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Changes in the Expressions of Iba1 and Calcitonin Gene-Related 
Peptide in Adjacent Lumbar Spinal Segments after Lumbar Disc 
Herniation in a Rat Model

Lumbar disc herniation is commonly encountered in clinical practice and can induce 
sciatica due to mechanical and/or chemical irritation and the release of proinflammatory 
cytokines. However, symptoms are not confined to the affected spinal cord segment. The 
purpose of this study was to determine whether multisegmental molecular changes exist 
between adjacent lumbar spinal segments using a rat model of lumbar disc herniation. 
Twenty-nine male Sprague-Dawley rats were randomly assigned to either a sham-operated 
group (n = 10) or a nucleus pulposus (NP)-exposed group (n = 19). Rats in the NP-exposed 
group were further subdivided into a significant pain subgroup (n = 12) and a no 
significant pain subgroup (n = 7) using mechanical pain thresholds determined von Frey 
filaments. Immunohistochemical stainings of microglia (ionized calcium-binding adapter 
molecule 1; Iba1), astrocytes (glial fibrillary acidic protein; GFAP), calcitonin gene-related 
peptide (CGRP), and transient receptor potential vanilloid 1 (TRPV1) was performed in 
spinal dorsal horns and dorsal root ganglions (DRGs) at 10 days after surgery. It was found 
immunoreactivity for Iba1-positive microglia was higher in the L5 (P = 0.004) dorsal horn 
and in the ipsilateral L4 (P = 0.009), L6 (P = 0.002), and S1 (P = 0.002) dorsal horns in the 
NP-exposed group than in the sham-operated group. The expression of CGRP was also 
significantly higher in ipsilateral L3, L4, L6, and S1 segments and in L5 DRGs at 10 days 
after surgery in the NP-exposed group than in the sham-operated group (P < 0.001). Our 
results indicate that lumbar disc herniation upregulates microglial activity and CGRP 
expression in many adjacent and ipsilateral lumbar spinal segments. 
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INTRODUCTION

Lumbar disc herniation can injure spinal nerve roots and cause 
severe radicular pain, characterized by hyperalgesia and allo-
dynia. Previous studies have suggested the symptoms of lum-
bar disc herniation are caused by chemical factors released 
from the nucleus pulposus and by mechanical compression of 
the lumbar nerve root (1-3) and that they are mediated by pro-
inflammatory cytokines derived from the herniated interverte-
bral disc (4,5). Nucleus pulposus contains tumor necrosis factor 
alpha (TNFα), and nucleus pulposus applied to dorsal root 
ganglions (DRGs) induces pain-related behavior in rats and 
morphological and functional changes in DRGs and spinal 
cords (1-4). Several studies have reported increases in prosta-
glandins, pain-associated neuropeptides (e.g., substance P [SP], 
calcitonin gene-related peptide [CGRP]), cytokines (e.g., TNFα), 
and ion channels in DRG neurons and the spinal dorsal horns 
in animal models of disc herniation (6,7). 

  Clinically, lumbar disc herniation is usually diagnosed based 
on symptoms, signs, and imaging findings, particularly mag-
netic resonance imaging (MRI) findings, as these provide 
strong diagnostic evidence following careful history taking and 
physical examination. However, the syndrome of lumbar radic-
ulopathy often affects areas far beyond the innervation areas of 
affected nerves and is not consistent with MRI findings, which 
makes identification of the location of the disease and treat-
ment difficult and may even lead to mismanagement. Further-
more, the explanation of this phenomenon remains unclear. 
  Studies have been conducted on the effect of lumbar disc 
herniation on neurotransmitter dynamics in primary sensory 
neurons and primary afferent nerve fibers (8,9). Badalamente 
et al. (8) confirmed that mechanical compression of DRGs in 
rats resulted in SP concentration increases in ipsilateral DRGs 
cells and in spinal dorsal horns, as determined by immunofluo-
rescence and using isotopes. Kobayashi et al. (9) found com-
pressive disturbance of nerve roots caused Wallerian degenera-
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tion at the site of nerve root compression and at synapses of 
spinal cord dorsal horns. These studies suggest disruption of 
axonal flow in the central branches of the primary sensory fi-
bers caused by disc herniation disrupts neurotransmitter me-
tabolism in synapses of the spinal dorsal horn and in sensory 
neurons of DRGs and that these disruptions are closely related 
in the onset of pain and sensory disturbances. Thus, it appears 
that various neurotransmitters produced by primary sensory 
neurons in the DRG and transported to the spinal dorsal horn 
by axonal flow in the central branches of dorsal root neurons 
are implicated in the development of radicular pain and senso-
ry disturbance associated with nerve root compression. 
  However, knowledge and mechanistic evidence about 
changes in adjacent segments of dorsal horn and DRG are lack-
ing. We hypothesized that neural pathways exists between ad-
jacent lumbar spinal cord segments and dorsal root ganglia. 
Accordingly, we examined the expressions of ionized calcium-
binding adapter molecule 1 (Iba1), glial fibrillary acidic protein 
(GFAP), CGRP, and transient receptor potential vanilloid 1 
(TRPV1) in ipsilateral adjacent segments in a rat model of ra-
diculopathic pain.

MATERIALS AND METHODS

Animals
Twenty-nine male Sprague-Dawley rats (200-250 g) were ran-
domly assigned to either a sham-operated group (n = 10) or a 
nucleus pulposus (NP)-exposed group (n = 19). Rats were 
housed two per cage and had free access to water and food. 

Lumbar disc herniation 
Rats were anesthetized by intraperitoneal injection of Zoletil 
(Virbac) at 50 mg/kg. With an animal placed prone, an incision 
of approximately 1 cm was made on the dorsal surface of the 
proximal tail for autologous nucleus pulposus harvesting. The 
disc between the second and third coccygeal vertebrae of each 
tail was incised, and nucleus pulposus was harvested by cu-
rette. A midline dorsal incision was then made over the lumbar 
spine, multifidus muscles were separated along L4-S1 spinous 
processes, and left L5 nerve roots and DRG were exposed by 
laminectomy. The harvested nucleus pulposus was then im-
planted next to the left L5 nerve root just proximal to the DRG 
without mechanical compression. Similar amounts of nucleus 
pulposus were implanted in all animals. The sham procedure 
was performed in an identical manner and included autolo-
gous nucleus pulposus harvesting and nerve root exposure but 
not autologous nucleus pulposus implantation (10,11).

Pain behavior evaluation
Mechanical sensitivity of the plantar surfaces of ipsilateral hind 
paws was tested at 10 days after surgery. Mechanical allodynia 

was assessed by measuring withdrawal responses of ipsilateral 
hind paws to mechanical stimulation with von Frey filaments 
(North Coast Medical, Inc., Gilroy, CA, USA), which were cali-
brated in grams. Briefly, a rat was placed in a clear plastic cage 
with a metal mesh floor, allowed to adapt to the testing envi-
ronment for 30 min, and then the plantar surface of each hind 
paw was stimulated so as to cause slight filament bending for 5 
sec. Filaments were applied in increasing and decreasing thick-
nesses, beginning with a 0.1-g probe, until a filament produced 
a consistent withdrawal response to more than 3 of 5 stimuli. 
We calculated 50% probability thresholds of mechanical paw 
withdrawal. If no withdrawal response was elicited by the 26-g 
(the thickest) filament, the mechanical threshold was assigned 
as 26 g. Rats in the NP group were divided into 2 subgroups ac-
cording to measured mechanical thresholds. Animals with a 
mechanical threshold of < 5 g were assigned to significant pain 
(n = 12) or ≥ 5 g were no significant pain subgroups (n = 7) (12). 

Immunohistochemical examination
To study microglial and astrocytic activation in the dorsal horn 
and CGRP and TRPV1 expressions in DRGs, we euthanized all 
29 rats at 10 days after disc herniation surgery. Under anesthe-
sia, a catheter was inserted into the left ventricle, which was 
then rinsed with 500 mL of saline and then fixed with 500 mL of 
4% paraformaldehyde (in 0.1 N phosphate buffer [PB]).
  Spinal cords at the L3-S1 level were removed, post-fixed for 2 
days in the same fixative, and stored in 30% sucrose (in PB) for at 
least 24 hr. Transverse sections (30 µm) of each spinal cords (from 
corresponding spinal nerve root to inferior border of upper spi-
nal nerve root) (Fig. 1) and of DRGs (20 µm) were prepared us-
ing a cryostat (Leica, Wetzlar, Germany) and stored in PB. All in-
cubation and reaction procedures for multiple immunohisto-
chemical staining were performed at room temperature on a 
shaker. To enhance antibody penetration into tissues, DRG sec-
tions were immersed in 50% ethanol for 30 min and rinsed with 
phosphate buffered saline (PBS) for 5 min, three times, and to 
block nonspecific primary antibody reactions, samples were 
treated with 10% normal donkey serum (NDS; Jackson Immu-
noresearch, Westgrove, PA, USA). Tissue sections were incubat-
ed overnight in a mixture of the following primary antibodies; 
mouse anti-Ionized calcium-binding adapter molecule 1 (Iba1) 
(Wako, Osaka, Japan; 1:1,000), mouse anti-glial fibrillary acidic 
protein (GFAP) (BD Pharmingen, San Jose, CA, USA; 1:100), an-
ti-transient receptor potential vanilloid type 1 (TRPV1) (Neuro
mics, Edina, MN, USA; 1:5,000) and anti-calcitonin gene related 
peptide (CGRP) (Enzo, Farmingdale, NY, USA; 1:200). Tissues 
were then rinsed with PBS for 5 min, three times, treated with 2% 
NDS for 15 min, and incubated with cy3-conjugated donkey an-
ti-mouse (Jackson Immunoresearch, PA, USA, 1:100), cy3-con-
jugated donkey anti-goat (Jackson Immunoresearch, PA, USA, 
1:100) and Alexa 488-conjugated donkey anti-rabbit (Invitro-
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gen, Eugene, OR, USA, 1:200) antibodies for 3 hr, and then rinsed 
with PBS and mounted with Vectashield (Vector Lab, Burlin-
game, CA, USA). All antibodies were tested for sensitivity and 
specificity before the study, and manufacturers’ recommended 
dilutions were used. Immunofluorescent images were acquired 
using a cooled charge-coupled device (CCD) camera (Olympus 
DP71, Tokyo, Japan) attached to a light microscope (Olympus 
BX51). 

Quantitative image analysis
To analyze immunoreactions of Iba1 and GFAP in dorsal horns 
and of CGRP and TRPV1 in DRGs quantitatively, we obtained 
images from five spinal cord sections (for Iba1 and GFAP) from 
L3, L4, L5, L6, and S1 segments and 5 DRG sections from L3, L4, 
L5, L6, and S1 DRGs (for CGRP and TRPV1) per rat. One image 
(898 × 660 mm) was acquired of each spinal cord section using 
a CCD camera using the same shutter speed and digital gain. 
Images were encoded in order to blind the investigator before 
analysis. Pixels positive for Iba1 and GFAP immunoreactions 
were segmented by applying an appropriate threshold gray val-
ue and area fractions (segmented area/total frame area) were 
calculated using image analysis software (Leica application suite 
V4.2, Leica Microsystems, Heerbrugg, Switzerland). In case of 
CGRP and TRPV1, numbers of CGRP- and TRPV1-postive DRG 
cells were counted in the same manner using image analysis 
software. Then, relative area fractions of Iba1 and GFAP immu-

noreactions and relative cell counts of CGRP- and TRPV1-posi-
tive cells in ipsilateral L3, L4, L5, L6, and S1 spinal levels of the 
experimental groups vs. L5 spinal level of the sham-operated 
group were calculated in percentage. 

Statistical analysis
Characteristics and outcomes were summarized using descrip-
tive analysis; quantitative variables are presented as means and 
SDs and qualitative variables as frequencies and percentages. 
Group comparisons of pain evaluations and of the expressions 
of Iba1, GFAP, CGRP, and TRPV1 were analyzed using one-way 
ANOVA assuming normality or using the Kruskal Wallis test 
without assuming normality. Multiple comparisons were per-
formed using the Scheffe method. Comparison of pain evalua-
tion results, expressions of Iba1, GFAP, CGRP, and TRPV1 in the 
NP-exposed group and sham-operated group were analyzed 
using the two sample t-test assuming normality or using the 
Mann Whitney U-test without assuming normality. P values are 
shown for statistically significant variables. All tests were 2-sid-
ed and P values of < 0.05 were significance. The analysis was 
conducted using IBM SPSS ver. 19.0.

Ethics statement
All experiments were conducted in a humane manner in accor-
dance with guidelines issued by the institutional animal care 
and use committee (IACUC) in Yeungnam University, Korea 
(IACUC approval No. YUMC-AEC2015-005).

RESULTS

Pain evaluation
At 10 days after surgery, mechanical allodynia of ipsilateral 
hind paws was significantly lower in the NP-exposed group 
than in the sham-operated group (P < 0.001), and mechanical 
withdrawal thresholds were significantly lower on ipsilateral 
sides in the significant pain subgroup than in the no significant 
pain subgroup (P < 0.001).

Microglia, astrocytes, CGRP, and TRPV1
Multisegmental expressions of Iba1 and CGRP (as determined 
by immunochemistry) were higher in dorsal horns and DRGs, 
respectively, in the NP-exposed group than in the sham-operat-
ed group (Fig. 2 and 3). In the NP-exposed group, Iba1 positive 
microglial expression was significantly greater in L5 (P = 0.004) 
and in ipsilateral L4 (P = 0.009), L6 (P = 0.002), and S1 (P = 0.002) 
dorsal horns than in the sham-operated group. Furthermore, 
more Iba1 positive microglia were noted in the L5 dorsal horn 
and in the L4, L6, and S1 dorsal horns in the significant pain sub-
group than in the no significant pain subgroup, but this differ-
ence was not statistically significant. Fig. 2 shows relative area 
fractions of Iba1 in ipsilateral L3, L4, L5, L6, and S1 dorsal horns 

Fig. 1. Segmental acquisition of spinal cord.
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vs. L5 dorsal horns in the sham-operated group. Percentage Iba1 
immunoreactivities in the significant pain subgroup were 301% 
at L3, 397% at L4, 532% at L5, 507% at L6, and 409% at S1 dorsal 
horns vs. L5 dorsal horns in the sham-operated group. Percent-
ages of CGRP positive DRG cells were also significantly higher in 
L5 and in ipsilateral L3, L4, L6, and S1 DRGs in the NP-exposed 
group than in the sham-operated group (P < 0.001). Moreover, 
in the significant pain subgroup, the numbers of CGRP-positive 
cells in L5 DRGs were significantly higher than in the no signifi-

cant pain subgroup (P < 0.001). In addition, CGRP was up-regu-
lated in L3, L4, L6, and S1 DRGs in the significant pain subgroup 
vs. the no significant pain group, but this was not significant. 
Relative cell counts of CGRP-positive cells at S1 DRGs in the sig-
nificant pain subgroup were 866% at L3, 1,343% at L4, 1,798% at 
L5, 747% at L6, and 586% at vs. L5 DRGs in the sham-operated 
group (Fig. 3). However, the expressions of GFAP and TRPV1 

Fig. 2. Immunohistochemical staining of Iba1 in ipsilateral L3, L4, L5, L6, and S1 
dorsal horns and relative area fractions of Iba1 immunoreactions compared to sham-
operated controls (sham) at 10 days after surgery. (A) Iba1-positive microglia showed 
an increasing tendency in ipsilateral dorsal horns at multisegmental in the significant 
pain (Pain) and no significant pain subgroups (nPain). (B) In the NP-exposed group, 
increased immunoreactions of Iba1-positive microglia were noted in L5 dorsal horns 
(the NP implantation level) and in ipsilateral L4, L6, and S1 dorsal horns as compared 
with sham-operated controls. Results are presented as means±SEMs. *P< 0.05 vs. 
sham-operated controls; bar = 100 μm.
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Fig. 3. Immunohistochemical staining of CGRP in ipsilateral L3, L4, L5, L6, and S1 
dorsal root ganglions (DRGs) and relative cell counts of CGRP-positive DRG cells 
compared to sham-operated controls (sham) at 10 days after surgery. (A) CGRP ex-
pression showed increasing tendencies in DRGs at several segments in the signifi-
cant pain (Pain) and no significant pain subgroups (nPain). (B) In the NP-exposed 
group, increased CGRP expression was noted in L5 DRGs (the implantation level), 
and in ipsilateral L3, L4, L6, and S1 DRGs as compared with the sham-operated 
controls. Furthermore, significantly more CGRP expression was observed in L5 DRGs 
in the significant pain subgroup than in the no significant pain subgroup. Results are 
presented as means±SEMs. *P< 0.05 vs. sham-operated group; †P< 0.05 vs. the 
no significant pain subgroup. Bar = 100 μm.
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were not different in the NP-exposed and sham-operated groups. 
Immunohistochemical examinations of GFAP in spinal cords 
and of TRPV1 in DGR at day 10 after surgery also revealed no 
significant difference between the significant pain and no sig-
nificant pain subgroups (Fig. 4 and 5).

DISCUSSION

This study, which was conducted using a rat model of lumbar 
disc herniation, shows multisegmental upregulation of Iba1 

positive microglia in dorsal horns and of CGRP expression in 
DRGs in the NP-exposed group as compared with the sham-
operated group. In particular, in the significant pain subgroup, 
CGRP expression at L5 DRG was significantly higher than in the 
no significant pain subgroup. Moreover, it was also found that 
Iba1 positive microglia numbers were higher in ipsilateral L5 
dorsal horns and ipsilateral L4, L6, and S1 dorsal horns, and 
that CGRP expression was greater in ipsilateral L5 DRGs and in 
ipsilateral L3, L4, L6, and S1 DRGs in the significant pain sub-
group than in the no significant pain subgroup; however, these 
difference were not significant. 

Fig. 4. Immunohistochemical staining of GFAP in ipsilateral L3, L4, L5, L6, and S1 
dorsal horns and relative area fractions of GFAP immunoreactions compared to sh-
am-operated controls (sham) at 10 days after surgery. (A) Red stained cells were 
more in the Pain subgroup, but not significant. (B) The relative area fractions of GFAP 
immunoreactions were similar in the significant pain subgroup (Pain), the no signifi-
cant pain (nPain) subgroup, and sham-operated controls (Sham). Results are pre-
sented as means±SEMs. Bar = 100 μm.
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Fig. 5. Immunohistochemical staining of TRPV1 in ipsilateral L3, L4, L5, L6, and S1 
dorsal root ganglions (DRGs) and relative cell counts of TRPV1-positive DRG cells 
compared to sham operated controls (sham) at 10 days after surgery. (A) TRPV1 ex-
pressions were similar in the significant pain subgroup (Pain), the no significant pain 
subgroup (nPain), and sham-operated controls (Sham). (B) Results are presented as 
means ±SEMs. Bar = 100 μm.
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  Lumbar disc herniation is one of the most important health 
problems and negatively affects quality of life. Its ramifications 
can lead to days lost at work, activity limitations, social isola-
tion, sleeping disorders, and intense pain (13). However, occa-
sionally clinical motor (weakness and atrophy), sensory (pain 
or paresthesias), and reflex (diminution or absence of tendon 
reflexes) symptoms are not confined to the affected spinal cord 
segment as determined by MRI. Therefore, it is sometimes dif-
ficult to determine the precise location of an affected spinal 
cord segment, which causes difficulties creating treatment 
plans. 
  Radicular pain caused by disc herniation is mediated by bio-
chemical and mechanical factors (1,3), and it has been pro-
posed that cytokines and chemokines play major roles in the 
pathomechanisms of radicular pain (5,14). Kobayashi et al. (9) 
observed morphologic changes in the dorsal horn of the lum-
bar cord induced by nerve root compression by light and elec-
tron microscopy, and demonstrated that compressive nerve 
root damage is not restricted to sites of compression, but ex-
tends to synapses in the dorsal horn. Shubayev et al. (15) de-
scribed the dynamics of TNFα axonal transport in the peripher-
al neural axis. Biotinylated TNFα was transported intra-axonally 
toward the periphery of normal and injured nerves, and 
reached the dorsal horns of spinal cords in injured rats. In the 
present study, we aimed to determine whether there is a neural 
pathway between adjacent segments of the lumbar spinal cord 
and DRG in a rat model of radiculopathic pain, and to provide 
an explanation for mismatches between symptoms and imag-
ing results. 
  Microglia are the resident macrophages of the CNS and con-
tribute to the development of chronic neuropathic pain by re-
leasing a variety of mediators, including proinflammatory cyto-
kines and chemokines that influence pain signaling (16,17). 
Others have suggested nucleus pulposus application may in-
duce glial activity in the spinal cord, and that these activated 
glia may play a crucial role in pain transmission in the spinal 
dorsal horn (7,11). In the present study, numbers of Iba1 posi-
tive microglia were higher in the ipsilateral L5 dorsal horns of 
the NP-exposed group than in the sham-operated group at 10 
days after nucleus pulposus implantation. Interestingly, in ad-
dition to the L5 dorsal horn (the level of implantation), Iba1 
positive microglia numbers were obviously elevated in L4, L6, 
and S1 dorsal horns following nucleus pulposus implantation 
to L5 nerve roots. Although, the significant pain and no signifi-
cant pain subgroups were not significantly different in terms of 
Iba1 expression, numbers of Iba1 positive microglia appeared 
to be higher in L5 dorsal horns and in L4, L6, and S1 dorsal 
horns in the significant pain subgroup, and similar results were 
obtained for CGRP. In the NP-exposed group, CGRP expression 
was significantly higher in L5 DRGs and in L3, L4, L6, and S1 
DRGs than in the sham-operated group. In addition, CGRP was 

significantly higher in L5 DRGs and non-significantly higher at 
the other levels in the NP-exposed group. Recently, it was re-
ported that the effects of nucleus pulposus on nerve roots are 
probably due to the actions of cytokines, such as, TNFα and 
COX-2 (2,18). TNFα induces the productions of the inflamma-
tory neuropeptides, SP, and CGRP, which are released in the 
spinal dorsal horn from peripheral terminals (19,20). CGRP is a 
marker of sensory neurons primarily involved in pain percep-
tion. These results encourage us to suggest CGRP was upregu-
lated in DRGs by cytokines and growth factors in our disc her-
niation model and that it is then transported into DRGs at other 
lumbar levels. 
  Therefore, we suggest that multisegmental molecular chang-
es exist between adjacent segments of the lumbar spinal cord 
and DRGs in the presence of radicular pain. Fukuoka et al. (21) 
reported the expressions and levels of brain-derived neuro-
trophic factor (BDNF) and nerve growth factor (NGF) were in-
creased in uninjured L4 DRGs after L5 spinal nerve ligation (a 
model of neuropathic pain), and suggested that BDNF, which 
was found to be increased in uninjured L4 DRG neurons, acts 
as a sensory neuromodulator in the dorsal horn and contrib-
utes to thermal hyperalgesia, and furthermore, that locally syn-
thesized NGF contributes to thermal hyperalgesia. More re-
cently, Li et al. (22) reported that after right C7 nerve root rhi-
zotomy, c-Fos and c-Jun were expressed in the spinal gray mat-
ter of ipsilateral C7 and of ipsilateral C5 and C6, and suggested 
that afferent sensory fibers of the C7 nerve root project to the 
dorsal horn of the ipsilateral C7 spinal cord and to adjacent seg-
ments. Our results corroborate the findings of these previous 
studies, and show Iba1 and CGRP are up-regulated in L5 (the 
implantation level) and in ipsilateral L3, L4, L6, and S1. We sug-
gested molecular changes of adjacent lumbar dorsal horns and 
DRGs occur because synaptic homeostasis has been disrupted. 
It has also been reported that glial changes following peripheral 
nerve injury are associated with increased sprouting of primary 
afferent nociceptive fibers (C and A-δ fibers) entering the spinal 
cord (23), morphological changes in nerve myelination and in 
the architecture of dorsal root ganglia (24), and the down-regu-
lation of glial amino acid transporters (25). Furthermore, it has 
been suggested these morphologic and molecular changes are 
strictly correlated with neuro-glial plasticity changes and pe-
ripheral sensitization, and produce adaptive plasticity that fa-
cilitates neuropathic pain transmission (26,27). Moreover, su-
perficial laminae of dorsal horns of the spinal cord represent a 
nodal point for the modulation and integration of peripheral 
sensory stimuli through complex networks involving glutamate 
receptors and local inhibitory GABAergic interneurons (28). 
Cirillo et al. (29) found that the onset of reactive gliosis follow-
ing peripheral nerve injury (as indicated by increases in Iba1 
and GFAP) was paralleled by remarkable changes in glial and 
neuronal neurotransmitter transporters, as evidenced by re-
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cytes and TRPV1 do not play a major role in the molecular 
changes underlying pain-related behavior in our rat model of 
disc herniation.
  In conclusion, our results corroborate previous reports by 
showing molecular changes in adjacent spinal cord segments 
in a model of radicular pain. To the best our knowledge, this is 
the first report to demonstrate multisegmental changes in 
terms of microglial activity in dorsal horns and CGRP expres-
sion in DRGs in lumbar spinal segments. However, we exam-
ined molecular changes only ipsilateral to a lumbar lesion and 
at 10 days after surgery. To determine multisegmental neural 
changes are responsible for these findings, studies are required 
to characterize molecular changes in more cranial spinal cord 
segments and the time courses of these changes. Our results 
suggest increased microglial activation and the up-regulation 
of CGRP expression at nucleus pulposus implantation sites and 
in adjacent spinal dorsal horns and DRGs. Accordingly, we sug-
gest more detailed studies be undertaken on the mechanism 
responsible for these molecular changes in adjacent spinal cord 
segments . 
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