Journal List > J Korean Soc Spine Surg > v.14(2) > 1035761

Moon: Biochemical Factors of Intervertebral Disc Degeneration: Implications for Disc Regeneration

Abstract

Intervertebral disc degeneration is main cause of various spinal degenerative conditions, and results in a significant socio-eco-nomic burden and morbidity to those affected. Intervertebral disc degeneration is a multifactorial process that has no known curative method. Hence, various factors that cause intervertebral disc degeneration, especially biochemical ones, were discussed in this study.

REFERENCES

1). Fortuniak J, Jaskolski D, Tybor K, Komunski P, Zawirski M. Role of proteoglycans and glycosamino-glycans in the intervertebral disc degeneration. Neurol Neurochir Pol. 2005; 39:324–327.
2). Lyons G, Eisenstein SM, Sweet MB. Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta. 1981; 673:443–453.
crossref
3). Nishiyama H. Biochemical and immunological study of lumbar disc degeneration. Nippon Seikeigeka Gakkai Zasshi. 1985; 59:1119–1131.
4). Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M. Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine. 1991; 16:629–634.
5). Cassinelli EH, Hall RA, Kang JD. Biochemistry of intervertebral disc degeneration and the potential for gene therapy applications. Spine J. 2001; 1:205–214.
crossref
6). Mirza SK, White AA 3rd. Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J Clin Laser Med Surg. 1995; 13:131–142.
crossref
7). Antoniou J, Demers CN, Beaudoin G, et al. .:. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging. 2004; 22:963–972.
crossref
8). Benneker LM, Heini PF, Alini M, Anderson SE, Ito K. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine. 2005; 30:167–173.
crossref
9). Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006; 31:2151–2161.
crossref
10). Seki S, Kawaguchi Y, Mori M, et al. .:. Association study of COL9A2 with lumbar disc disease in the Japanese population. J Hum Genet. 2006; 51:1063–1067.
crossref
11). Battie MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K. 1995 Volvo Award in clinical sci-ences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine. 1995; 20:2601–2612.
12). Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine. 1999; 24:996–1002.
crossref
13). Palmer EI, Lotz JC. The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res. 2004; 22:164–169.
crossref
14). Stokes IA, Counts DF, Frymoyer JW. Experimental instability in the rabbit lumbar spine. Spine. 1989; 14:68–72.
crossref
15). Wang YJ, Shi Q, Lu WW, et al. .:. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine. 2006; 31:1532–1538.
crossref
16). Adams MA. Biomechanics of back pain. Acupunct Med. 2004; 22:178–188.
crossref
17). Crean JK, Roberts S, Jaffray DC, Eisenstein SM, Duance VC. Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine. 1997; 22:2877–2884.
crossref
18). Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ. IL-1beta sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem. 2001; 82:290–298.
19). Kang JD, Georgescu HI, McIntyre-Larkin L, Ste-fanovic-Racic M, Donaldson WF 3rd, Evans CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1996; 21:271–277.
crossref
20). Kang JD, Georgescu HI, McIntyre-Larkin L, Ste-fanovic-Racic M, Evans CH. Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1995; 20:2373–2378.
crossref
21). Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, inter-leukins, prostaglandin E2, and matrix metalloproteinases. Spine. 1997; 22:1065–1073.
22). Lipson SJ, Muir H. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine. 1981; 6:194–210.
23). Benneker LM, Heini PF, Anderson SE, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005; 14:27–35.
crossref
24). Johannessen W, Auerbach JD, Wheaton AJ, et al. .:. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine. 2006; 31:1253–1257.
25). Zhou H, Hou S, Shang W, et al. .:. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology. Spine. 2007; 32:864–872.
crossref
26). Chiba K, Andersson GB, Masuda K, Thonar EJ. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine. 1997; 22:2885–2893.
crossref
27). Chujo T, An HS, Akeda K, et al. .:. Effects of growth differentiation factor-5 on the intervertebral disc–in vitro bovine study and in vivo rabbit disc degeneration model study. Spine. 2006; 31:2909–2917.
crossref
28). Cs-Szabo G, Ragasa-San Juan D, Turumella V, Masuda K, Thonar EJ, An HS. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine. 2002; 27:2212–2219.
crossref
29). Erwin WM, Ashman K, O'Donnel P, Inman RD. Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum. 2006; 54:3859–3867.
crossref
30). Fei QM, Jiang XX, Chen TY, et al. .:. Changes with age and the effect of recombinant human BMP-2 on proteoglycan and collagen gene expression in rabbit anulus fibrosus cells. Acta Biochim Biophys Sin (Shanghai). 2006; 38:773–779.
crossref
31). Chubinskaya S, Kawakami M, Rappoport L, Mat-sumoto T, Migita N, Rueger DC. Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res. 2007; 25:517–530.
crossref
32). Kozaci LD, Guner A, Oktay G, Guner G. Alterations in biochemical components of extracellular matrix in intervertebral disc herniation: role of MMP-2 and TIMP-2 in type II collagen loss. Cell Biochem Funct. 2006; 24:431–436.
33). Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol. 2004; 204:47–54.
crossref
34). Le Maitre CL, Freemont AJ, Hoyland JA. Human disc degeneration is associated with increased MMP 7 expression. Biotech Histochem. 2006; 81:125–131.
crossref
35). Seguin CA, Bojarski M, Pilliar RM, Roughley PJ, Kandel RA. Differential regulation of matrix degrading enzymes in a TNFalpha-induced model of nucleus pulposus tissue degeneration. Matrix Biol. 2006; 25:409–418.
36). Nerlich AG, Schleicher ED, Boos N. 1997 Volvo Award winner in basic science studies. Immunohistolog-ic markers for age-related changes of human lumbar intervertebral discs. Spine. 1997; 22:2781–2795.
37). Schollmeier G, Lahr-Eigen R, Lewandrowski KU. Observations on fiber-forming collagens in the anulus fibrosus. Spine. 2000; 25:2736–2741.
crossref
38). Paul R, Haydon RC, Cheng H, et al. .:. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine. 2003; 28:755–763.
crossref
39). Kim DJ, Moon SH, Kim H, et al. .:. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine. 2003; 28:2679–2684.
crossref
40). Masuda K, Imai Y, Okuma M, et al. .:. Osteogenic pro- tein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine. 2006; 31:742–754.
41). Zhang R, Ruan D, Zhang C. Effects of TGF-beta1 and IGF-1 on proliferation of human nucleus pulposus cells in medium with different serum concentrations. J Orthop Surg. 2006; 1:9.
crossref
42). Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J. Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine. 2006; 31:873–882. discussion 883.
crossref
43). Chen J, Yan W, Setton LA. Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur Spine J. 2006; 15(Suppl 3):S303–311.
crossref
44). Agrawal A, Guttapalli A, Narayan SB, Albert TJ, Shapiro IM, Risbud MV. Normoxic stabilization of HIF-1{alpha} drives glycolytic metabolism and regulates aggrecan gene expression in rat nucleus pulposus cells of the intervertebral disc. Am J Physiol Cell Physiol. 2007.
45). Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM. Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res. 2002; 308:401–407.
crossref
46). Gruber HE, Hanley EN Jr. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine. 1998; 23:751–757.
47). Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine. 2007; 32:321–327.
48). Zhao CQ, Jiang LS, Dai LY. Programmed cell death in intervertebral disc degeneration. Apoptosis. 2006; 11:2079–2088.
crossref
49). Iwashina T, Mochida J, Sakai D, et al. .:. Feasibility of using a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration. Spine. 2006; 31:1177–1186.
crossref
50). Larson JW 3rd, Levicoff EA, Gilbertson LG, Kang JD. Biologic modification of animal models of intervertebral disc degeneration. J Bone Joint Surg Am. 2006; 88(Suppl 2):83–87.
crossref
51). Moon SH, Gilbertson LG, Nishida K, et al. .:. Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for the clinical management of intervertebral disc disorders. Spine. 2000; 25:2573–2579.
52). Nishida K, Kang JD, Gilbertson LG, et al. .:. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine. 1999; 24:2419–2425.
53). Adams MA, McMillan DW, Green TP, Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine. 1996; 21:434–438.
crossref
54). Shirazi-Adl A, Ahmed AM, Shrivastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 1986; 19:331–350.
crossref
55). Guerin HL, Elliott DM. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res. 2007; 25:508–516.
crossref
56). Lotz JC, Colliou OK, Chin JR, Duncan NA, Lieben-berg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-ele-ment study. Spine. 1998; 23:2493–2506.
57). Chan D, Song Y, Sham P, Cheung KM. Genetics of disc degeneration. Eur Spine J. 2006; 15(Suppl 3):S317–325.
crossref
58). Cheung KM, Chan D, Karppinen J, et al. .:. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine. 2006; 31:1143–1148.
crossref
59). Battie MC, Videman T. Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am. 2006; 88(Suppl 2):3–9.
60). Solovieva S, Lohiniva J, Leino-Arjas P, et al. .:. Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur Spine J. 2006; 15:613–619.
61). Jim JJ, Noponen-Hietala N, Cheung KM, et al. .:. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine. 2005; 30:2735–2742.
crossref
62). Solovieva S, Kouhia S, Leino-Arjas P, et al. .:. Inter-leukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology. 2004; 15:626–633.
crossref
63). Pluijm SM, van Essen HW, Bravenboer N, et al. .:. Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis. 2004; 63:71–77.
64). Noponen-Hietala N, Kyllonen E, Mannikko M, et al. .:. Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis. 2003; 62:1208–1214.
crossref
65). Solovieva S, Lohiniva J, Leino-Arjas P, et al. .:. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine: evidence of gene-environment interaction. Spine. 2002; 27:2691–2696.
crossref
66). Grimaud E, Heymann D, Redini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev. 2002; 13:241–257.
67). Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005; 26:743–774.
68). Sobajima S, Kompel JF, Kim JS, et al. .:. A slowly pro-gressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine. 2005; 30:15–24.
crossref
69). Vadala G, Sowa GA, Kang JD. Gene therapy for disc degeneration. Expert Opin Biol Ther. 2007; 7:185–196.
70). Murakami H, Yoon ST, Attallah-Wasif ES, Tsai KJ, Fei Q, Hutton WC. The expression of anabolic cytokines in intervertebral discs in age-related degeneration. Spine. 2006; 31:1770–1774.
crossref
71). Yoon DM, Fisher JP. Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol. 2006; 585:67–86.
crossref
72). Gu H, Lv G, Liu L. Adenovirus-mediated human bone morphogenetic protein 2 gene transferred to rabbit intervertebral disc cells in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006; 20:820–824.
73). Omlor GW, Lorenz H, Engelleiter K, et al. .:. Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration-an in vivo study on the New Zealand white rabbit. J Orthop Res. 2006; 24:385–392.
crossref
74). Zhang Y, An HS, Thonar EJ, Chubinskaya S, He TC, Phillips FM. Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells. Spine. 2006; 31:2173–2179.
crossref
75). Miyamoto K, Masuda K, Kim JG, et al. .:. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J. 2006; 6:692–703.
crossref
76). Gruber HE, Norton HJ, Hanley EN Jr. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine. 2000; 25:2153–2157.
crossref
77). Sobajima S, Kim JS, Gilbertson LG, Kang JD. Gene therapy for degenerative disc disease. Gene Ther. 2004; 11:390–401.
crossref
78). Benallaoua M, Richette P, Francois M, et al. .:. Modulation of proteoglycan production by cyclic tensile stretch in intervertebral disc cells through a post-translational mechanism. Biorheology. 2006; 43:303–310.
79). Kohyama K, Saura R, Doita M, Mizuno K. Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci. 2000; 46:283–295.
80). Rannou F, Richette P, Benallaoua M, et al. .:. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem. 2003; 90:148–157.
crossref
81). Liu GZ, Ishihara H, Osada R, Kimura T, Tsuji H. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine. 2001; 26:134–141.
crossref
82). Sobajima S, Shimer AL, Chadderdon RC, et al. .:. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J. 2005; 5:14–23.
crossref
83). Roberts S, Butler RC. Inflammatory mediators as potential therapeutic targets in the spine. Curr Drug Targets Inflamm Allergy. 2005; 4:257–266.
crossref
84). Burke JG, RW GW, Conhyea D, et al. .:. Human nucleus pulposis can respond to a proinflammatory stimulus. Spine. 2003; 28:2685–2693.
crossref
85). Miyamoto H, Saura R, Doita M, Kurosaka M, Mizuno K. The role of cyclooxygenase-2 in lumbar disc herniation. Spine. 2002; 27:2477–2483.
crossref
86). Ozaktay AC, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN. Dorsal root sensitivity to interleukin-1 beta, interleukin-6 and tumor necrosis factor in rats. Eur Spine J. 2002; 11:467–475.
87). Miyamoto H, Saura R, Harada T, Doita M, Mizuno K. The role of cyclooxygenase-2 and inflammatory cytokines in pain induction of herniated lumbar intervertebral disc. Kobe J Med Sci. 2000; 46:13–28.
88). Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M, Boos N. Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci. 2007; 1096:44–54.
89). Seguin CA, Pilliar RM, Roughley PJ, Kandel RA. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine. 2005; 30:1940–1948.
90). Korhonen T, Karppinen J, Paimela L, et al. .:. The treatment of disc-herniation-induced sciatica with infliximab: one-year followup results of FIRST II, a randomized controlled trial. Spine. 2006; 31:2759–2766.
91). Autio RA, Karppinen J, Niinimaki J, et al. .:. The effect of infliximab, a monoclonal antibody against TNF-alpha, on disc herniation resorption: a randomized controlled study. Spine. 2006; 31:2641–2645.
92). Goupille P, Jayson MI, Valat JP, Freemont AJ. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine. 1998; 23:1612–1626.
crossref
93). Wallach CJ, Sobajima S, Watanabe Y, et al. .:. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine. 2003; 28:2331–2337.
crossref
94). Park JB, Park IC, Park SJ, Jin HO, Lee JK, Riew KD. Anti-apoptotic effects of caspase inhibitors on rat intervertebral disc cells. J Bone Joint Surg Am. 2006; 88:771–779.
crossref
95). Inui Y, Nishida K, Doita M, et al. .:. Fas-ligand expression on nucleus pulposus begins in developing embryo. Spine. 2004; 29:2365–2369.
crossref
96). Takada T, Nishida K, Doita M, Kurosaka M. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine. 2002; 27:1526–1530.
crossref
97). Park JB, Chang H, Kim KW. Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine. 2001; 26:618–621.
crossref
98). Park JB, Kim KW, Han CW, Chang H. Expression of Fas receptor on disc cells in herniated lumbar disc tissue. Spine. 2001; 26:142–146.
crossref
99). Nishida K, Doita M, Takada T, et al. .:. Biological approach for treatment of degenerative disc diseases. Clin Calcium. 2005; 15:79–86.
100). Yoon ST, Park JS, Kim KS, et al. .:. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine. 2004; 29:2603–2611.
crossref
101). Sakai D, Mochida J, Iwashina T, et al. .:. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials. 2006; 27:335–345.
crossref
102). Sakai D, Mochida J, Iwashina T, et al. .:. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine. 2005; 30:2379–2387.
103). Sakai D, Mochida J, Yamamoto Y, et al. .:. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003; 24:3531–3541.
crossref
104). Acosta FL Jr, Lotz J, Ames CP. The potential role of mesenchymal stem cell therapy for intervertebral disc degeneration: a critical overview. Neurosurg Focus. 2005; 19:E4.
crossref
105). Brisby H, Tao H, Ma DD, Diwan AD. Cell therapy for disc degeneration–potentials and pitfalls. Orthop Clin North Am. 2004; 35:85–93.
crossref
106). Wehling P, Schulitz KP, Robbins PD, Evans CH, Rei-necke JA. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine. 1997; 22:1092–1097.
TOOLS
Similar articles