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Signaling specificity is a central question in cell sig-
naling. Impottant aspects of the problem are how recep-
tors that use the same biochemical pathway can generate
agonist-specific signals and how divergent signaling path-
ways to form signaling networks (1, 2). Ca’’ signaling in
epithelial cells is particularly suitable to address these
questions. The polatized function of epithelial cell re-
quites specialized and polarized organization of signaling
complexes (3).

Many dedicated functions of polarized cells, such as
exocytosis and electrolyte and fluid transport, are regu-
lated by the free cytosolic Ca™" concentration ([Ca™']) on
a milliseconds time scale. Cells regulate [Ca®']; by a
coordinated action of active Ca’" pumps that generate
steep Ca’" gradients, and passive Ca’" channels that can
rapidly dissipate these gradients (4). A Ca’" signal can
be initiated by G protein-coupled receptors through
activation of PLC. The sequence of events initiated by
receptot activation to generate a variety of precisely
orchestrated Ca”" signals, such as repetitive Ca”" oscilla-
tions and propagated Ca”" waves, have been described in
several cellular systems including epithelial cells (3).

The G proteins-coupled Ca® signaling system in
polarized cells can generate receptot-specific signals. An
example is the recepror-specific Ca’" waves generated by
stimulation of the muscarinic, Bombesin (BS) and CCK
receptors of the same pancreatic acinar cell (5). Hence,
all three receptots use the same biochemical pathway but
generate receptor-specific signals. It appears that cells use
both targeting of signaling proteins to mictodomains and
regulatory mechanisms to achieve such receptor specific
signaling responses.

How signaling specificity is gained by targeting of
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signaling proteins to signaling microdomains was review-
ed recently (1) and is the subject of a special issue of
Cell Calcium (November 1999). In the case of polarized
cells, all isoforms of IP;Rs are expressed at high levels
in the luminal pole (6-9). Furthermore, these cells express
SERCA and PMCA pumps in a polatized manner, which
appears to play a role in propagation of Ca’" waves (10).
Finally, it seems that epithelial cells express vatious
receptots in a non-uniform fashion, with high levels at
the lateral borders, next to the tight junctions (11). At
present, most of the evidence for a role for polarized
expression of signaling proteins in signaling specificity is
corollary in nature. However, it is now becoming increas-
ingly possible to manipulate the expression of ptoteins
in native cells so that the role of polatized expression of
signaling proteins in signaling specificity can be studied
mote directly.

Another means in achieving signaling specificity is
through biochemical manipulation of signaling pathways.
Differential coupling or activation of Gq-coupled recep-
tors by membets of the Gq class of G proteins can be
demonstrated (5). This differential coupling was not due
to coupling to different members of the Gq class subunits
ot different combinations of G (5, 12). Furthermore, dele-
tion of a single ot several combinations of two subunits
in mice revealed complete promiscuity of coupling of
vatious receptots to Gq class subunits in pancteatic and
submandibular gland cells (13). Rather, RGS proteins
seem to determine coupling specificity.

In the tutn over cycle of G proteins the intrinsic
GTPase activity of the subunits is much slower than the
rate of the receptor-stimulated GDP/GTP exchange
reaction (14). This paradox was solved with the discovery
of the Regulation of G protein Signaling (RGS) ptoteins
(15, 16). Shortly after their discovety, it was found that
RGS proteins catalyze the GTPase activity of the sub-
units of many members of the G proteins family (17).
All RGS proteins have three domains, a vatriable N
terminal domain, a homologous RGS box encompassing
about 125 amino acids and a vatiable C terminal domain
(16, 18). The GTPase accelerating (GAP) function of
RGS proteins is confined to the RGS box (19). The
mechanism responsible for the differential sensitivity of
Gq-coupled receptor to guanine nucleotides was clatified
once their interaction with RGS proteins was examined
(20, 21). The muscarinic, BS and CCK receptors showed



Receptor-Specific Ca;" Signaling in Polarized Cells

between 0-1,000 differential sensitivity to the same or
different RGS proteins (20). Deletion mutations showed
that the N terminal domain of RGS protein is essential
for their activity in vivo and it mediates receptor recog-
nition in vitro and in vivo (21). Hence, RGS proteins
confer signaling specificity to G protein coupled recep-
tots.

Considering the pivotal role of RGS proteins in tegu-
lating G protein-dependent signaling, it is important to
understand how the activity of RGS proteins is regulated
in vivo. Several clues suggest that the activity of RGS
proteins is tegulated during cell stimulation. RGS pro-
teins seems to have a tonic inhibitoty activity since they
inhibit G proteins-dependent signaling when added as
recombinant proteins to the cytosol (3). In unpublished
work, we found that several mutants of RGS4 in the box
domain act as dominant negative RGS proteins and were
able to stimulate PLC activity and initialize Ca®" oscilla-
tions and/or a large Ca’ release from internal stores. In
additdion, antibodies that inhibit the action of RGS pro-
teins also initiated Ca’" oscillation followed by large Ca™
release from internal stotes.

The simplest interpretation of the action of RGS
protein in vivo is that RGS proteins are active in resting
cells and act as GAPs to inhibit signaling. Their activity
can be antagonized by the dominant negative RGS pro-
teins or the scavenging antibodies to initiate signaling.
Agonist-bound receptors not only accelerate the GDP/
GTP exchange on the subunits, but also inhibit the
action of the native RGS proteins to amplify the signal
and allow Ca’" oscillations. Hence, RGS proteins may
provide a biochemical control of Ca® oscillations. Since
the discovery of the biphasic tegulation of the IP;R
channel activity by Ca®* (22) and the finding that non-
metabolizable IP; analogues can trigger Ca”" oscillations
(23), it was generally assumed that Ca™ oscillations is
a biophysical phenomenon. However, the first measute-
ment of IP; in single cells reported recently showed that
Ca’" oscillations follow oscillatory changes in IP; concen-
tration (24). That is, Ca™ oscillations may be a bio-
chemical rather than a biophysical phenomenon. RGS
proteins can provide the biochemical pathway to allow
Ca®" oscillation and control their frequency.

Another aspect of Ca” signaling complexes is the
communication between the ER and the plasma mem-
brane (PM). It is now clear that a small pottion of the
ER pool is responsible for gating the Icrac channel in the
PM (25, 26). Recent wotk indicates that this allow the
IPsRs to gate the store operated channels by conforma-
tional coupling (27, 28). This coupling is mediated by the
N terminal domain of the IPsR (28) and appeats to be
confined, at least in patt, to defined sequences in the
IP;R (29). Conformational coupling can be shown with
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recombinant or native store-operated channels (30, 31).
This mode of gating allows intimate communication
between the ER and PM or between the cell interior and
exterior.

Better undetstanding of targeting of signaling proteins
to cellular microdomains and their interaction will help
revealing how signaling specificity among different recep-
tor complexes is achieved and how the activity of sig-
naling networks is coordinated.
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