Journal List > J Korean Ophthalmol Soc > v.54(6) > 1009699

Kim, Kim, Kim, and Lee: The Morphological Changes in Main Corneal Incision (2.2 mm vs. 2.8 mm) Evaluated Using Anterior Segment Optical Coherence Tomography

Abstract

Purpose

To investigate wound characteristics and ultrastructural changes in the 2.2-mm and 2.8-mm main corneal incisions.

Methods

Forty-four eyes of 34 patients undergoing cataract surgery were randomized to receive a 2.2-mm or 2.8-mm main corneal incision. All incisions were evaluated 1, 7, and 30 days postoperatively using anterior segment optical coher-ence tomography. The angle, length, maximal thickness of the incision, and if present, corneal gap length and incision gap area were calculated. The existence of Descemet’s membrane detachment was recorded.

Results

The mean endothelial gap length and gap area of the 2.2-mm wound were larger than the 2.8-mm, with the only statistically significant difference observed on postoperative day 30 (p = 0.015 and 0.027, respectively). There was no dif-ference in the mean incision angle, length, and corneal thickness between the 2 incision sizes. The ratio of Descemet’s membrane detachment increased with older age and low postoperative IOP, but not associated with incision size (p < 0.05).

Conclusions

Both the 2.2-mm and 2.8-mm main corneal incisions showed excellent wound healing outcome without sig-nificant postoperative complications. Older patients with low postoperative IOP required a more careful wound care management. The incision parameters in the present study can be used as an indicator of the healing process to reduce wound-related complications.

References

1. Kelman CD. Phaco-emulsification and aspiration. A new techni-que of cataract removal. A preliminary report. Am J Ophthalmol. 1967; 64:23–35.
crossref
2. Crema AS, Walsh A, Yamane Y, Nosé W. Comparative study of coaxial phacoemulsification and microincision cataract surgery. One-year follow-up. J Cataract Refract Surg. 2007; 33:1014–8.
crossref
3. Ku HC, Kim HJ, Joo CK. The comparison of astigmatism according to the incision size in small incision cataract surgery. J Korean Ophthalmol Soc. 2005; 46:416–21.
4. Jee DH, Lee PY, Joo CK. The comparison of astigmatism according to the incision size in cataract operation. J Korean Ophthalmol Soc. 2003; 44:594–8.
5. Nagaki Y, Hayasaka S, Kadoi C. . Bacterial endophthalmitis after small-incision cataract surgery: effect of incision placement and intraocular lens type. J Cataract Refract Surg. 2003; 29:20–6.
6. Eifrig CW, Flynn HW Jr, Scott IU, Newton J. Acute-onset post-operative endophthalmitis: review of incidence and visual out-comes (1995-2001). Ophthalmic Surg Lasers. 2002; 33:373–8.
crossref
7. Taban M, Behrens A, Newcomb RL. . Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol. 2005; 123:613–20.
8. Miller JJ, Scott IU, Flynn HW Jr. . Acute-onset endoph-thalmitis after cataract surgery (2000-2004): incidence, clinical settings, and visual acuity outcomes after treatment. Am J Ophthalmol. 2005; 139:983–7.
crossref
9. Monica ML, Long DA. Nine-year safety with self-sealing corneal tunnel incision in clear cornea cataract surgery. Ophthalmology. 2005; 112:985–6.
crossref
10. Masket S. Is there a relationship between clear corneal cataract in-cisions and endophthalmitis? J Cataract Refract Surg. 2005; 31:643–5.
crossref
11. Wallin T, Parker J, Jin Y. . Cohort study of 27 cases of endoph-thalmitis at a single institution. J Cataract Refract Surg. 2005; 31:735–41.
crossref
12. Choi JA, Chung SK, Kim HS. Comparative study of microcoaxial cataract surgery and conventional cataract surgery. J Korean Ophthalmol Soc. 2008; 49:904–10.
crossref
13. Taban M, Rao B, Reznik J. . Dynamic morphology of suture-less cataract wounds–effect of incision angle and location. Surv Ophthalmol. 2004; 49:Suppl 2. S62–72.
crossref
14. Torres LF, Saez-Espinola F, Colina JM. . In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography. J Cataract Refract Surg. 2006; 32:1820–6.
crossref
15. Fine IH, Hoffman RS, Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography. J Cataract Refract Surg. 2007; 33:94–7.
crossref
16. Vasavada V, Vasavada V, Raj SM, Vasavada AR. Intraoperative performance and postoperative outcomes of microcoaxial phaco- emulsification. Observational study. J Cataract Refract Surg. 2007; 33:1019–24.
17. Osher RH, Injev VP. Microcoaxial phacoemulsification: Part 1: laboratory studies. J Cataract Refract Surg. 2007; 33:401–7.
18. Cavallini GM, Pupino A, Masini C. . Bimanual micro-phacoemulsification and Acri. Smart intraocular lens implantation combined with vitreoretinal surgery. J Cataract Refract Surg. 2007; 33:1253–8.
19. Schallhorn JM, Tang M, Li Y. . Optical coherence tomography of clear corneal incisions for cataract surgery. J Cataract Refract Surg. 2008; 34:1561–5.
crossref
20. Dupont-Monod S, Labbé A, Fayol N. . In vivo architectural analysis of clear corneal incisions using anterior segment optical coherence tomography. J Cataract Refract Surg. 2009; 35:444–50.
crossref
21. Calladine D, Tanner V. Optical coherence tomography of the ef-fects of stromal hydration on clear corneal incision architecture. J Cataract Refract Surg. 2009; 35:1367–71.
crossref
22. Elkady B, Piñero D, Alió JL. Corneal incision quality: Microincision cataract surgery versus microcoaxial phacoemulsification. J Cataract Refract Surg. 2009; 35:466–74.
crossref
23. McGowan BL. Mechanism for development of endophthalmitis. J Cataract Refract Surg. 1994; 20:111.
crossref
24. Can I, Bayhan HA, Celik H, Bostancı Ceran B. Anterior segment optical coherence tomography evaluation and comparison of main clear corneal incisions in microcoaxial and biaxial cataract surgery. J Cataract Refract Surg. 2011; 37:490–500.
crossref
25. Can I, Takmaz T, Genç I. Half-moon supracapsular nucleofractis phacoemulsification: Safety, efficacy, and functionality. J Cataract Refract Surg. 2008; 34:1958–65.
crossref
26. Xia Y, Liu X, Luo L. . Early changes in clear cornea incision af-ter phacoemulsification: an anterior segment optical coherence to-mography study. Acta Ophthalmol. 2009; 87:764–8.
crossref

Figure 1.
Anterior segment OCT (optical coherence tomography) image showing a clear corneal incision site postoperatively. The definition of incision site parameters: 1) Incision angle (The angle between the line that joins the epithelial and endo-thelial ends of the incision and the tangential line on the cor-neal surface) 2) Incision length (The total length of the main incision measured from the wound entry to its exit point) 3) Epithelial/endothelial gap length (The length that lines inside of the gap, the longer one is selected, if present) 4) Epithelial/ endothelial gap area (The area inside of the gap, if present) 5) Descemet’s membrane detachment 6) Maximal corneal thick-ness at the incision site.
jkos-54-877f1.tif
Figure 2.
Results of AS-OCT parameter, (A) Mean angle (°); (B) Mean length (μ m); (C) Mean corneal thickness at incision site (μ m); (D) Mean endothelial gap length (μ m); (E) Mean endothelial gap area (μ m2) (* p < 0.05).
jkos-54-877f2.tif
Figure 3.
The ratio of postoperative Descemet’s membrane detachment by age (* p < 0.05).
jkos-54-877f3.tif
Table 1.
Preoperative patient characteristics
Group 1 (2.2 mm) Group 2 (2.8 mm) p-value
Eyes (n) 14 30
Sex (Male/Female) 7/7 10/20 0.290
Laterality (OD/OS) 5/9 14/16 0.495
Mean age (year) 66.1 ± 8.2 66.4 ± 6.8 0.580*
Mean CDVA (Snellen) 0.32 ± 2.22 0.48 ± 0.24 0.111*
Mean IOP (mm Hg) 9.57 ± 2.65 11.76 ± 3.03 0.187*
Mean astigmatism (D) 1.56 ± 1.23 1.42 ± 0.74 0.649*
Endothelial cell count 2752.5 ± 400.5 2792.4 ± 347.3 0.894*
Cataract hardness (LOCS III)
Cortical density 3.07 ± 1.49 2.84 ± 1.65 0.660*
Nucleus density 3.42 ± 1.55 2.83 ± 0.97 0.199*
Posterior subcapsular opacity 2.53 ± 1.97 1.34 ± 1.11 0.049*

Values are presented as mean ± SD.

CDVA = corrected distance visual acuity; IOP = intraocular pressure; LOCS = Lens Opacities Classification System.

* Independent samples t-test;

Chi-square test.

Table 2.
Comparison of mean surgical parameters between 2.2-mm and 2.8-mm incision group
Group 1 (2.2 mm) Group 2 (2.8 mm) p-value*
Mean phaco time (sec) 21.14 ± 8.45 21.90 ± 13.91 0.891
Mean operation time (min) 29.78 ± 4.28 27.00 ± 4.97 0.078
Mean fluid used (mL) 103.57 ± 29.34 109.64 ± 34.27 0.385

Values are presented as mean ± SD.

* Independent samples t-test.

Table 3.
Postoperative changes in mean UCVA and IOP and astigmatism by autorefractor
Group 1 (2.2 mm) Group 2 (2.8 mm) p-value*
Mean UCVA (Snellen)
1 day 0.62 ± 0.15 0.68 ± 0.26 0.290
7 days 0.69 ± 0.23 0.73 ± 0.23 0.620
30 days 0.72 ± 0.23 0.71 ± 0.21 0.836
Mean IOP (mm Hg)
1 day 9.92 ± 2.99 11.25 ± 3.65 0.235
7 days 9.30 ± 2.83 10.44 ± 3.22 0.293
30 days 9.00 ± 2.52 10.80 ± 2.83 0.090
Mean astigmatism (D)
1 day 1.07 ± 0.47 1.16 ± 0.85 0.767
7 days 1.05 ± 0.45 1.27 ± 0.89 0.459
30 days 0.75 ± 0.78 1.04 ± 0.58 0.219

Values are presented as mean ± SD.

UCVA = uncorrected visual acuity; IOP = intraocular pressure; D = diopter.

* Independent samples t-test.

Table 4.
Results of AS-OCT parameters
Parameter All Patients Group 1 (2.2 mm) Group 2 (2.8 mm) p-value
Mean angle (°)
1 day 45.29 ± 7.0 39.75 ± 7.6 47.00 ± 6.0 0.098*
7 days 42.50 ± 5.0 38.62 ± 5.5 45.08 ± 2.4 0.112*
30 days 40.22 ± 6.3 38.28 ± 5.5 47.00 ± 1.4 0.082*
Mean length (μ m)
1 day 1494.1 ± 295.1 1603.0 ± 319.4 1460.6 ± 285.3 0.239*
7 days 1468.8 ± 243.1 1514.5 ± 258.9 1444.5 ± 239.8 0.524*
30 days 1288.4 ± 212.9 1317.0 ± 216.6 1231.2 ± 216.6 0.483*
Mean maximal CT at incision site (μ m)
1 day 1028.1 ± 70.5 984.0 ± 95.7 1035.4 ± 64.5 0.133*
7 days 998.3 ± 103.0 964.6 ± 138.6 1008.4 ± 91.9 0.373*
30 days 753.3 ± 76.5 769.7 ± 85.5 730.4 ± 63.0 0.406*
Mean endothelial gap length (μ m)
1 day 201.0 ± 104.0 254.0 ± 111.4 184.7 ± 98.1 0.100*
7 days 162.6 ± 90.8 197.0 ± 102.2 144.2 ± 81.8 0.191*
30 days 63.4 ± 55.7 86.8 ± 48.9 16.8 ± 37.5 0.015*
Mean endothelial gap area (μ m2)
1 day 2614.4 ± 1741.1 3560.0 ± 1937.5 2323.5 ± 1605.1 0.079*
7 days 1981.3 ± 1224.7 2400.5 ± 1166.2 1757.8 ± 1234.1 0.239*
30 days 508.5 ± 737.5 737.6 ± 815.9 50.4 ± 112.6 0.027*
DM detachment (%)
1 day 79.4 75.0 80.7 0.089
7 days 39.1 37.5 40.0 0.785
30 days 0 0 0 -

Values are presented as mean ± SD.

* Independent samples t-test;

Chi-square test.

Table 5.
The ratio of postoperative Descemet’s membrane detachment by age
50-59 (years) 60-69 (years) 70-79 (years) 80-89 (years) p-value*
DM detachment (%)1 day 40 85.7 100 100 0.035
7 days 0 46.2 100 100 0.337
30 days 0 0 0 0 -

DM = Descemet’s membrane.

* Chi-square test.

Table 6.
Parameters of groups with and without Descemet’s membrane detachment
Non-DMD DMD p-value*
Mean age (year)
1 day 59.80 ± 7.75 67.80 ± 6.49 0.025
7 days 62.00 ± 6.29 70.77 ± 4.81 0.002
Mean UCVA (Snellen)
1 day 0.48 ± 0.29 0.52 ± 0.22 0.713
7 days 0.76 ± 0.26 0.75 ± 0.22 0.919
Mean IOP (mm Hg)
1 day 14.20 ± 2.38 10.42 ± 3.64 0.039
7 days 10.85 ± 2.07 8.13 ± 3.39 0.033
Endothelial cell count
1 day 2631.8 ± 146.4 2881.5 ± 354.7 0.141
7 days 2798.7 ± 420.7 2766.0 ± 503.9 0.870
Mean phaco time (sec)
1 day 28.14 ± 2.81 21.35 ± 15.35 0.070
7 days 21.25 ± 14.71 15.68 ± 11.11 0.427
Mean operation time (min)
1 day 25.00 ± 2.34 26.85 ± 5.52 0.474
7 days 29.30 ± 4.47 30.33 ± 2.91 0.554
Mean corneal thickness (μ m)
1 day 1052.0 ± 33.7 1285.9 ± 250.1 0.001
7 days 1117.5 ± 181.3 1288.8 ± 214.0 0.056

Values are presented as mean ± SD.

DMD = Descemet’s membrane detachment; UCVA = uncorrected visual acuity; IOP = intraocular pressure.

* Independent samples t-test.

TOOLS
Similar articles