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Neuroprotective Effect of Cycloheximide on Hypoxic-Ischemic Brain

Injury in Neonatal Rats

This study was done to determine the neuroprotective effect of cycloheximide on
neonatal hypoxic-ischemic brain injury. Seven day-old newborn rat pups were sub-
jected to 90 min of 8% oxygen following a unilateral carotid artery ligation. The extent
of cerebral infarction was evaluated at 1 and 4 week of recovery. Apoptosis was
identified by performing terminal deoxynucleotidyl transferase-mediated dUTP nick
end-labeling (TUNEL) staining and flow cytometry with a combination of fluoresce-
inated annexin V and propidium iodide. Brain infarction area was significantly incre-
ased at 4 week compared to 1 week after hypoxia-ischemia in the control group.
With cycloheximide treatment, the number of TUNEL positive cells in the ipsilateral
cerebral cortex at 48 hr and peri-infarct area at 1 and 4 week of recovery was sig-
nificantly reduced, both apoptotic and necrotic cells by flow cytometry 48 hr after
the injury were significantly reduced, and the extent of cerebral infarction at 1 and
4 week of recovery was also significantly attenuated compared to the hypoxia-ische-
mia control group. In summary, our data suggest that apoptosis plays an important
role in the development of delayed infarction, and inhibition of apoptosis with cyclo-
heximide significantly reduces the ensuing cerebral infarction in a newborn rat pup
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INTRODUCTION

Perinatal hypoxic-ischemic brain injury is an important
cause of neonatal mortality and permanent neurologic seque-
lae such as cerebral palsy, mental retardation, learning dis-
ability, and epilepsy in survivors (1, 2). In spite of increased
understanding of the mechanisms of cell death underlying
neonatal hypoxic-ischemic brain injury, there is no clinically
efficacious treatment available for this common disorder.
Therefore, the development of new therapeutic modality to
improve the prognosis of this disease is an urgent big subject.

Two major forms of cell death, apoptosis and necrosis, can
be distinguished during hypoxic ischemic brain injury (3-6).
Necrosis is characterized by prominent acute cell body swelling
with subsequent cell lysis. Apoptosis is characterized by com-
paction of the cell body and internucleosomal DNA cleavage,
and new protein synthesis appears to be required in many
cases (7). The balance between modes of death may be influ-
enced by maturational stage and severity of insult (5). In the
adult brain, although classically hypoxic-ischemic cell death
has been considered to occur by necrosis, recently clues have
emerged suggesting that apoptosis may also contribute to
neuronal loss (3, 8). In the developing newborn brain, apop-
tosis has been known to be the primary mode of cell death
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following hypoxia-ischemia (9). Various biochemical and
morphologic evidence of apoptotic cell death has been report-
ed in the hypoxic-ischemic immature brain under experimen-
tal conditions (5, 10-12) and in the human infant brain after
birth asphyxia (13). It thus appears that therapies aimed at
inhibiting neuronal apoptosis could ameliorate the hypoxic-
ischemic brain injury. In accordance with this assumption,
as apoptosis can require new protein synthesis (7), cyclohex-
imide, a protein synthesis inhibitor, has been shown to pre-
vent apoptosis in vitro (14), and to reduce neuronal cell loss
and infarction volume in the adult animal model after cere-
bral ischemia (3, 8). Surprisingly, the neuroprotective effect
of this agent has never been tested in the newborn animal
model of cerebral hypoxia-ischemia, in which many neuronal
cells die by apoptosis (5, 9-12).

This study was done to determine whether cycloheximide
could reduce cerebral injury subsequent to hypoxia-ischemia
in the developing brain. We tested the hypothesis that apop-
tosis plays an important role in the development of delayed
brain injury, and inhibition of apoptosis with cycloheximide
reduces the ensuing cerebral infarction in a newborn rat pup
model of cerebral hypoxia-ischemia. Apoptosis was identi-
fied by performing terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labeling (TUNEL) staining and
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flow cytometry with a combination of fluoresceinated annexin
V and propidium iodide (PI). The extent of cerebral infarc-
tion was evaluated at 1 and 4 week after hypoxia-ischemia
to determine whether the infarction in the newborn brain
occurs in a delayed fashion, and whether the neuroprotective
effect, if any, of cycloheximide was transient or permanent.

MATERIALS AND METHODS
Hypoxia-Ischemia

The experimental protocols described herein were reviewed
and approved by the animal care and use committee of the
Samsung Biomedical Research Institute, Seoul Korea. This
study also followed the institutional and National Institute
of Health guidelines for laboratory animal care.

Unilateral carotid artery ligation was induced in 7-day-old
Sprague Dawley rat pups (Daihan Biolink Co., Seoul, Korea)
under methoxyflurane anesthesia. The neck was incised in
the midline, and right common carotid artery was perma-
nently ligated with 4-0 silk. Total time of surgety in each
animal never exceeded 5 min. Following surgery, rats were
returned to their mother for recovery and feeding for 2 hr.
The pups were then exposed to a 90 min period of hypoxia
8% Oz, 92% N>) by placing them in an airtight chamber
partially submerged in a temperature controlled water bath
to maintain the ambient temperature inside the chamber at
a constant 36°C . In the hypoxia-ischemia with cycloheximide
treatment group, the rat pups received an intraperitoneal
injection of cycloheximide at a dose of 0.6 mg/kg immedi-
ately after the hypoxic insult (15) or equal volume of normal
saline as a hypoxia-ischemia control group. Then, the rat pups
were returned to their dam, and sacrificed at 48 hr, 1 and 4
week after hypoxia-ischemia under deep pentobarbital anes-
thesia (60 mg/kg, intraperitoneal), and the whole brain tis-
sue was obtained for analysis. Ten animals, the minimum
number required to achieve statistically meaningful results,
were used in all subgroups of analyses.

Histological evaluation

After intracardiac perfusion with 4% paraformaldehyde,
brains were removed, 5 um thick serial sections were made,
and stained with fluorescein in situ apoptosis detection kit
S7110 (Chemicon International, Temecula, CA, U.S.A.) and
counterstained with the 4,6-diamidino2-phenylindole (DAPI)
to determine the degree of DNA fragmentation in cell nuclei
at 48 hr after hypoxia-ischemia.

Brain infarction was determined by calculating mean brain
areas of surviving tissue of three eosin stained serial sections
from each brain at the level of the anterior commissure at 1
and 4 weeks after hypoxia-ischemia. Total brain areas of both
contralateral and ipsilateral sides were measured using the
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Optimas 6.51 Image Analysis System (Media Cybernetics
Inc., Silver Spring, MD, U.S.A.), and data are expressed as
percentage of ipsilateral hypoxic-ischemic side compared to
the contralateral undamaged side.

To delineate the extent of DNA fragmentation bordering
the infarction area, the sections were attained with peroxi-
dase in situ apoptosis detection kit S7100 (Chemicon Interna-
tional, Temecula, CA, U.S.A.) at 1 and 4 week after hypox-
ia-ischemia.

Flow cytometry

To evaluate the extent of apoptotic and necrotic cells, the
midportion of ipsilateral cerebral cortex was dissociated into
a single cell, and flow cytometry was done with a combination
of PI (Sigma, St. Louis, MO, U.S.A.) and annexin V-FITC
(fluorescein isothiocyanate) (Phatmingen, San Diego, CA,
U.S.A.). The flow analysis was performed by a PAS (Particle
analyzing System, Partec, Munster, Germany) equipped with
an argon ion laser tuned at 488 nm wavelength. The green
FITC-annexin V fluorescence was measured at 530+ 15 nm,
and the red PI fluorescence was measured at 600 nm (16).

Statistical method

All data were expressed as meantstandard deviation.
Statistical comparison between cycloheximide-treated group
and control group was performed by Wilcoxon Rank Sum
test. A p-value of <0.05 was considered significant.

RESULTS
Histological evaluation

The percentage of normal brain area at the anterior com-
missure was significantly decreased at 4 week compared to
1 week after hypoxia-ischemia in the hypoxia-ischemia con-
trol group (73£27% vs. 51 131%) due to progression of
infarction, and this decrease was significantly attenuated in
the cycloheximide-treated group compared to the control
group both 1 and 4 week after hypoxia-ischemia (93 7%
vs. 82117%) (Fig. 1A, 2).

The number of TUNEL positive cells in the ipsilateral
cerebral cortex at 48 hr (11211 vs. 24 % 3/high power field)
(Fig. 3), and peri-infarct area 1 and 4 week after hypoxia-is-
chemia were also significantly reduced in the cycloheximide-
treated group compared to the hypoxia-ischemia control
group (Fig. 1B).

Flow cytometry

Representative analyses and regional percentage of an an-
nexin V versus PI dot plot of ipsilateral cerebral cortex in
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Fig. 1. Representative photomicrographs of Eosin staining (A) and TUNEL staining (B) at the anterior commisure from the hypoxia-ischemia
control group (HI) and hypoxia-ischemia with cycloheximide treatment group (HI-CHX) 1 and 4 week after the injury. Note progression of
infarction in HI, and significantly reduced infarct area and less TUNEL-positive staining cells bordering the infarct of HI-CHX, compared to HI.
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Fig. 2. Percentage of normal brain area at the anterior commissure
from the hypoxia-ischemia control group (HI) and hypoxia-ischemia
with cycloheximide treatment group (HI-CHX) 1 and 4 week after
the injury. Significantly increased infarct area at 4 week compared
to 1 week after the insult in HI, and significantly reduced infarct
area of HI-CHX, compared to HI, was observed. *, p<0.05 com-
pared to HI. ', p<0.05 compared to 1 week. All values are mean
+standard deviation.

hypoxia-ischemia control and cycloheximide-treated group
at 48 hr after hypoxia-ischemia are presented in Fig. 4. In the
cycloheximide-treated group, the percentage of necrotic and
apoptotic cells in the respective area of Q2 (annexin V*/PI")
and Q4 (annexin V'/PI") decreased, the live cells in Q3 (annex-
in V7/PT’) increased, and the damaged cells in Q1 (annexin
V/PI") were not significantly different compared to the con-
trol group (Table 1).

DISCUSSION

In the present study, the area of cerebral infarction at 4
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Fig. 3. Representative photomicrographs of fluorescent staining
for TUNEL (green) and DAPI (blue) in the ipsilateral cortex (A) and
the number of TUNEL positive cells (B) from the hypoxia-ischemia
control group (Hl)and hypoxia-ischemia with cycloheximide treat-
ment group (HI-CHX) 48 hr after the injury. Significantly less TUNEL-
positive staining cells of HI-CHX, compared to HI, are observed.
All values are mean = standard deviation. *, p<0.05 compared to
HI. Original magnification x 400.

week was much larger than that at 1 week after the hypox-
ic-ischemic insult, indicating that newborn brain infarction
can develop and progress in a very delayed fashion (17). These
findings implicate that additional caution will be necessary
for selecting a temporal endpoint for measurement of brain
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Fig. 4. Representative flow cytogram of an annexin V binding (ab-
scissa, FL1) versus propidium iodide uptake (ordinate, FL2) in
the ipsilateral hemisphere of the newborn rat brain cells at 48 hr
after hypoxia-ischemia. The numbers in the left upper quadrant,
right upper quadrant, left lower quadrant and right lower quad-
rant represent the percentage of damaged (annexin V/PI), necrot-
ic (@annexin V*/PI"), live (annexin V/PI"), and apoptotic cells, respec-
tively. HI, hypoxia-ischemia control group; HI-CHX, hypoxia-ische-
mia with cycloheximide treatment group.

injury in a newborn rat pup model of cerebral hypoxia-
ischemia. Conventional determination of the magnitude of
infarction 1-2 week after injury would have grossly under-
estimated the damage. Moreover, these findings suggest the
intriguing possibility that surprisingly delayed therapeutic
interventions might prove to be valuable in reducing the
brain tissue loss ultimately resulting from neonatal hypox-
ic-ischemic insults. Further studies will be necessary to clar-
ify this.

In the present scudy, TUNEL staining was performed to
look for evidence of nuclear DNA breakdown, a common
feature of apoptosis (4, 18). Prominent TUNEL positive cells
were observed in the ipsilateral cortex at 48 hr and in the peri-
infarct area at 1 and 4 week after hypoxia-ischemia. Further-
more, treatment with cycloheximide markedly reduced the
number of TUNEL positive cells and the ensuing cerebral
infarction, and this protective effect of cycloheximide was not
transient. Thus our data point to the likelihood that apop-
tosis plays an important role in the development of delayed
infarction (11, 12, 17), and protein synthesis inhibitors, as
well as other anti-apoptotic strategies, may have therapeutic
utility in a newborn rat pup model of hypoxia-ischemia even
when given after the insult (3, 8). Although we did not ver-
ify here that cycloheximide indeed inhibited brain protein
synthesis, our cycloheximide regimen has been known to
inhibit forebrain protein synthesis in 7-day old rat pups (15).
The reason why inhibition of protein synthesis should block
apoptosis has not been completely understood, but presum-
ably some critical protein must be synthesized de novo before
apoptosis can proceed (7).

The absolute criteria for distinction between apoptosis and
necrosis have not been delineated. As several recent studies
have demonstrated that necrotic neurons can be TUNEL
positive (4, 19), the detection of endonucleolytic DNA degra-
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Table 1. Regional cell percentage of ipsilateral hemisphere at
48 hr after hypoxia-ischemia

Q1 (%) Q2 (%) Q3 (%) Q4 (%)

HI 174+106 5.66+392 7812+6.27 14.68+2.02
HI+CHX 065055 051+£0.20° 91.63+135° 7.21+0.96*

Q1, Damaged (Annexin V-/Propidium iodide*) cells; Q2, Necrotic (Annexin
V*/Propidium iodide*) cells; Q3, Live (Annexin V-/Propidium iodide") cells;
Q4, Apoptotic (Annexin V*/Propidium iodide’) cells; HI, hypoxia-ischemia
control group; HI+CHX, hypoxia-ischemia with cycloheximide treatment
group. All values given are mean = standard deviation.

*, p<0.05 compared to HI.

dation cannot be a specific marker for apoptosis. Recently,
flow cytometry has been established as a sensitive, rapid and
objective method to distinguish the mode of cell death com-
pared to the alternative methods such as morphological anal-
ysis (16, 20-24). Exposure of phosphatidylserine on the out-
side of the plasma membrane, the early and most character-
istic change of apoptosis, can be detected by annexin V (20-
24). The disruption of the plasma membrane and alterations
in permeability, observed in necrotic cells, could be detected
by staining with PIL. Therefore, by combined staining of neu-
ronal cells with both annexin V and PI as done in the pre-
sent study, it was be possible to distinguish live cells, apop-
totic cells, damaged cells, and necrotic cells by flow cyto-
metry (16, 20-25).

As we hypothesized that cycloheximide would reduce only
the apoptotic cell death by inhibiting active protein synthesis
(7), our data of simultaneous inhibition of both apoptosis
(annexin V'/PI") and necrosis (annexin V*/PI") with cyclo-
heximide treatment observed by flow cytometry in the pre-
sent study were rather unexpected. One possible explanation
might be that the neuroprotective effect of cycloheximide
might be mediated, at least in part, by a reduction in gluta-
mate release and inhibition of the ensuing excitotoxic necro-
sis (26). Another possibility is that as some necrotic cells rep-
resent the secondary degradation of apoptotic cells, inhibition
of apoptosis with cycloheximide might also attenuate the
secondary necrosis (5, 21). Otherwise, the simple dichotomy
of apoptosis or necrosis could not account for the complex
mechanism of neuronal cell death (5, 6, 21), and the two
mechanisms of neuronal death may be interrelated in a way
yet to be defined (27). Further studies will be necessary to
clarify this.

In conclusion, our data support the hypothesis that apop-
tosis plays an important role in the development of delayed
brain injury, and inhibition of apoptosis with cycloheximide
reduces the ensuing cerebral infarction in a newborn rat pup
model of cerebral hypoxia-ischemia. These results suggest
that anti-apoptotic treatments may have a useful role as neu-
ral rescue therapies for newborn infants, and such treatments
deserve further exploration.
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