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Year-in-Review of Lung Cancer
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In the last several years, we have made slow but steady progress in understanding molecular biology of lung 
cancer. This review is focused on advances in understanding the biology of lung cancer that have led to proof 
of concept studies on new therapeutic approaches. The three selected topics include genetics, epigenetics and 
non-coding RNA. This new information represents progress in the integration of molecular mechanisms that to 
identify more effective ways to target lung cancer.
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Introduction

  Lung cancer is the leading cause of cancer-related 

mortality in the developed world, accounting for 26∼

29% of all cancer deaths
1
. Non-small cell lung cancer 

(NSCLC) accounts for 80% of all lung cancer diagnosis 

and the majority (60∼80%) of patients are diagnosed 

at an advanced stage. Consequently, the prognosis for 

NSCLC remains poor, with a 5-year survival rate of 

15%
2
.

  The histologic subtype of lung cancer has had little 

impact on the selection of therapy. Non-squamous cell 

histology is an indication for chemotherapy such as pe-

metrexed and bevacizumab. This type of stratification 

represents the first step toward personalized therapy in 

NSCLC
3
. Beyond histology, some molecular alterations 

have been shown to correlate with response to treat-

ment with chemotherapy. New therapies targeting the 

EML4-ALK, BRAF, FGFR and other molecular alterations 

are under way to help define specific subsets of patients 

responsive to certain molecularly targeted treatments
4
.

  The ongoing identification of novel molecular abnor-

malities in lung cancer continues to present exciting op-

portunities in targeted therapy. In this brief review, 

there will be an effort to discuss some of the develop-

ments in lung cancer biology. As an in depth review 

of all areas of biology is not possible within this manu-

script, three fields (genetics, epigenetics and non-coding 

RNA) were selected for detailed review (Figure 1).

Literature Search

  A literature search from January to December 2011 

was conducted using PubMed and the following search 

terms: "Non-small cell lung cancer/molecular biology," 

"Non-small cell lung cancer/genetics," "Non-small cell 

lung cancer/epigenetics" and "Lung cancer/non-coding 

RNA." Conference proceedings in 2011 for American 

Society of Clinical Oncology (ASCO), American Associa-

tion for Cancer Research (AACR), and the International 

Society for the Study of Lung Cancer (IASLC) World 

Lung Congresses were searched.

Genetics

  Analysis of cancer genome sequences using DNA mi-

croarrays and capillary-based DNA sequencing provide 
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Figure 1. Gene expression 
via genetic, epigenetic and 
posttranscriptional modifi-
cation is a key regulatory 
process in the cell.

insights for understanding cancer biology, diagnosis and 

therapy. However, there are particular challenges for 

the detection and diagnosis of cancer genome altera-

tions. For example, some genomic alterations in cancer 

are prevalent at a low frequency in clinical samples, of-

ten owing to substantial admixture with non-malignant 

cells. Next-generation sequencing technologies can 

solve such problems. Furthermore, these new sequenc-

ing methods make it feasible to discover novel chromo-

somal rearrangements and microbial infections, and to 

resolve copy number alterations at very high reso-

lution5.

  Several recent studies using next generation sequenc-

ing technologies have been reported in lung cancer. 

Lipson et al.6 analyzed genomic DNA from 24 NSCLC 

formalin-fixed paraffin-embedded specimens using an 

assay that captured and sequenced 2,574 coding exons 

representing 145 cancer-relevant genes (genes asso-

ciated with cancer-related pathways, targeted therapy or 

prognosis) plus 37 introns from 14 genes that are fre-

quently rearranged in cancer. Among the 24 NSCLCs, 

50 alterations were identified in 21 genes, with at least 

one alteration being present in 83% (20 out of 24) of 

the tumors. Twelve genes were altered in multiple 

tumors. In addition to the known NSCLC gene alter-

ations, G1849T (V617F) JAK2 mutation and gene fusion 

joining exons 1∼15 of KIF5B to exons 12∼20 of RET 

were notable discoveries. KIF5B-RET fusion was also re-

ported in lung adenocarcinoma of Korean patients using 

next-generation sequencing technologies
7
. These find-

ings suggest that RET kinase inhibitors and JAK in-

hibitors should be tested in prospective clinical trials for 

therapeutic benefit in individuals with NSCLC that carry 

these genomic alterations. In another novel finding us-

ing next generation sequencing technique, Jung et al.
8
 

analyzed the transcriptome of the NSCLC cell line H2228 

and discovered a fusion transcript composed of multiple 

exons of ALK and PTPN3. Detailed analysis of the ge-

nomic structure revealed that a portion of genomic re-

gion encompassing exons 10 and 11 of ALK had been 

translocated into the intronic region between exons 2 

and 3 of PTPN3 8
. In lung cancer, five fusion partners 

of ALK have been reported EML4, TFG, KIF5B, KLC1 

and PTPN3 9
. As more ALK fusion partners are identi-
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Figure 2. Enzymatic conversion of cytosine to 5-hydroxymethylcytosine. DNA methyltransferases (DNMTs) convert cyto-
sine to 5-methylcytosine. 5-hydroxymethylcytosine be converted to 5-hydroxymethylcytosine in an enzymatic process
involving members of the ten-eleven translocation (TET) protein family. 5-hydroxymethylcytosine could be converted to
cytosine through a passive demethylation or an active demethylation pathway.

fied, the population of patients with ALK fusion who 

may potentially benefit from ALK inhibitor therapy may 

be extended.

  The next-generation sequencing could provide in-

novative information in cancer biology. But, to be wide-

ly and routinely used in clinical practice, there needs 

to be further reduction in cost, flexibility in throughput 

and efficiency of data generation, analysis and mana-

gement.

Epigenetics

  Epigenetics is defined as heritable changes in gene 

expression that are not attributable to changes in the 

sequence of DNA. Epigenetic regulation of gene ex-

pression has emerged as a fundamental pathway in the 

pathogenesis of lung cancer. The predominant epi-

genetic mechanisms are DNA methylation and histone 

modifications
10-12

. DNA methylation is the covalent addi-

tion or subtraction of a methyl group to a cytosine nu-

cleotide in a sequence of DNA. Methylation is con-

trolled by a family of specific enzymes known as DNA 

methyltransferases (DNMTs). The addition of methyl 

groups can be highly specific to a particular gene. 

Hypermethylation of CpG islands in the promoter re-

gion of a gene can result in transcriptional silencing of 

the gene, and subsequent loss of protein expression
13

. 

The molecular mechanism of demethylated DNA has 

long been unknown. The recent discovery that the three 

members of the ten-eleven translocation (TET) protein 

family can convert 5-methylcytosine (5-mC) into 5-hy-

droxymethylcytosine (5-hmC) has provided a potential 

mechanism leading to DNA demethylation (Figure 2). 

Moreover, the demonstration that TET2 is frequently 

mutated in hematopoietic tumors suggests that the TET 

proteins could play a crucial role in tumorigenesis
14

. 

The levels of 5-hmC of lung cancer tissues have been 

shown to be markedly depleted with up to a 5-fold re-

duction compared with normal lung tissue
15

. The bio-

logical properties of DNA demethylation by TET pro-

teins in solid tumors was reported earlier this year. 

Kudo et al.
16
 reported that down-regulation of TET1 and 

loss of 5-hmC were induced by oncogene-dependent 

cellular transformation. These results suggest critical 

roles of aberrant DNA demethylation for oncogenic 

processes in solid tissues.

  The discovery of 5-hmC and TET in lung cancer has 

added a new and potentially important dimension to 

our perception of DNA methylation. Further studies are 

required to confirm role of 5-hmc and TET and to inves-

tigate potential clinical applications in lung cancer.

Non-coding RNAs (ncRNA)

  A ncRNA is a functional RNA molecule that is not 

translated into a protein. ncRNAs are regarded as regu-

lators of cell cycle progression, proliferation, and fate. 

There are numerous classes of ncRNAs, including 

microRNAs (miRNA, ∼22 nt) and Piwi-interacting RNAs 

(piRNAs, 18∼30 nt), short translational-regulatory RNAs 

(100∼200 nt), and much longer ncRNAs (lncRNAs, up 

to 10,000 nt)
17,18

. So far, the function of miRNAs as key 

components of the RNA interference (RNAi) pathway, 

their role as tumor suppressors, and their impact on tu-
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Figure 3. Schematic diagram of the four archetypes of longer ncRNAs (lncRNA) mechanism. Signaling: LncRNA ex-
pression can be stimulated in response to certain stimuli, such as cellular stress and temperature. Decoys: Specific
lncRNAs are transcribed and then bind to and titrate away protein factors. Guides: LncRNAs can be molecular guides
by localizing particular ribonucleoprotein complexes to specific chromatin targets. Scaffolds: LncRNAs can bring together
multiple proteins to form ribonucleoprotein complexes. Adopted from Wang and Chang19. Mol Cell 2011;43:904-14.

morigenesis have been demonstrated. Nevertheless, lit-

tle is known about lncRNAs and their impact on tumori-

genesis regulatory processes. LncRNAs participate in a 

wide-range of biological processes. Almost every step 

in the life cycle of genes can be influenced by lncRNAs 

through posttranscriptional gene regulation, RNA matu-

ration, RNA transport and transcriptional gene silencing. 

The molecular mechanisms of lncRNAs are classified in-

to four archetypes: signals, decoys, guides and scaffolds 

(Figure 3). Several lncRNAs possess characteristics from 

multiple archetypes that, in combination, are critical to 

their eventual biological function
19

. Metastasis-associat-

ed-in-lung-adenocarcinoma-transcript-1 (MALAT-1) is an 

lncRNA and highly expressed in several tumor types. 

MALAT-1 strongly associates with serine-arginine rich 

splicing factor (SR) proteins involved in both constitut-

ive and alternative splicing, and the levels of MALAT-1 

regulate the cellular levels of phosphorylated SR 

proteins. These findings imply that the MALAT-1 may 

serve a function in the regulation of alternate splicing 

by modulating the activity of SR proteins
20

. MALAT-1 is 

highly expressed in several human NSCLCs and is a 

strong regulator of NSCLC migration and invasion. 

MALAT-1 RNA expression in squamous cell carcinoma 

of the lung has been associated with a poor prognosis21.

  miRNAs regulate gene expression at the post-tran-

scriptional level through sequence-specific interactions 

with 3'-untranslated regions in mRNAs and also via 

translation inhibition or degradation of mRNAs. Recent 

studies have demonstrated that epigenetic mechanisms 

regulate the expression of miRNAs. An extensive analy-

sis of genomic sequences of miRNA genes has shown 

that approximately half are associated with CpG islands. 

Therefore three main epigenetic events including the 

aberrant hypermethylation of tumor suppressor genes, 

global DNA hypomethylation and post-translational 

modifications of histone could affect miRNA expression 

as well22. Some miRNAs are up-regulated upon the ex-

posure of cells to the agent 5-aza-2'-deoxycytidine, 

upon mutation of DNMTs or upon treatment with his-

tone deacetylase inhibitors23-25. Conversely, another sub-

set of miRNAs controls the expression of important epi-

genetic regulators including DNA methyltransferases, 

histone deacetylases and polycomb group genes26-28. 

This complicated network of feedback between miRNAs 

and epigenetic pathways appears to form an epi-

genetics-miRNA regulatory circuit, which may organize 

the whole gene expression profile in lung cancer 

(Figure 4).

  It has become evident in recent years that the de-reg-
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Figure 4. MicroRNAs (mi-
RNAs) as new characters 
in the plot between epi-
genetics and lung cancer.

ulation of miRNAs and lncRNAs plays a critical role in 

malignant transformation and tumor cell behavior. The 

functional role for the vast majority of these ncRNA is 

still in question. Further study of ncRNA could yield 

new RNA-based targets for the prevention and treatment 

of lung cancer.

Conclusions

  Lung cancer is a disease of genetic alteration, epi-

genetic changes as well as transcription control by 

non-coding RNA. The biology of lung cancer may also 

predict response or outcome to certain chemothera-

peutic agents, serving as biomarkers that could inform 

clinical decisions. Along with newly discovered tumor 

biologic mechanisms, these findings raise hope that can-

cer can and will be vanquished.
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