrogenically in a high-estrogen environment
(3, 4). However, only limited data have been available from
human studies. Intervention studies with the supplementa-
tion of phytoestrogens have revealed inconsistent results on
the clinical effectiveness of cardiovascular, menopausal, and
bone health.

The high intake of soy isoflavones has been shown to pre-
vent bone loss in some studies of postmenopausal women (5-
8). However, these data are still controversial, and they have
shown no significant effects on bone in other studies (9, 10).

Only a few studies have focused on the skeletal effect of phy-
toestrogens in premenopausal women. The three-year obser-
vational study revealed that soy intake had a significant effect
on the maintenance of peak bone mass in women between
the ages of 30 and 40 (11), while the other intervention stud-
ies showed no effects on bone mineral density (BMD) in young
women (12, 13).

Isoflavones are the best-studied phytoestrogens and are
found in their highest amounts in soy foods. Recent studies
have demonstrated that the metabolism of isoflavones is high-
ly variable in individuals, which suggests that a new para-
digm considering this heterogeneity would be indispensable
toward an evaluation of their clinical effects (14). Genistin
and daidzin, which exist as inactive glucosides, are the two
major ingredients of soy isoflavones. Once ingested, they are
converted to genistein (GTN) and daidzein (DZ), respective-
ly after breakdown by intestinal microflora. GTN is partial-
ly metabolized to its non-estrogenic metabolite, para-ethyl-
phenol, by gut microflora. Some DZ is also further metabo-
lized to equol (EQL) or O-desmethangiolensin (O-DMA) by
different metabolic pathways (15-17) (Fig. 1). Previous in
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Marked Individual Variation in Isoflavone Metabolism After a Soy
Challenge Can Modulate the Skeletal Effect of Isoflavones in 
Premenopausal Women

Soy-isoflavones may act as estrogenic agonists or antagonists depending on the
endogenous hormone status. These clinical effects can be exerted variably in indi-
viduals by the metabolic ability to produce a more potent metabolite than precursors.
The objective of this randomized, double-blind, placebo-controlled study was to in-
vestigate the skeletal effect of isoflavones according to their metabolic variability in
premenopausal women. Volunteers were randomly assigned to receive either soy-
extract isoflavones (n=32) or lactose (n=21) once a day for three menstrual cycles.
After intervention, the urinary excretions of isoflavones and their metabolites were
significantly higher in the soy group than in the placebo group and showed a large
inter-individual variation. Women in the soy group were divided into subgroups accord-
ing to their ability to excrete more potent metabolites. Serum osteocalcin and urine
deoxypyridinoline showed a tendency to increase after a challenge in equol high-
excretors. Serum osteocalcin concentration in the genistein high-excretors increased
significantly after a challenge (P=0.04) but did not increase in either the placebo or
genistein low-excretors. An estrogenic antagonistic effect of isoflavones on bone
turnover was observed in premenopausal women who are able to produce more
potent metabolites.

Key Words : Premenopausal Women; Isoflavones; Equol; Genistein; Bone Turnover; Estrogen Antagonists

Received : 19 May 2008
Accepted : 3 December 2008



vitro studies have shown that the metabolites of the O-DMA
pathway have weaker estrogenic properties, while EQL is
superior to all other daidzin metabolites, in respect to its bind-
ing affinities to estrogen receptors (ERs) and estrogen activ-
ities (4). Because of its slower clearance, the plasma concen-
tration of EQL is normally far in excess of other daidzin meta-
bolites (14). However, EQL is not produced in all healthy
adults in response to a dietary challenge with soy or DZ; only
one-third of healthy adults are capable of producing EQL
from DZ. The inter-individual variance in the ability to pro-
duce more potent metabolites, including EQL, may lead to
differences in the effects of isoflavone intervention on human
health. The failure to distinguish these subtypes could plau-
sibly explain the variance in the reported data on the skele-
tal effects of soy.

This study tested the hypothesis that soy isoflavones may
compete with endogenous estrogens and thus act as estrogen
antagonists, especially in premenopausal women who can pro-
duce more potent metabolites. In our randomized-controlled
study, soy-induced changes of bone turnover markers were
assessed in healthy, menstruating women after dividing them
into subgroups according to metabolizing phenotypes.

MATERIALS AND METHODS

Sixty healthy premenopausal female volunteers of Korean
ethnicity between the ages of 30 and 50 yr (37.2±4.8 yr,
mean±SD) were recruited to participate in this study. Thro-
ughout the study, subjects had no restrictions and continued
their usual activities at home and at work. Informed consent
was obtained from each study participant and this study was
approved by the Institutional Review Board of the Cheil Gen-
eral Hospital and Women’s Healthcare Center.

This study was designed as a randomized, double-blind,
placebo-controlled study. The participants were randomly
assigned to receive either isoflavone capsules (soy group; 120

mg/capsule, n=32) or capsules containing the same dose of
lactose as a placebo (n=21) once a day for three menstrual
cycles. Four of the 36 subjects in the soy group dropped out
because of side effects (breast pain and weight gain). Three
of the 24 placebo subjects dropped out for different reasons;
one subject due to pregnancy, and two subjects due to failure
of follow-up. All subjects consumed their habitual diets with
detailed instructions to minimize phytoestrogen consump-
tion. Food consumption was recorded at the beginning and
end of the study. The soy extract isoflavone in 120 mg/cap-
sules (Rexgene Biotech Co., Cheongwon, Korea) consisted
of 3.68% daidzin, 13.97% genistin, and 18.51% glycitein.
Baseline blood samples and 24-hr urine collections were ob-
tained from Day 3 to Day 6 of each menstrual cycle, and fol-
low-up samples after intervention were collected on the same
day of the menstrual cycle as the day when baseline samples
were collected. Fasting blood and 24-hr urine samples were
also collected, and the serum was prepared immediately and
frozen at -70℃ until it was assayed.

Serum osteocalcin (OC) levels were determined by Radio
Immunoassay (RIA) using an Osteocalcin 125I RIA kit (Inc-
star Corp., Stillwater, MN, U.S.A.; intra- and interassay CV,
7.8% and 9.2%, respectively). Urine deoxypyridinoline (DPD)
was assayed by the enzyme-linked immuno-sorbent assay
(ELISA) method (Osteomark, Ostex, Seattle, WA, U.S.A.;
intra- and interassay CV, 5.7% and 3.5%, respectively) and
corrected for creatinine. Serum 17β-estradiol (E2) was assayed
via RIA (Diagnostic System laboratories, Webstar, TX, U.S.A.;
CV=11%). Serum lutenizing hormone (LH) and follicular
stimulating hormone (FSH) levels were measured by immuno-
radiometric assays (Diagnostic Products Corp.; CV, 14% for
LH and 11% for FSH).

Twenty-four hour urine samples were analyzed for phytoe-
strogens using solid-phase extraction (SPE) followed by HPLC
and tandem mass spectrometry. Conjugated analytes in urine
were hydrolyzed by the addition of β-glucuronidase/sulfatase
(Helix pomatia, H-1, Sigma Chemical, St. Louis, MO, U.S.A.)
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Fig. 1. Metabolic pathway of the major soy iso-
flavones daidzin and genistin. They are cleaved
by intestinal glucosidases to the aglycones, daid-
zein (DZ) and genistein (GTN). DZ and GTN are
further metabolized by intestinal microflora into
several metabolites: dihydrogenistein (DGTN),
dihydrodaidzein (DDZ), tetrahydrodaidzein (TDZ),
o-desmethylangolensin (O-DMA), and equol (EQL).
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and incubated overnight at 37℃. Deconjugated samples
were spiked with an internal standard (flavone, Sigma Chem-
ical) and then extracted with Oasis hydrophilic-lipophilic bal-
ance (HLB) solid-phase extraction (SPE) (30 mg HLB, 1 mL,
Waters Corporation, Milford, MA, U.S.A.). The phytoestro-
gens were separated by a reversed-phase high-performance
liquid chromatography (HPLC) (150×1.0 mm Alltima col-
umn, Alltech, Deerfield, IL, USA) and a flow rate of 50 μL/
min (0.1% formic acid, 25% MeOH, 25% acetonitrile). All
analytes were measured by tandem mass spectrometry (API
2000, MDS/Sciex, Concord, Ontario, Canada) using electro-
spray ionization (ESI) in the positive-ion multiple-reaction
monitoring mode. The intra- and interassay CVs were 7%
and 10%, respectively.

Statistical analyses were performed with the Statistical Pack-
age for the Social Sciences (SPSS, Inc., Chicago, IL, U.S.A.).
Data were evaluated using a one-way analysis of variance
(ANOVA) and a paired two-tailed t test. To assess interrela-
tionships between variables, Spearman’s correlation coefficient
analyses were also used. In the case of significant differences,

a non-parametric test was used to further specify these differ-
ences. P values below 0.05 (paired two-tailed t test) were con-
sidered significant.

RESULTS 

The clinical characteristics of study subjects are summa-
rized in Table 1. Three of the 24 placebo subjects and four
of the 36 subjects in the soy group dropped out because of
difficulties complying with the study protocol. Therefore,
we included 21 women in the placebo group and 32 women
in the soy group for the final data analyses. At baseline, there
were no significant differences in age, body mass index (BMI),
food intake, bone markers, or hormone status between the
soy and placebo groups. Urinary isoflavones and their metabo-
lites were detected in all subjects at baseline. No significant
differences could be found in the baseline excretion concen-
trations between the two groups (Fig. 2).

After a soy challenge during three menstrual cycles, the
daily urinary excretion of all measured isoflavone metabo-
lites was significantly increased in the soy group, while sig-
nificant changes were not observed in the placebo group ex-
cept for the excretion of dihydrogenistein (DGTN), which
showed only a slight but statistically significant incremen-
tal increase at the follow-up (Fig. 2). The marked inter-indi-
vidual variation was observed in the urinary excretion of iso-
flavone metabolites after soy intake (Fig. 3). Individual vari-
ations of DZ and GTN after a challenge exceeded normal
levels by 100-fold and 400-fold, respectively. EQL also had
a high individual difference in its excretion, exceeding nor-
mal levels by 400-fold. Urinary excretion of DZ was highly
correlated with GTN, dihydrodaidaein (DDZ) and O-DMA,
but not with EQL. The urinary concentration of EQL did
not show any significant correlations with any other metabo-
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Data are expressed as Mean±SD.
BMI, body mass index; OC, osteocalcin; DPD, deoxypyridinoline; E2,
17β-estradiol; LH, lutenizing hormone; FSH, follicular stimulating hormone.

Placebo 
(n=21)

Variables
Soy intake 

(n=32)
P

value

Age (yr) 37.2±5.0 37.2±4.6 0.95
Weight (kg) 54.3±6.8 53.1±6.0 0.52
BMI (kg/m2) 21.9±2.8 21.5±2.4 0.60
OC (ng/mL) 4.5±2.1 4.2±2.1 0.59
DPD (nM/mM Cr) 5.6±2.5 5.2±2.2 0.57
E2 (pg/mL) 67.1±41.1 58.2±41.4 0.44
LH (mIU/mL) 4.7±3.0 4.0±2.3 0.36
FSH (mIU/mL) 5.9±2.4 5.9±1.2 0.95

Table 1. Basal characteristics of study subjects

Fig. 2. Mean (±SEM) urinary excretion of isoflavones and their
metabolites before and after a soy challenge in the placebo (left)
and soy group (right). *, �, �Significantly different from baseline:
*P<0.05; �P<0.01; �P<0.001 (paired two-tailed t test).

Fig. 3. Urinary equol (EQL), o-desmethangiolensin (O-DMA), dihy-
drodaidzein (DDZ), dihydrogenistein (DGTN), genistein (GTN),
and daidzein (DZ) excretion in 32 subjects in the soy group after
a soy challenge.
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lites (Fig. 5).
Significant changes of circulating hormones, including LH,

FSH, and estradiol (E2), were not found after a challenge in
both groups (data not shown). Body weight and BMI did not
change significantly after follow-up in both groups (data not
shown). However, the serum concentrations of OC (the bone
formation marker) increased significantly after a challenge
in the soy group but not in the placebo group (Fig. 4). Of
the subjects in the soy group, eight women (25%) could be

categorized as EQL high-excretors (>1,000 nM/24 hr) (17).
EQL-excretors showed a tendency for an increase in OC. We
recategorized subjects according to the excretion of GTN,
because GTN also has the strongest ER-binding affinities
and estrogenic activities among all the metabolites (4, 29).
When the GTN high-excretors were defined arbitrarily as
women whose urinary excretion of GTN was greater than
2,000 nM/day, 15 women were included in the GTN high-
excretor group. All DZ metabolites after intervention were
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Fig. 4. Changes of serum osteocalcin (OC), a bone-formation mark-
er, and urine deoxypyridinoline (DPD), a bone-resorption marker,
before and after a soy challenge in the placebo and the soy group
(paired two-tailed t test).
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Fig. 5. Scatter plots between urinary concentrations of isoflavonoid metabolites. Daidzein (DZ) was significantly correlated with its metabo-
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son correlation, P=significance by two-tailed Z test).
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significantly higher in GTN high-excretors compared with the
placebo group and the GTN low-excretors (data not shown).
Daily excretion of DZ was over 2,500 nM/day in all GTN
high-excretors. Seven of the eight women who were catego-
rized as EQL excretors could be also categorized as GTN high-
excretors. Basal characteristics including age, weight, BMI,
and sex hormone levels were not different among these sub-
groups. Serum OC concentrations in the GTN high-excre-
tors increased significantly after the challenge but did not
increase in either the placebo group or the GTN low-excre-
tors (Fig. 6).

The bone-resorption marker, urine DPD, was decreased
after a challenge in both the placebo and soy groups (Fig. 4).
A decrement of DPD levels after a challenge, however, was
not observed in either the EQL excretors or the GTN high-
excretors (data not shown). When we subdivided women by
the excretion levels of O-DMA, the weak metabolite of DZ,
any tendency for soy-induced increments in bone remodel-
ing could not be found in the O-DMA high-excretors (data
not shown).

DISCUSSION

Our results indicate that the high ingestion of isoflavones
increases bone turnover in the early follicular phase of men-
struation. This antiestrogenic action is observed prominent-
ly in women who can produce and absorb the metabolites
with relatively strong binding affinities to ERs. We also noted
a marked inter-individual variation after a soy challenge in
the excretion of isoflavone metabolites including the inter-
mediate metabolites of GTN and DZ. The personal variation
of daily urinary excretion of metabolites exceeds several hun-
dred-fold after the soy challenge. The difference between min-
imum and maximum was over 2,000-fold in the excretory
levels of some intermediate metabolites such as DDZ and
DGTN.

Isoflavones in soy proteins are conjugated to sugars. These
β-glucosides, including daidzin and genistin, are biological-
ly inactive and can be absorbed only after being hydrolyzed
into the aglycones, DZ and GTN, respectively (1, 2, 15-17).
Hydrolysis is known to be an extremely efficient process, oc-
curring along the entire length of the intestine by the action
of both the brush border membrane and the bacterial β-glu-
cosidase. In our study, a broad range of metabolites could be
detected in urine after a challenge, which is in agreement with
previous studies (15-17). A proportion of DZ and GTN ap-
peared to escape further metabolism within the intestine,
being absorbed as aglycones just after hydrolysis by the glu-
cosidase and largely cleared in the urine. The remnants under-
went more intestinal fermentation via the bacterial reaction
that takes place distally and presumably in the colon, yield-
ing various intermediate and end products, which are also
readily absorbed and then largely cleared in urine. Interest-

ingly, in our study the tested metabolites of DZ were highly
correlated with each other, except for EQL. GTN also showed
a significant correlation with its metabolite DGTN and even
with other DZ metabolites except for EQL. This finding sug-
gests that DZ and GTN undergo a similar metabolism using
the same metabolizing enzymes to produce O-DMA or DG-
TN, respectively. EQL, however, seems to have a distinct meta-
bolic pathway using different enzymes from different intesti-
nal bacteria strains. It has been demonstrated that the forma-
tion of EQL is exclusively dependent on intestinal microflo-
ra. The lack of EQL in germ-free animals and infants fed infant
formula revealed the need for an active microflora for its for-
mation (18-20). The repeated administration of isoflavones
to the same adults showed consistently that those who are
‘‘EQL excretors’’ seem to remain ‘‘EQL excretors’’ over time
(21). Three strains of bacteria responsible for EQL formation
have been identified in Japanese subjects by in vitro cultur-
ing of fecal flora (14).

In approximately one-fourth of our study subjects, all of
the tested isoflavones were excreted in concentrations of less
than 500 nM/day even though the participants were chal-
lenged daily with a large amount of soy extract. The reasons
why some people do not have an ability to excrete enough
isoflavonoids after a challenge are unclear. Some studies have
shown that some dietary components could alter the intesti-
nal environment and affect the metabolism of isoflavones,
but the data are still controversial (14). Studies on the preva-
lence of poor excretors have not been conducted yet.

Our study shows that the high consumption of isoflavones
can affect physiological functions of bone remodeling in pre-
menopausal women. To our knowledge, only two small stud-
ies have been reported to evaluate the effects of isoflavones
on bone turnover during menstrual cycles. In a randomized,
cross-over study with 14 young, menstruating women, the
daily consumption of 65 mg and 130 mg of soy isoflavones
increased the bone-resorption marker, urine DPD, at the early
follicular phase after three menstrual cycles (22). In another
study of a randomized, cross-over design, after daily inges-
tion of 52 mg isoflavones for more than one menstrual cycle,
14 premenopausal women showed a significant increase in
tartrate-resistant acid phosphatase (TRAP) compared with
the placebo group, but not in another bone-resorption mark-
er, C-telopeptide (CTx) (23). However, no significant effects
of soy-intervention were observed for the bone-formation
marker OC in both studies. The discrepancy between our
study and the previous data on the bone-formation marker
is not clear. The failure of OC to show a significant, soy-in-
duced change in previous studies may be due to the hetero-
geneity of study subjects, many of whom might be low excre-
tors of additional estrogenic isoflavones, such as EQL or GTN.

After soy-induction, we could not find any significant
changes of circulating hormones including serum E2, LH,
and FSH. However, some intervention studies have shown
decreased estrogen levels and changes in menstrual-cycle leng-
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th after increased soy intake (24, 25). In the intervention study
from California, the soy-induced estrogen-lowering effect
was restricted to Asian women (26). Other intervention stud-
ies have failed to observe any significant effect of isoflavones
on sex hormones and menstrual patterns (27). In a previous
study, five premenopausal EQL excretors had lower concen-
trations of estrone and estron-sulfate and higher sex hormone-
binding globulin than nine EQL non-excretors in certain
phases of the menstrual cycle including the early follicular
phase. Serum E2, however, did not show any significant dif-
ferences between the subgroups (28). Most of the reported
data are not at the proper scale to adjust for a large number
of unmeasured factors that may influence the clinical effects
of soy. Therefore, the mechanism of a soy-induced antiestro-
genic effect on premenopausal bone remodeling is still un-
clear; it may be an indirect effect caused by the changes of
circulating sex hormones or a direct effect on bone. Isoflavones
can bind both types of ER, especially ERβ, and exhibit weak
estrogenic activity. The antiestrogenic activity may be par-
tially explained by its competition with endogenous E2 for
ERs and then attenuating estrogenic action by their lower
intrinsic activity.

EQL has the strongest estrogenic properties among DZ me-
tabolites. GTN has been shown to be similar or even stronger
than EQL in ER-binding affinities and estrogenic activities
(4, 29). In our study, a significant increment of bone turnover
could be observed more prominently in women whose uri-
nary GTN excretion was more than 2,000 nM/day after soy-
intervention, rather than in EQL excretors. Since most women
who were categorized as GTN high-excretors could also ex-
crete high concentrations of DZ and its metabolites includ-
ing even EQL, the GTN effect in our study may reflect a sum
effect including other isoflavone metabolites. A recently pub-
lished, large-scale clinical trial, however, has shown a GTN-
induced positive effect on BMD in postmenopausal women;
GTN can independently increase BMD at both the lumbar
and femoral neck areas by means of a two-year treatment of
daily doses of 54 mg of GTN (7).

Although most reported studies are small-scale and do not
contain enough participants to confirm the skeletal effect of
isoflavones especially on premenopausal bone remodeling,
the previous data are consistent with our results; isoflavones
can modulate the bone turnover rate and may act as estrogen
antagonists in certain phases of the menstrual cycle. Further-
more, our results identified the importance of the awareness
that a large degree of individual variation exists in the meta-
bolism and biological functions of phytoestrogens. Since the
magnitude of the effect of isoflavones on bone turnover is quite
small despite relatively high doses of isoflavones, their clini-
cal importance should be clarified by further, large-scale stud-
ies investigating the long-term effects on BMD according
to the metabolic phenotype.
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