Journal List > J Korean Soc Spine Surg > v.15(1) > 1035832

Kim: Autogenous Bone Graft and Bone Substitutes

Abstract

Study Design

Reviews were conducted.

Objectives

This article is a review of the properties of the various bone grafting materials currently available and includes discussion of their efficacy in clinical practice.

Summary of Background Data

Bone grafting is frequently performed in spinal surgery to achieve fusion. Autograft is the gold standard bone graft material. However, due to limitations of supply and morbidity associated with the harvest of autograft, alternatives are being considered.

Methods

The available literature was reviewed.

Results

Synthetic bone graft substitutes consist of hydroxyapatite, tricalcium phosphate, calcium sulfate, or a combination of these minerals. All synthetic porous substitutes share numerous advantages over autografts and allografts including their unlimited supply, easy sterilization, and easy storage. However, they do confer some disadvantages such as brittle handling properties, variable rates of resorption, and poor performance in some clinical conditions. Recent attention has been focused on osteoinductive materials such as demineralized bone matrix, recombinant bone morphogenetic proteins, and blood product concentrates. The primary categories of substitute include bone growth factors. Clinical trials are under way, and pre-clinical studies have reported promising results for generating bone.

Conclusions

Despite tremendous efforts toward developing autograft alternatives, a single ideal bone graft substitute has not been developed. The number of clinical studies and direct-comparison studies between these products is limited. The surgeon should understand the properties of each bone graft substitute, to facilitate appropriate selection in each specific clinical situation.

REFERENCES

1). Katz J. Lumbar spine fusion: Surgical rate, costs and complications. Spine. 1995; 20:78–83.
2). Rothman RH, Booth R. Failures of spinal fusion. Orthop Clin North Am. 1975; 6:299–304.
crossref
3). Steinmann JC, Herkowitz HN. Pseudoarthrosis of the spine. Clin Orthop. 1992; 284:80–90.
4). Dawson EG, Clader TJ, Bassett LW. A comparison of different methods used to diagnose pseudoarthrosis following posterior spinal fusion for scoliosis. J Bone Joint Surg Am. 1985; 67:1153–1159.
5). Brodsky AE, Kovalsky ES, Khalil MA. Correalation of radiologic assessment of lumbar spine fusion with surgical exploration. Spine. 1991; 16:261–265.
6). Zuckerman JF, Selby D, Delong WB. Failed posterior lumbar interbody fusion. White AH, Rothman RH, Ray CD, editors. Lumbar Spine Surgery. St Louis: CV Mosby;1987. p. 156–178.
7). Boden S. Overview of the biology of lumbar spine fusion and principle for selecting a bone graft substitute. Spine. 2002; 27:26–31.
8). Lane J, Sandhu H. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987; 18:213–225.
crossref
9). Boden S, Summer D. Biologic factors affecting spinal fusion and bone regeneration. Spine. 1995; 20:102–112.
crossref
10). Sandhu H, Boden S. Biologic enhancement of spinal fusion. Orthop Clin North Am. 1998; 29:621–631.
crossref
11). Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW, Pruitt JR. An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res. 1976; 10:311–323.
crossref
12). Holmes RE, Mooney V, Bucholz R, Tencer A. A coralline hydroxyapatite bone graft substitute. Clin Orthop Rel Res. 1984; 188:252–262.
crossref
13). Banwart JC, Asher MA, Hanssanein RS. Iliac crest bone graft harvest donor site morbidity. Spine. 1995; 15:1055–1060.
crossref
14). Wang JM, Kim DJ. Clinical Course of Iliac Bone Graft Donor Site Morbidity. Journal of Korean Spine Surg. 1996; 3:154–160.
15). Center for Disease Control. Transmission of HIV through bone transplantation: case report and publc health recommendation. JAMA. 1988; 260:2487–2488.
16). Buck B, Malinin T, Beown M. Bone transplantation and human immunodeficiency virus. Clin Orthop. 1989; 240:129–136.
crossref
17). Pelker R, Friedlaender G. Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am. 1987; 18:235–239.
crossref
18). Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: a comparison of fresh, fresh-frozen, and irradiated bone. J Bone Joint Surg Br. 1996; 78:363–368.
19). Prolo D, Pedrotti P, White D. Ethyelene oxide sterilization of bone, duramater and fascia lata for human transplantation. Neurosurgery. 1980; 6:529–539.
20). Herron L, Newman M. The failure of ethylene oxide gas sterilized freeze-dried bone graft for thoracic and lumbar spine fusion. Spine. 1989; 14:496–500.
21). An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine. 1995; 20:2211–2216.
22). Brown M, Malinin T, Davis P. A roentgenographic evaluation of frozen allografts versus autografts in anterior interbody fusion. Clin Orthop. 1976; 119:231–236.
23). Cloward R. Gas-sterilized cadaver bone grafts for spinal fusion. Spine. 1980; 5:4–10.
24). Zhang Z, Yin H, Yang K. Anterior intervertebral disc excision and bone grafting in cervical spondylotic myelopathy. Spine. 1983; 8:16–22.
crossref
25). Hanley E, Harvell J, Shapiro D, Kraus D. Use of allograft bone in cervical spine surgery. Sem Spine Surg. 1989; 1:262–270.
26). Zdeblick T, Ducker T. The use of freeze-dried allograft bone for anterior cervical fusion. Spine. 1991; 16:726–732.
27). Blumenthal S, Baker J, Dossett A, Selby D. The role of anterior lumbar fusion for internal disc disruption. Spine. 1988; 13:566–569.
crossref
28). Kumar A, Kozak J, Doherty B. Interspace distraction and graft subsidence after anterior lumbar fusion after femoral strut allograft. Spine. 1993; 18:2392–2400.
29). Kozak J, Heilman A, O'Brien J. Anterior lumbar fusion options: technique and graft materials. Clin Orhop. 1994; 300:45–53.
crossref
30). Butterman GR, Glazer PA, Bradford DS. The use of bone allografts in the spine. Clin Orthop. 1996; 324:75–85.
31). Auri B, Weierman R, Lowell H, Nadel C, Parson J. Pseudoarthrosis after spinal fusion for scoliosis: a comparison of autogenic and allogenic bone graft. Clin Orthop. 1985; 199:153–158.
32). McCarthy R, Peek R, Morrissy R, Hough A. Allograft bone in spinal fusion for paralytic scoliosis. Bone Joint Surg Am. 1986; 68:370–375.
crossref
33). Jorgenson S, Lowe T, France J, Sabin J. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. Spine. 1994; 19:2048–2053.
crossref
34). An HS, Lynch K, Toth J. Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion; differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord. 1995; 8:131–135.
35). Boden S, Schimandle J. Biologic enhancement of spinal fusion. Spine. 1995; 20:113–123.
crossref
36). Jachro M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981; 157:259–278.
37). Flattley T, Lynch K, Benson M. Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop. 1983; 179:246–252.
38). Ferrao J. Experimental evaluation of ceramic calcium phosphate as a substitute for bone grafts. Plast Reconstr Surg. 1979; 63:634–640.
39). Moore D, Chapman M, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defect. J Orthop Res. 1987; 5:356–365.
40). Daculsi G, LeGeros R, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrstructural and physicochemical characterization. J Biomed Mater Res. 1989; 23:883–894.
41). Guigui P, Plais P, Flature B. Experimental model of posterolateral spinal arthrodesis in sheep 1. Experimental procedures and results with autologous bone graft. Spine. 1994; 19:2791–2797.
42). Guigui P, Plais P, Flature B. Experimental model of posterolateral spinal arthrodesis in sheep 2. Application of the model: evaluation of vertebral fusion obtained with coral(Porties) or with a biphasic ceramic(Triosite). Spine. 1994; 19:2798–2803.
43). Emery S, Fuller D, Stevenson S. Ceramic anterior spinal fusion: biological and biomechanical comparison in a canine model. Spine. 1996; 21:2713–2719.
44). Boden S, Martin G, Morone M, Ugbo J, Moskovitz P. Posterolateral lumbar intertrnasverse process spine arthrodesis with recombinant human bone morphogenetic protein-2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine. 1999; 24:1179–1185.
45). Roudier M, Bouchon C, Rouvillain JL, et al. The resorption of bone-implanted corals varies with porosity but also with the host reaction. J Biomed Mater Res. 1995; 29:905–915.
crossref
46). Holmes R, Bucholz R, Mooney V. Porous hydroxyapatite as a bone graft substitute in metaphyseal defects. J Bone Joint Surg Am. 1986; 68:904–911.
47). Guillemin P, Meunier A, Dallant P. Comparison of coral resoption and bone apposition with two natural corals of different porosity. J Biomed Mater Res. 1989; 23:765–779.
48). Damien C, Christel P, Benedict J, Patat J, Guillemin G. A composite of natural coral, collagen, bone protein, and basic fibroblast growth factor tested in a rat subcutaneous model. Ann Chir Gynecol. 1993; 82:117–128.
49). Steffen T, Marcheisi D, Aebi M. Posterolateral and anterior interbody fusion models in the sheep. Clin Orthop. 2000; 371:28–37.
50). Baramki H, Steffen T, Lander P, Chang M, Marcheisi D. The efficacy of interconnected porous hydroxyapatite in achieving posterior lumbar fusion in sheep. Spine. 2000; 25:1053–1060.
51). Fuller D, Stevenson S, Emery S. The effects of internal fixation on calcium carbonate: ceramic anterior spinal fusion in dogs. Spine. 1996; 21:2791–2797.
52). Passati N, Daculsi G, Rogez J, Martin S, Bainvel J. Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop. 1989; 248:169–176.
53). Heise U, Osborn J, Duwe F. Hydroxyapatite ceramic as a bone substitute. Int Orthop. 1990; 14:329–338.
crossref
54). Marchesi D. Spinal fusion: bone and bone substitutes. Eur Spine J. 2000; 9:372–378.
55). Thalgott J, Fritts K, Ginffre J, Timlin M. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine. 1999; 24:1295–1299.
crossref
56). Urist M. Bone: formation by autoinduction. Science. 1965; 150:893–899.
crossref
57). Sandhu HS, Grewal HS, Parvataneru H. Bone grafting for spinal fusion. Orthop Clin North Am. 1999; 30:685–698.
crossref
58). Wang J, Glimcher MJ. Characterization of marix-induced osteogensis in a rat calvarial bone defect: I. Differences in the cellular response to demineralized bone matrix implanted in calvarial defects and subcutaneous sites. Calcif Tisseu Int. 1995; 65:156–165.
59). Morone MN, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix. Spine. 1998; 23:159–167.
60). Frenkel SR, Moskovich R, Spivak J, Zhang ZH, Prewett AB. Demineralized bone matrix. Enhancement of spinal fusion. Spine. 1993; 18:1634–1639.
61). Martin GJ, Boden SD, Titus L, Scaborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine. 1999; 24:637–645.
crossref
62). Helm GA, Sheeham JM, Sheeham JP, et al. Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bonen lumbar spinal fusion. J Neurosurg. 1997; 86:93–100.
63). Schwartz Z, Somer A, Mellonig , et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation in dependent on donor age not gender. J Periodontol. 1998; 69:470–478.
64). Syftestad GT, Urist MR. Bone aging. Clin Orthop. 1982; 162:288–297.
crossref
65). Jergenson HE, Chua J, Kao RT, Kaban LB. Age effects on bone induction by demineralized bone powder. Clin Orthop. 1991; 268:253–259.
66). Buring K, Urist MR. Effects of ionizing radiation on the bone induction principle in the matrix of bone implants. Clin Orthop. 1967; 357:219–228.
crossref
67). Aspenberg P, Johnson E, Thorngren KG. Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg Br. 1990; 72:1036–1037.
crossref
68). Zhang M, Powers RM, Wolfinbarger L. Effects of the demineralized process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997; 78:1085–1092.
69). Sassard WR, Eidman DK, Gray PM, et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000; 23:1059–1064.
crossref
70). Bostrom MP, Yang X, Kennan M, Sandhu H, Dicarlo E, Lane JM. An unexpected outcome during testing of commercially available demineralized bone graft materials: how safe are the nonallograft components? Spine. 2001; 26:1425–1428.
71). Urist M, Strates B. Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop. 1970; 71:271–278.
72). Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: Molecular clones and activities. Science. 1988; 242:1528–1534.
crossref
73). Ozkaynak E, Schnegelsberg PNJ, Jin DF, et al. Osteogenic protein-2: A new member of the transforming growth factor- superfamily expressed early in embryogenesis. J Biol Chem. 1992; 267:25220–25227.
74). Wozney JM. Overview of bone morphogenetic proteins. Spine. 2002; 27:2–8.
crossref
75). Gitelman SF, Kobrin MS, Ye J-Q, et al. Recombinant Vgr-1/BMP-6-expressing tumor induce fibrosis and enchondral bone formation in vivo. J Cell Biol. 1994; 126:1595–1609.
76). Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Bio Chem. 1992; 267:20352–20362.
crossref
77). Daluiski A, Engstrand T, Bahamonde ME, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet. 2001; 27:84–88.
crossref
78). Johnson E, Urist M, Finerman G. Repair of segmental defects of the tibia with human bone morphogenetic protein. Clin Orthop. 1988; 236:249–256.
79). Johnson E, Urist M, Finerman G. Bone morphogenetic protein augmentation grafting of resistant femoral nonunions: a preliminary report. Clin Orthop. 1988; 230:257–262.
80). Sandhu H. Kanim L, Kabo J, et al. Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion. Spine. 1996; 21:2115–2120.
crossref
81). Urist M, Silverman B, Buring K, Dubuc F, Rosenberg J. The bone induction principle. Clin Orthop. 1967; 53:243–283.
82). Wozney J. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 1992; 32:160–167.
crossref
83). Lovel T, Dawson E, Nilsson O, et al. Augmentation of spinal fusion with bone morphogenetic protein in dogs. Clin Orthop. 1987; 234:266–274.
84). Schimandle J, Boden S. Hutton W. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine. 1995; 20:1326–1337.
crossref
85). Cook SD, Dalton JF, Tan EH, Whitecloud TS III, Rueger DC. In vivo evaluation of recombinant human osteognic protein(rhOP-1) implants as a bone graft substitute for spinal fusion. Spine. 1994; 19:1655–1663.
86). Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002; 15:337–349.
crossref
87). Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: A prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002; 27:2662–2673.
88). Vaccaro AR, Patel T, Fischergrund J, et al. A pilot study evaluating the safety and efficacy of OP-1 putty(rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine. 2004; 29:1885–1892.
89). Vaccaro AR, Patel T, Fischergrund J, et al. A 2-year follow-up pilot study evaluating the safety and efficacy of OP-1 putty(rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J. 2005; 14:623–629.
90). Johnsson R, Stromqvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (OP-1) and autograft in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine. 2002; 27:2654–2661.
91). Shah RV, Albert TJ, Bruegel-Sanches V, Vaccaro AR, Hilibrand AS, Grauer JN. Industry support and correlation to study outcome for papers published in Spine. Spine. 2005; 30:1099–1104.
crossref

Table 1.
골 유합에 대한 각 이식재의 역할
이식재 특성
자가골 골생성 (+), 골유도 (+), 골전도 (+)
동종골 골전도 (+), 골유도 ()
세라믹 골전도 (+)
DBM 골유도 (+)
BMP 골유도 (+)
Table 2.
임상적으로 사용되고 있는 세라믹과 성분
제품명 (제조사) 성분
Osteoset (Wright Medical Technologies) Calcium sulfate (plaster of Paris)
Vitoss (Orthovita) -TCP
Pro Osteon (Interpore Cross International) HA/calcium carbonate (CaCO3)
Triosite (Zimmer), BCP (Medtronic) HA/TCP
Collagraft (Zimmer); Healos (Orquest) HA/bovine collagen, Bovine HA/collagen
Table 3.
상업적으로 제조된DBM과 운반자
제품명(제조사) 운반자
Grafton (Osteotch) Glycerol
Dynagraft (GenSci Orthobiologics) Pluronic polymer
Osteofil (Rgeneration Technologies) Porcine collagen-based hydrogel
Allomatirx (Wright Medical Technologies) Calcium sulfate/carbomethyl cellulose
DBX (Musculoskeletal Transplant Foundation) Hyaluronic acid
TOOLS
Similar articles