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Aldosterone Upregulates Connective Tissue Growth Factor Gene
Expression via p38 MAPK Pathway and Mineralocorticoid Receptor in

Ventricular Myocytes

The effect of aldosterone on connective tissue growth factor (CTGF) was examined
in rat embryonic ventricular myocytes. Upon aldosterone treatment, CTGF expres-
sion was significantly increased in a dose and time-dependent manner. To explore
the molecular mechanism for this upregulation, we examined the role of mineralocor-
ticoid receptor. Pre-treatment of an antagonist (spironolactone) at 5-fold excess of
aldosterone blocked the CTGF induction by aldosterone, suggesting that the upreg-
ulation was mediated by mineralocorticoid receptor. Aldosterone treatment resulted
in activation of ERK1/2, p38 MAPK, and JNK pathways with a more transient pat-
tern in p38 MAPK. Blocking studies using pre-treatment of the inhibitor of each path-
way revealed that p38 MAPK cascade may be important for aldosterone-mediated
CTGF upregulation as evidenced by the blocking of CTGF induction by SB203580
(p38 MAPK inhibitor), but not by PD098059 (ERK1/2 inhibitor) and JNK inhibitor I.
Interestingly, JNK inhibitor | and PD098059 decreased the basal level of CTGF ex-
pression. On the other hand, pre-treatment of spironolactone abrogated the p38
MAPK activation, indicating that mineralocorticoid receptor mechanism is linked to
p38 MAPK pathway. Taken together, our findings suggest that aldosterone induces
CTGF expression via both p38 MAPK cascade and mineralocorticoid receptor and
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that cross-talk exists between the two pathways.
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INTRODUCTION

Aldosterone is a steroid hormone released by the adrenal
cortex. Classically, it acts on kidney, colon and sweat/salivary
glands to promote unidirectional sodium transport (1). Recent
studies, however, suggested that aldosterone might have its
direct effect on the heart. In this regard, aldosterone was report-
ed to alter cardiac remodeling and promote fibrosis in vivo
(2, 3). Also, it was shown that aldosterone promotes collagen
production in cardiac fibroblasts in vitro (4-7). In an animal
model of hyperaldosteronism, significant cardiac fibrosis was
observed (8). Consistent with these findings, convincing evi-
dence for a local cardiac aldosterone system was reported in
the normal rat heart (9). Moreover, recent clinical trial (the
Randomized Aldactone Evaluation Study [RALES]) demon-
strated that a mineralocorticoid receptor antagonist, spirono-
lactone, has a significant beneficial effect on mortality and
morbidity of patients with heart failure (10), suggesting a
crucial role for aldosterone.

Connective tissue growth factor (CTGF) is a cysteine-rich,
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38-kDa polypeptide that is induced by dexamethasone, trans-
forming growth factor (TGF)-3 1, vascular endothelial growth
factor (VEGF), and thrombin. It was originally isolated from
human umbilical vein endothelial cells (11) and was subse-
quently found in many cells including fibroblasts, smooth
muscle cells, and chondrocytes (12-14). CTGF is involved in
many cellular processes underlying fibrosis such as cell prolif-
eration, migration, adhesion, and the synthesis of extracellular
matrix (ECM) (15). Because CTGF induces fibronectin and
collagen type I, which are the molecules abnormally deposited
in fibrotic lesions of major organs such as liver, kidney, lung,
and skin (16-19), it was suggested to be involved in the devel-
opment of fibrotic pathology (20).

With regard to the role of CTGF in the heart, in situ hybri-
dization studies showed that CTGF mRNA is increased in
cardiac myocytes and mesenchymal cells in the infarct zone
of rat hearts following myocardial infarction (21). Significant
upregulation of CTGF was also detected in the heart of patients
diagnosed with ischemic heart disease (22). In addition, it
was demonstrated that CTGF expression is induced by TGE- 8
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in cardiac fibroblasts and cardiac myocytes where concomi-
tant increase in the production of fibronectin, collagen, and
plasminogen activator inhibitor-1 was observed (22).

Despite these known behaviors of CTGF and aldosterone,
studies on the direct relationship between the two molecules
have been limited. Here, we examined the effect of aldosterone
on CTGF expression in rat embryonic ventricular myocytes
(H9c2). The underlying mechanism for aldosterone-mediated
CTGF upregulation was also studied to have further insight
into the CTGF induction pathway. We found that CTGF
expression is increased by aldosterone in a dose- and time-
dependent manner and that both mineralocorticoid receptor
and p38 MAPK pathway are involved in this upregulation.
Moreover, we present evidence that mineralocorticoid recep-
tor is connected to p38 MAPK pathway. Our findings war-
rant further study on the signaling cascades that lead to CTGF
induction by aldosterone.

MATERIALS AND METHODS
Cell culture

Rat embryonic ventricular myocytes (H9c2) were cultured
in a humidified atmosphere (5% CO:) at 37°C in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum (GIBCO; Grand Island, NY, U.S.A.) supple-
mented with penicillin (100 units/mL) and streptomycin (10
pg/mL). The cells were seeded in 60 mm plate and cultured
for 24 hr in a serum-free DMEM until the addition of aldos-
terone. Inhibitors were added to the cell 30 min before aldos-
terone treatment.

Northern blot analysis

Total cellular RNA was isolated using TRIZOL reagent
(GIBCO). The integrity of RNA was checked on 1% agarose/
formaldehyde gel. The RNA was quantified by spectropho-
tometer at 260 nm. For Northern blot analysis, 10 ug of the
RNA was run in the gel followed by transfer to nitrocellulose
membrane (Schleicher & Schuell; Dassel, Germany) and fixation
using an UV cross-linker (Stratagene; La Jolla, CA, US.A.)
at 120,000 pJ/cm?. Prehybridization and hybridization were
petformed at 42°C in 5 X SSPE (1 X SSPE=0.18 M NaCl, 10
mM NaH:POs, 1 mM EDTA, pH 8.0) solution containing
50% formamide, 10 X Denhardt’s solution, and 0.5% (w/v)
SDS. After prehybridization for 2 hr, the membranes were
hybridized with the ?P-labeled CTGF cDNA or 18S rRNA
probes. The latter was used to normalize RNA loading. The
membranes were washed with low stringency buffer, 2 X SSC
solution (1 XSSC=150 mM NaCl, 15 mM CéH;5NasO» -
2H:0) containing 0.1% (w/v) SDS, for 30 min at room tem-
perature followed by washing with high stringency buffer
(0.5 X SSC containing 0.1% (w/v) SDS) for 30 min at 50°C.
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They were then washed with 0.2 X SSC for 2 hr at 55°C . The
films were exposed at -80°C and the intensities of the CTGF
and 18S rRNA bands were quantified using densitometer.

Western blot analysis

The cells were harvested in lysis buffer A (50 mM Tris-HCI,
pH 7.4, 1% (v/v) NP-40, 0.25% (w/v) sodium deoxycholate,
150 mM NaCl, 1 mM EDTA, 1 mM PMSE, 1 ug/mL apro-
tinin, 1 yg/mL leupeptin, and 1 ug/mL pepstatin). Then the
lysates were incubated on ice for 30 min with occasional mix-
ing followed by centrifugation at 13,000 ¢ for 10 minat4°C.
Protein concentrations were determined by the commercial
kit (Bio-Rad; Hercules, CA, U.S.A.). After boiling for 5 min
in SDS sample buffer, the lysates (20 ug) were subjected to
10% SDS-polyacrylamide gel electrophoresis and transferred
to Hybond-P membrane (Amersham) using electro-transfer
apparatus (Bio-Rad). The membranes were incubated for 1 hr
in 0.1% (v/v) Tween 20-Tris buffered saline (TBST) solution
containing 5% (w/v) skim milk for blocking. They were then
incubated with primary antibody (polyclonal rabbit antibod-
ies for the phosphorylated and total forms of ERK1/2, p38
MAPK, and JNK from Cell Signaling Technologies, Bevetly,
MA, U.S.A.) at 1:1,000 dilution in blocking solution at 4°C
overnight. After washing three times in TBST for 10 min,
membranes were incubated with 1:2,500 dilution of goat anti-
rabbit secondary antibody conjugated to horseradish peroxi-
dase (Amersham, Piscataway, NJ, U.S.A.) for 1 hr at room
temperature. The blots were washed three times in TBST and
developed using chemiluminescence kit (ECL; Amersham).

Statistical analysis

The data are expressed as means +SEM. Differences be-
tween experimental groups were evaluated for statistical sig-
nificance using student’s t-test and one-way ANOVA (New-
man-Keuls multiple comparison test). A p value less than
0.05 was considered statistically significant.

RESULTS
CTGF is upregulated by aldosterone

Despite many reports on the role of aldosterone and CTGF
in tissue fibrosis (3, 4, 16-19, 23), the direct relationship
between the two molecules has remained unknown. To elu-
cidate the effect of aldosterone on CTGF expression, we first
investigated whether aldosterone can increase CTGF expres-
sion in rat embryonic ventricular myocytes, H9c2. When
the cells were treated with various (1 nM to 10 uM) concen-
trations of aldosterone (Sigma, St. Louis, MO, U.S.A.) for 2 hr,
CTGF mRNA was significantly upregulated above basal level
by aldosterone at concentrations of 10 nM or higher (Fig. 1A).
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Fig. 1. CTGF expression is increased by aldosterone in a dose- and time-dependent manner. The H9c2 cells were treated with various
concentrations of aldosterone for 2 hrs (A) and for the indicated times at 1 #M concentration (B). After treatment of aldosterone, 10 ug of
total RNA from each sample was subjected to Northern blot analysis. The 18S rRNA was used as an internal control to normalize the level
of CTGF mRNA. The bar graph shows the value of each sample relative to that of control that received no aldosterone treatment. Repre-
sentative blot from three separate experiments is shown. The data are means +SEM (n=3, *p<0.05, '0<0.01, }p<0.001 vs. control).
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Fig. 2. Spironolactone, a mineralocorticoid receptor antagonist,
inhibits aldosterone-mediated CTGF upregulation. The H9c2 cells
were pretreated with spironolactone at various concentrations from
0.1 UM to 2.5 uM for 30 min and then exposed to 0.5 M aldos-
terone. Ten ug of total RNA was analyzed for the level of CTGF
mRNA. The 18S rRNA was used as an internal control to normalize
the data. Each bar denotes the value relative to that of control that
received no treatment. One of the results from two separate experi-
ments is shown. The data are means +SEM (n=2, *p<0.01 vs. con-
trol [lane 1]).

The amounts of 18S rRNA were similar among different
samples. Next, we examined the time course of CTGF upreg-
ulation by aldosterone (Fig. 1B). The peak expression of CTGF
was seen at 2 hr after aldosterone treatment and further incu-
bation did not help to increase the level of CTGF mRNA.
These data indicate that CTGF mRNA is upregulated by
aldosterone in a dose- and time-dependent manner.

Mineralocorticoid receptor is involved in CTGF upregula-
tion

To explore molecular mechanism of the aldosterone-induced
CTGF upregulation, we first examined the role of mineral-
ocorticoid receptor by using spironolactone, a mineralocorti-
coid receptor antagonist. Spironolactone can prevent myocar-
dial fibrosis in a rat model of primary and secondary hyper-
tension even without blood pressure effects (24, 25) and thus
would be expected to prevent upregulation of CTGE. The
HO9c2 cells were treated with different (0.1 uM to 2.5 uM)
concentrations of spironolactone (Sigma) for 30 min and then
exposed to 0.5 yM aldosterone. As shown in Fig. 2, pre-treat-
ment of spironolactone at 5-fold excess of aldosterone blocked
the transcriptional upregulation of CTGF by aldosterone. This
result suggests that mineralocorticoid receptor is involved
in CTGF induction by aldosterone.

Aldosterone activates ERK, JNK, and p38 MAPK

MAPKs such as extracellular signal-regulated kinases (ERK),
c-Jun NH:-terminal kinases (JNK), and p38 MAPK play a
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Fig. 3. Time course of MAPK activation by aldosterone. The H9c2 cells were exposed to 1 ¢M aldosterone for the indicated times. The
cells were then harvested and 20 ug of the lysates subjected to Western blot analysis. To monitor activation of MAPKs, phospho-specific
antibodies that selectively recognize the active forms of ERK1/2, p38 MAPK, and JNK were used. Antibodies that bind to either form of
ERK1/2, p38 MAPK, and JNK were used to ensure equal loading of the samples. The representative data from two to three experiments

are shown.
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Fig. 4. Involvement of p38 MAPK pathway in aldosterone-mediated
CTGF upregulation. CTGF induction by aldosterone is inhibited
by p38 MAPK inhibitor (SB203580), but not by ERK and JNK in-
hibitors (PD098059 or JNK inhibitor I, respectively). The H9c2 cells
were pre-treated with SB203580 (10 #M), PD098059 (50 ¢M), or
JNK inhibitor | (20 M) for 30 min and then exposed to 1 ¢#M aldos-
terone. After 2 hrs, total RNA (10 ug) was harvested and analyzed
for the level of CTGF mRNA. Representative result from three sep-
arate experiments is shown. The CTGF induction fold is represent-
ed as mean £+ SEM (n=3, *p<0.05 vs. no inhibitor treatment).

pivotal role in transducing extracellular signal (26). To inves-
tigate involvement of MAPK in aldosterone-mediated CTGF
induction, we examined activation kinetics of each MAPK
in H9¢2 cells by Western blot analysis using phospho-specific
antibodies (Fig. 3). Compared with the control cells at 0 min,
aldosterone treatment resulted in strong activation of ERK1/
2, reaching plateau at 20 min. The more transient pattern
of activation was observed in p38 MAPK with maximum at
10 min after aldosterone treatment. The JNK was also acti-
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Fig. 5. Effect of spironolactone on p38 MAPK phosphorylation. (A)
Western blot analysis of the H9c2 cell lysates harvested at 10 min
after aldosterone treatment. One group of cells were pretreated
with spironolactone (2.5 #M) for 30 min and then exposed to 0.5
#M aldosterone for 10 min. The other group was treated with aldos-
terone only. The blots were probed with anti-phospho-p38 MAPK
antibody (top), stripped, and then reprobed with anti-p38 MAPK
antibody (bottom). (B) Quantification of p38 MAPK activation. Spi-
ronolactone pre-treatment resulted in statistically significant inhi-
bition of aldosterone-induced p38 activation. The intensity of each
band was quantified by densitometer. Each bar denotes the ratio
of phospho-p38 MAPK/total p38 MAPK expressed as mean=+SEM.
Solid bar: aldosterone only, Hatched bar: spironolactone pre-treat-
ment plus aldosterone (n=3, *p<0.05).

vated by aldosterone with peak at 60 min. These results indi-
cate that aldosterone activates all three MAPK pathways.

p38 MAPK pathway is involved in the CTGF induction by
aldosterone

We next investigated involvement of each MAPK pathway
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in CTGF upregulation by aldosterone. To this end, inhibitors
of ERK1/2, p38 MAPK, and JNK pathway (PD098059 (27),
SB203580 (28), and JNK inhibitor I (29), respectively; Cal-
Biochem, La Jolla, CA) were used. After pre-incubation in
the presence of the inhibitor for 30 min, the cells were exposed
to aldosterone (1 uM). As shown in Fig. 4, aldosterone-medi-
ated CTGF induction was significantly blocked by SB203580,
but not by PD098059 and JNK inhibitor I. This result indi-
cates that p38 MAPK cascade as well as other pathways inhib-
ited by SB203580 may be important for the CTGF upregu-
lation following aldosterone treatment. On the other hand,
JNK inhibitor I and PD098059 decreased the basal level of
CTGEF expression (lane 7 and lane 5, Fig. 4) with no loss in
induction fold, suggesting that ERK1/2 and JNK pathways
may be required for basal expression of CTGE

Effect of spironolactone on p38 MAPK activation

Because aldosterone upregulated CTGF expression via both
mineralocorticoid receptor and p38 MAPK pathway, we exam-
ined the effect of spironolactone treatment on p38 MAPK
activation (Fig. 5). Interestingly, pre-treatment of spironolac-
tone at 5-fold excess of aldosterone completely blocked aldos-
terone-induced activation of p38 MAPK, indicating that
mineralocorticoid receptor mechanism is linked to MAPK
pathway.

DISCUSSION

Despite years of studies on aldosterone and CTGF with
respect to fibrosis, the direct relationship between the two
molecules has remained unelucidated. In the present study,
we investigated the effect of aldosterone on CTGF in rat em-
bryonic ventricular myocytes and found that CTGF expres-
sion is increased by aldosterone in a time- and dose-depen-
dent manner. Our observation that aldosterone upregulates
CTGEF expression in heart-derived myocytes is supported in
part by the recent microarray study of another group who
added CTGF to the list of early aldosterone-responsive genes
in mouse inner medullary collecting duct cells (30). We also
found that both mineralocorticoid receptor and p38 MAPK
pathway are important for aldosterone-mediated CTGF upreg-
ulation. Lastly, we present circumstantial evidence that there
exists cross-talk between mineralocorticoid receptor cascade
and p38 MAPK activation.

Aldosterone and other adrenal corticosteroids exert many
of their physiological actions through modulation of gene
expression. The classic genomic action of aldosterone is char-
acterized by a latency of onset and by the sensitivity to spe-
cific antagonist of intracellular receptor such as spironolac-
tone. Our results here strongly suggest that the classic genom-
ic action of aldosterone was involved in the upregulation of
CTGF as the time course of CTGF upregulation indicated a
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substantial latency (Fig. 1B) and because pre-treatment of
spironolactone blocked the induction of CTGF (Fig. 2). More-
over, homology searches of the CTGF gene for the transcrip-
tion factor binding elements have identified at least three
putative steroid-responsive elements (SREs) in the 5" UTR
region of the CTGF which spans 1 kb from the transcriptional
start site (data not shown). Since the genomic action of aldos-
terone involves interaction between the intracellular recep-
tor-steroid complex and SRE located within promoter of tar-
get genes, these SREs might have acted as cis-enhancer ele-
ments in the upregulation of CTGF by aldosterone.

We also focused our attention on MAPKs as they are com-
mon participants in signal transduction pathways initiated
by growth factors, cytokines, stresses, and various pharmaco-
logical compounds (31, 32). We demonstrate here that p38
MAPK pathway is important for the aldosterone-mediated
CTGF induction and that ERK1/2 and JNK pathways may
be required for basal expression of CTGF in ventricular myo-
cytes (Fig. 4). Consistent with our data, it was previously
reported that p38 MAPK inhibitor, FR-167653, could sig-
nificantly suppress the expression of CTGF mRNA during
the later phase of bleomycin-induced pulmonary fibrosis and
thus ameliorates the fibrosis in a murine model (33). On the
other hand, it was recently reported that aldosterone augments
JNK activation induced by endothelin-1 in cardiac myocytes
(34). Also, it was shown that aldosterone stimulates prolifer-
ation of cardiac fibroblasts by activating Ki-RasA and ERK1/2
signaling, which are thought to be involved in the patholog-
ical actions of aldosterone on the heart (7). These different
findings suggest the presence of complicated signaling pro-
cesses and the interactions involved in the pathogenesis of
cardiac fibrosis.

CTGF expression is also induced by TGF-3 in cardiac fibro-
blasts and cardiac myocytes (22). Based on our observation
that aldosterone upregulates CTGE, it can be presumed that
the role of TGF-8 and aldosterone would overlap as the in-
ducer of cardiac fibrosis. Moreover, the same induction mech-
anisms including p38 MAPK pathway might be involved
in CTGF induction by TGF-43. Although aldosterone might
exert its indirect effect on TGF-4 via CTGE, it would be inter-
esting to see in detail the interplay between TGF-4 and aldos-
terone in the progression of cardiac fibrosis.

With regard to the effect of spironolactone on MAPK acti-
vation, the spironolactone pre-treatment resulted in blockade
of p38 MAPK activation (Fig. 5). One simple explanation
for this observation would be that mineralocorticoid receptor
acts at upstream of p38 MAPK pathway, thus relaying the
signal to p38 MAPK upon binding of aldosterone. Another
possibility is that spironolactone might directly inhibit acti-
vation of p38 MAPK via yet unknown mechanisms. When
a group of responses that are mediated by receptors of aldos-
terone and several different pathways are taken into account,
definitive explanation of the above observation may be diffi-
cult at present and will have to wait for the more detailed stud-
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ies on the cross-talk between divergent signaling cascades.

One of the limitations of the present study is that the H9¢2
embryonic ventricular myocytes used in this study cannot
actually represent the adult cardiac myocytes. Because the
HO¢2 cells can differ from adult cardiomyocytes by a num-
ber of features, the conclusions made from the experiments
in H9¢2 can hardly be extended to adult cells. Another caveat
is that cardiac myocytes synthesize only collagen IV, a minor
membrane-bound form, and therefore do not contribute sig-
nificantly to adult cardiac fibrosis via collagen production.
Moreover, a direct induction of collagen synthesis has never
been observed in other cardiac fibroblast or myocytes, greatly
weakening the significance of these cells in cardiac fibrosis.
Further studies on additional fibrosis factors such as matrix
metalloproteinases and fibronectin as well as the interactions
of several cell types involved are required to evaluate the over-
all importance of CTGF induction by aldosterone in cardiac
fibrosis.

In conclusion, our study shows for the first time that the
CTGF induction by aldosterone involves p38 MAPK cas-
cade and mineralocorticoid receptor and that the two path-
ways are linked. Our findings set the stage for detailed studies
on the signaling cascades that are initiated by aldosterone and
lead to CTGF upregulation.
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